

College of Science. Department of Mathematics

كلية العلوم قسم الرياضيات

First Midterm Exam Academic Year 1446 Hijri- First Semester

معلومات الامتحان Exam Information							
Course name	Introduction to Partial	اسم المقرر					
Course Code	425	رمز المقرر					
Exam Date	2024-11-25	1446-05-23	تاريخ الامتحان				
Exam Time	10: 00 AM		وقت الامتحان				
Exam Duration	2 hours	ماعتان	_				
Classroom No.	G14		رقم قاعة الاختبار				
Instructor Name	د. هدی الرشیدي		اسم استاذ المقرر				

معلومات الطالب Student Information				
Student's Name		اسم الطالب		
ID number		الرقم الجامعي		
Section No.		رقم الشعبة		
Serial Number		الرقم التسلسلي		

General Instructions:

تعليمات عامة:

- Your Exam consists of 7 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- عدد صفحات الامتحان ٧ صفحة. (بإستثناء هذه الورقة)
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

•

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related	Points	Final
		Question (s)		Score
1	C.L.O 2-1(2 marks)	QII(b)		
2	C.L.O 2-2 (4+2 marks)	QI		
		QII(a)		
3	C.L.O 2-3 (6+3+3 marks)	QIII		
		QIV		
4				
5				
6				
7				
8				

Question I: Obtain the general solution of the given equation: $u_{xx} - 2u_{xy} - 3u_{yy} = e^{2x+3y} + \sin(2x+y)$

$$u_{xx} - 2u_{xy} - 3u_{yy} = e^{2x+3y} + \sin(2x+y)$$

Question II:
(a) Solve the PDE $xyu_{xy} = 1$.

(b) Determine the condition under which the function $u(x,y) = \cos(ax - by)e^{(ax - by)}$

is a harmonic.

Question III: Solve the Cauchy problem
$$yu_{xy} + 2u_x = x^2, y \neq 0$$
, in \mathbb{R}^2 , that satisfies: $u(s,2s)_{|\Gamma_0} = \frac{s^3}{6}$, $u_n(s,2s)_{|\Gamma_0} = -\frac{s^2}{\sqrt{5}}$

where

 $\Gamma_0 = \{(x,y) | x = s, y = 2s, s \in \mathbb{R}^* \}$, and u_n is a derivative of u in the direction of Γ_0 .

Question IV:

(a) Consider the series solution

$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (a_n \cos n\theta + b_n \sin n\theta),$$

for Dirichlet problem for circle of radius \boldsymbol{a} , if the boundary condition is $u(\boldsymbol{a}, \theta) = \sin \theta$, $0 \le \theta \le 2\pi$. Obtain $u(r, \theta)$?

(b) Consider the Laplace equation in spherical coordinate
$$u_{rr} + \frac{2}{r}u_r + \frac{1}{r^2sin^2\phi}u_{\theta\theta} + \frac{1}{r^2}u_{\phi\phi} + \frac{\cot\phi}{r^2}u_{\phi} = 0.$$

If u is a symmetry around z axis, then the solution is given by

$$u(r,\theta) = \sum_{n=0}^{\infty} (a_n r^n + b_n r^{-n-1}) P_n(\cos \phi).$$

Find the solution at the boundary condition

 $u(1,\phi) = f(\phi), 0 \le r < 1$ where

$$f(\phi) = \begin{cases} 110 & if \quad 0 \le \phi < \frac{\pi}{2}. \\ 0 & if \quad \frac{\pi}{2} < \phi \le \pi. \end{cases}$$

(Hint:
$$||P_n||^2 = \frac{2}{2n+1}$$
, $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$.)

Good Luck