441 Chem

CH-1

Introduction to Spectroscopy

Introduction to Spectroscopy

Set of methods where interaction of electromagnetic radiation with chemical molecules.

Electromagnetic Radiation

- υ = Frequency of Radiation (Hertz <u>or</u> S⁻¹)
- λ = Wave Length (cm)
- V = Wave Number (cm⁻¹)
- C = Velocity of light (constant) = 3×10^{10} cm/sec

The energy of quantum:

$$E = h\upsilon = h\frac{C}{\lambda}$$

h (Planck's constant) = 6.62×10^{-27} (Erg/sec)

The Electromagnetic Spectrum

Internal Energy of Molecules:

$$E_{total} = E_{elec} + E_{vib} + E_{rot}$$

 E_{elec} : Electronic transitions E_{vib} : Vibrational transitions E_{rot} : Rotational transitions

The Excitation process

Type of Spectroscopy:

- 1- Emission Spectroscopy
- 2- Absorption Spectroscopy

Types of Energy Transitions in Each Region of the Electromagnetic Spectrum

REGION

ENERGY TRANSITIONS

X-ray	Bond-breaking	
UV/Visible	Electronic	
Infrared	Vibrational	
Microwave	Rotational	
Radio Frequency	Nuclear and Electronic Spin	

Summary of Spectroscopic Methods in Organic Chemistry

Electromagnetic Radiation	Wavelength And (Frequency)	The effect of radiation on molecular	Information learned
Ultraviolet and Visible	200-800 nm (1.5x10 ¹⁵ - 3.7x10 ¹⁴ Hz)	Changes in the electronic energy levels within the molecule	Unsaturated bonds alternating with nonbonding electrons
Infrared	2.5-15 um (1.2x10 ¹⁴ - 2.0x10 ¹³ Hz)	Changes in the vibrational and rotational energy levels in the molecule	Detection of functional groups in the compound
Radio Frequency Nuclear Magnetic Resonance	5-0.5 m (60-600 MHz)	Changes in the magnetic properties of some nuclei of atoms	Detect the type and number of hydrogen and carbon atoms in the compound and find out different chemical environments
Mass Spectrum		Ionization and fragmentation of compound to ions Broken	Determination of Molecular weight of the compound and detection of the molecular structure from broken molecules resulting