

College of Science. Department of Mathematics

كلية العلوم قسم الرياضيات

Final Exam Academic Year 1445 Hijri- SecondSemester

معلومات الامتحان Exam Information						
Course name	Introduction to Partial D	اسم المقرر				
Course Code	425 MATH		رمز المقرر			
Exam Date	2024-05-26	1445-11-18	تاريخ الامتحان			
Exam Time	01: 00 PM		وقّت الامتحان			
Exam Duration	3 hours	ثلاث ساعات	مدة الامتحان			
Classroom No.	F052		رقم قاعة الاختبار			
Instructor Name	د. هدی الرشیدي		اسم استاذ المقرر			

معلومات الطالب Student Information				
Student's Name		اسم الطالب		
ID number		الرقم الجامعي		
Section No.		رقم الشعبة		
Serial Number		الرقم التسلسلي		

General Instructions:

عليمات عامة:

- Your Exam consists of 2 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- عدد صفحات الامتحان 2 صفحة. (بإستثناء هذه الورقة)
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

•

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related	Points	Final
		Question (s)		Score
1	CLO 1.1 (1 mark)	QII(A)		
2	CLO 2.1 (15 marks)	QI(A),		
		QII(B, D)		
		QIV(B)		
3	CLO 2.2 (7 marks)	QI(C)		
		QII(C)		
4	CLO 2.3 (17 marks)	QI(B)		
		QIII		
		QIV(A)		
5				
6				
7				
8				

OI:

A) Assume that P, Q and R are nonzero functions. The solution of the first-order quasilinear partial differential equation

$$P(x, y, u)u_x + Q(x, y, u)u_x = P(x, y, u)$$

can be written as integral surfaces F(v, w) = 0 where v = v(x, y, z) and w = w(x, y, z) are two linear known independent functions, and F is an arbitrary function in C^1 . By using the subsidiary equations and the Jacobian, prove that:

$$\frac{\partial(v,w)}{\partial(z,x)} = \frac{Q}{P} \frac{\partial(v,w)}{\partial(y,z)}, \qquad \frac{\partial(v,w)}{\partial(x,y)} = \frac{R}{P} \frac{\partial(v,w)}{\partial(y,z)}$$

B) Find the solution of partial differential equation

$$u(x+u)u_x-y(y+u)u_y=0,$$

where $u(1,t) = \sqrt{t}, t > 0$.

C) Find the solution of the following equations:

1.
$$(u^2 - 2yu - y^2)u_x + (xy + xu)u_y = xy - xu$$

2.
$$(x - y)u_{xy} - u_x + u_y = 0$$
, (Hint: $v = (x - y)u$).

QII:

A) Classify the following equation:

$$4u_{xx} + 12u_{xy} + 9u_{yy} = 0. \quad (1).$$

- B) Reduce the equation (1) into a canonical form, then find its solution.
- C) Solve the canonical form that you found it in Part (B).
- D) Find a partial differential equation which has the following solution:

$$a(x^2 + v^2) + bz^2 = 1$$

QIII:

A) By using the separation variables and appropriate separation constant, find the solution of heat equation

$$u_t = ku_{xx}, \quad 0 < x < 1, \qquad t > 0.$$

B) By using Part (A), find its solution if

$$u(0,t) = u(1,t) = 0, t > 0,$$

 $u(x,0) = f(x), 0 < x < 1.$

QIV:

A) Find the solution of wave equation:

(2)
$$u_{tt} = 4u_{xx}$$
, $0 < x < \pi$, $t > 0$
(3)
$$\begin{cases} u(x,0) = 0, u_t(x,0) = x, & 0 < x < \pi, \\ u(0,t) = u(\pi,t) = 0, & t > 0. \end{cases}$$

B) Prove the uniqueness of equation (2) - (3).

Good Luck.