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Question I: (4+4 points)
A) Find the general solution of the PDE :
Uy +uy+u, +u, =0

B) Find the integral surface of
(W? = 2yu — yHuy, + (xy + xwu, = xy —xu

Question II: ((1+4+2)+4 points)
A) Consider the following second-order PDE:

Ugx + 2Uyy + Uyy = 0. (1)
a) Classify the equation (1).
b) Use the chain rule to write the differential equation (1) in the coordinates
&=x, n=x-—y.
c) Find the general solution of the given equation (1).
B) What are the conditions on the constants a, b, ¢, d and the function f so that the function
u(x,y,z) = f(ax + by +cz+d)
is harmonic function.

Question I1I: (3.5+3.5+4 points)
A) Solve the following Cauchy problem:

1

1+x’
I:x =0, y =t, u=-=t.

e‘u(ux + xuy) =

B) Find the integral surface of
x*u, + y*u, +u? =0,
which passes through the hyperbola:
xy=x+yu=1

C) Find the solution of the following initial-problem:
Uyx — 4Uy,, = sin(x +y),
u(0,y) =0, u,(0,y) = 0.
Question IV: (6+4 points)
A) Find the solution of the following initial-boundary value problem
U = 2Uy,, 0<x<m t>0
u(0,t) = 5,u(m,t) = 10, t>0
u(x,0) = sin 3x — sin 5x, O<x<m
(Hint:sinu sinv = %[cos(u —v) —cos(u + v)])

B) Prove that the following initial-boundary value problem
ou 0%u

ot Paxe
u(0,t) =u(L,t) =0, t>0
ulx,0)=F(x), 0<x<L

0<x<L, t>0

has a unique solution.
Good Luck



