

College of Science. Department of Mathematics

كلية العلوم نسم الرياضيات

Final Exam Academic Year 1446 Hijri- SecondSemester

معلومات الامتحان Exam Information							
Course name	introduction to Partial	اسم المقرر					
Course Code	425 Math		رمز المقرر				
Exam Date	2025-05-22	1446-11-24	تاريخ الامتحان				
Exam Time	08: 00 AM		وقت الامتحان				
Exam Duration	3 hours	ثلاث ساعات	مدة الامتحان				
Classroom No.			رقم قاعة الاختبار				
Instructor Name			اسم استاذ المقرر				

معلومات الطالب Student Information				
Student's Name		اسم الطالب		
ID number		الرقم الجامعي		
Section No.		رقم الشعبة		
Serial Number		الرقم التسلسلي		

General Instructions:

تعليمات عامة:

- Your Exam consists of 1 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- عدد صفحات الامتحان ١ صفحة. (بإستثناء هذه الورقة)
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

•

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related	Points	Final
		Question (s)		Score
1	CLO 1-1	QIV(1)	1	
2	CLO 2-1	QII(A),QIV(2)	2+4	
3	CLO 2-2	QI(A),QIV(3)	7+3	
4	CLO 2-3	QI(B,C),	9+2+12	
		QII(B), QIII		
5				
6				40
7				40
8				

Question I: [(3+4) +5+4=16 points]

A) Solve the following:

1-
$$\frac{y^2z}{x}z_x + zxz_y - y^2 = 0$$

2-
$$3u_x - 2u_y + u = x$$
. (use the change of veriables)

B) Find the solution of the partial differential equation subject to the given condition

$$\begin{cases} xu_x + yu_y = x^2 - y \\ u(1, y) = y. \end{cases}$$

C) Solve the following PDE (determine if it has a unique, infinity many solutions or no solution]:

$$u_x + u_y = 1$$

1-
$$u(x, x) = x$$

2-
$$u(x, 0) = h(x)$$

3-
$$u(x,x) = 1$$

Question II: [2+2=4 points]

A) Obtain the partial differential equation of lower derivatives by eliminating the arbitrary functions $u(x, y) = e^x G(2x - y)$.

B) Use D'Alembert solution to solve the problem:

$$u_{tt} - 4u_{xx} = 0, -\infty < x < \infty, t > 0$$

 $u(x, 0) = e^{-x}, u_t(x, 0) = 0, -\infty < x < \infty.$

Hint: D'Alembert formula is $u(x,t) = \frac{1}{2} [f(x-ct) + f(x+ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$

Question III: [5+7=12 points]

A) Find the surface passing through the parabolas,

$$y^2 = 4ax$$
, $u = 0$. and $y^2 = -4ax$, $u = 1$

and satisfying the equation $xu_{xx} + 2u_x = 0$.

B) Show that the solution of the equation $u_t = u_{xx}$ satisfying the condition

$$u = 0$$
 for $x = 0$ and $x = a$ for all $t > 0$
 $u = x$ for $t = 0$ and $0 < x < a$

is given by

$$u(x,t) = \frac{2a}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin \frac{n\pi}{a} x e^{-\left(\frac{n\pi}{a}\right)^{2} t}.$$

[Hint: use $\alpha > 0$ is as a separation constant]

Question IV: [1+4+3=8 points]

Consider the following equation:

$$u_{xx}$$
-4 u_{xy} +4 u_{yy} = cos (2x+y)

1- Classify the equation.

2- Reduce it to the appropriate canoncial form.

3- Obtain the general solution.