

College of Science. Department of Mathematics

كلية العلوم قسم الرياضيات

Final Exam Academic Year 1446 Hijri- First Semester

معلومات الامتحان Exam Information						
Course name	Introduction to Partial Differential Equations		اسم المقرر			
Course Code	425 Math		رمز المقرر			
Exam Date	2024-12-17	1446-06-16	تاريخ الامتحان			
Exam Time	08: 00 AM		وقت الامتحان			
Exam Duration	3 hours	ثلاث ساعات	مدة الامتحان			
Classroom No.			رقم قاعة الاختبار			
Instructor Name			اسم استاذ المقرر			

معلومات الطالب Student Information				
Student's Name		اسم الطالب		
ID number		الرقم الجامعي		
Section No.		رقم الشعبة		
Serial Number		الرقم التسلسلي		

General Instructions:

<u>تعليمات عامة:</u>

- Your Exam consists of 1 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- عدد صفحات الامتحان 1 صفحة. (بإستثناء هذه الورقة)
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

•

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	C.L.O 1-1 (1 point)	QII(A)(a)		
2	C.L.O 2-1 (4+4+4 marks)	QII(A)(b) QII(B) QIV(B)		
3	C.L.O 2-2 ((4+4)+2 marks)	QI QII(A)(c)		
4	C.L.O 2-3 ((3.5+3.5+4)+6 marks)	QIII QIV(A)		
5				
6				
7				
8				

Question I: (4+4 points)

A) Find the general solution of the PDE:

$$u_x + u_y + u_z + u_t = 0$$

B) Find the integral surface of

$$(u^2 - 2yu - y^2)u_x + (xy + xu)u_y = xy - xu$$

Question II: ((1+4+2)+4 points)

A) Consider the following second-order PDE:

$$u_{xx} + 2u_{xy} + u_{yy} = 0 \dots (1)$$

- a) Classify the equation (1).
- b) Use the chain rule to write the differential equation (1) in the coordinates

$$\xi = x$$
, $\eta = x - y$.

- c) Find the general solution of the given equation (1).
- B) What are the conditions on the constants a, b, c, d and the function f so that the function

$$u(x, y, z) = f(ax + by + cz + d)$$

is harmonic function.

Question III: (3.5+3.5+4 points)

A) Solve the following Cauchy problem:

$$\begin{cases} e^{-u}(u_x + xu_y) = \frac{1}{1+x}, \\ \Gamma: x = 0, \quad y = t, \quad u = t. \end{cases}$$

B) Find the integral surface of

$$x^2 u_x + y^2 u_y + u^2 = 0,$$

which passes through the hyperbola:

$$xy = x + y$$
, $u = 1$.

C) Find the solution of the following initial-problem:

$$u_{xx} - 4u_{yy} = \sin(x + y),$$

 $u(0, y) = 0,$ $u_x(0, y) = 0.$

Question IV: (6+4 points)

A) Find the solution of the following initial-boundary value problem

$$u_t = 2u_{xx}, \quad 0 < x < \pi, \quad t > 0$$

 $u(0,t) = 5, u(\pi,t) = 10, \qquad t > 0$
 $u(x,0) = \sin 3x - \sin 5x, \qquad 0 < x < \pi$

 $(\text{Hint:sin } u \sin v = \frac{1}{2} [\cos(u - v) - \cos(u + v)])$

B) Prove that the following initial-boundary value problem

$$\frac{\partial u}{\partial t} = \beta \frac{\partial^2 u}{\partial x^2}, 0 < x < L, \ t > 0$$

$$u(0, t) = u(L, t) = 0, \quad t > 0$$

$$u(x, 0) = F(x), \quad 0 < x < L$$

has a unique solution.