
Chapter 4
• Beyond Classical Search: Local Search

1

3. Local beam search

Idea: Keep track of 𝑘 states rather than just one.

• Start with 𝑘 randomly generated states

• At each iteration, all the successors of all 𝑘 states are generated.

• If any one is a goal state, stop;

• else select the 𝑘 best successors from the complete list and repeat.

2

3. Local Beam Search

3

Cost

States

3. Local Beam Search

4

Cost

States

3. Local Beam Search

5

Cost

States

Pick the 𝑘 least cost
from the entire list

3. Local Beam Search

6

Cost

States

Pick the 𝑘 least cost
from the entire list

3. Local Beam Search

7

Cost

States

Pick the 𝑘 least cost
from the entire list

Is this the same as running 𝑘
random restarts in parallel
instead of in sequence?

3. Local Beam Search

8

Cost

States

3. Local Beam Search

9

Cost

States

3. Local Beam Search

10

Cost

States

Pick the 𝑘 least cost
from the entire list

3. Local Beam Search

11

Cost

States

Pick the 𝑘 least cost
from the entire list

3. Local Beam Search

12

Cost

States

3. Local Beam Search

13

Cost

States

3. Local Beam Search

14

Cost

States

3. Local beam search

• More efficient than hill-climbing.

• However, the 𝑘 states tend to regroup very quickly in the same region
→ lack of diversity.

• Improvement: use stochastic methods to generate new state from the
old ones.

• Stochastic beam search: Instead of choosing the best 𝑘 from the
successors, choose 𝑘 successors at random, with the probability of
choosing a given successor being an increasing function of its value

• Another Example: genetic algorithm.

15

4. Genetic algorithms

• A successor state is generated by combining two parent states

• Start with 𝑘 randomly generated states (population)

• A state (individual) is represented as a string over a finite alphabet
(often a string of 0s and 1s)

• Evaluation function (fitness function): Higher values for better states.

• Produce the next generation of states by selection, crossover, and
mutation.

16

Genotype space =

{0,1}L

Phenotype space

Encoding

(representation)

Decoding

(inverse representation)

011101001

010001001

10010010

10010001

Representation

Simple GA reproduction cycle

1. Select parents for the mating pool

 (size of mating pool = population size)

2. Shuffle the mating pool

3. For each consecutive pair apply crossover with probability pc ,

otherwise copy parents

4. For each offspring apply mutation (bit-flip with probability pm

independently for each bit)

5. Replace the whole population with the resulting offspring

SGA operators: 1-point crossover

• Choose a random point on the two parents

• Split parents at this crossover point

• Create children by exchanging tails

• Pc typically in range (0.6, 0.9)

One-point crossover

• Randomly choose one position in the chromosomes

20

Parents 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0

Offspring 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0

One-point crossover

• Randomly choose one position in the chromosomes

21

Parents 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0

Offspring 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0

Two-point crossover

• Randomly choose two positions in the chromosomes

22

Parents 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0

Offspring 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0

SGA operators: mutation

• Alter each gene independently with a probability pm

• pm is called the mutation rate

• Typically between 1/pop_size and 1/ chromosome_length

Mutation

• There are different ways to perform mutation

• The idea is to introduce a small change

• Replace a bit by its complement

24

1 0 1 0 0 0 1 1 1 0

1 0 1 1 0 0 1 0 1 0

• Main idea: better individuals get higher chance

• Chances proportional to fitness

• Implementation: roulette wheel technique

• Assign to each individual a part of the
roulette wheel

• Spin the wheel n times to select n
individuals

SGA operators: Selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Example

• Simple problem: max x2 over {0,1,…,31}

• GA approach:

• Representation: binary code, e.g. 01101  13

• Population size: 4

• 1-point xover, bitwise mutation

• Roulette wheel selection

• Random initialisation

• We show one generational cycle done by hand

x2 example: selection

X2 example: crossover

X2 example: mutation

The simple GA

• Has been subject of many (early) studies

• still often used as benchmark for novel GAs

• Shows many shortcomings, e.g.

• Representation is too restrictive

• Mutation & crossovers only applicable for bit-string &
integer representations

• Selection mechanism sensitive for converging populations
with close fitness values

• Generational population model (step 5 in SGA repr. cycle)
can be improved with explicit survivor selection

4. Representation: Traveling Salesman Problem

• The Find a tour of a given set of cities so that each city is visited only
once, and the total distance traveled is minimized

• Representation is an ordered list of city numbers.

1) London 3) Dunedin 5) Beijing 7) Tokyo

2) Venice 4) Singapore 6) Phoenix 8) Victoria

Chromosome1 (3 5 7 2 1 6 4 8)

Chromosome2 (2 5 7 6 8 1 3 4)

31

4. Representation: 8-queens

• An 8-queens state must specify the positions of 8 queens, each in a
column of 8 squares, and so requires 8 × log2 8 = 24 bits

• Alternatively, the state could be represented as 8 digits, each in the
range from 1 to 8.

• The two encodings behave differently.

• Successful use of GA requires careful engineering of the
representation

32

8 queens 3 bits to specify 8 positions

4. Representation: 8-queens

33

1 6 2 5 7 4 8 3Individual =

4. Fitness Function: 8-queens

• A fitness function should return higher values for better states

• 8-queens problem: we use the number of nonattacking pairs of
queens

• has a value of 28 for a solution (7+6+5+4+3+2+1)

• Calculate the fitness of every individual in the population

• The probability of being chosen for reproducing is directly
proportional to the fitness score

34

4. Fitness Function: 8-queens

35

Fitness Probability

24

11 + 20 + 23 + 24
=

24

78
= 0.308

23

11 + 20 + 23 + 24
=

23

78
= 0.295

20

11 + 20 + 23 + 24
=

20

78
= 0. 256

11

11 + 20 + 23 + 24
=

11

78
= 0.141

4. Selection: 8-queens

36

Fitness Probability

• Two pairs are selected at random for reproduction, in accordance with the probabilities in (b)
• Notice that one individual is selected twice and one not at all

4. Crossover: 8-queens

37

• A crossover point is chosen randomly from the positions in the string

4. Crossover: 8-queens

38

4. Mutation: 8-queens

39

• Each location is subject to random mutation with a small independent probability
• Mutation probability is low (e.g., 0.001)

GA: how does it work?

• Replace the old population with the new population

• Repeat the previous steps until the best individual is found or the
maximum number of iterations is reached

40

GA algorithm

41

Genetic algorithms

• The goal of crossover is local search: look for new individuals that are
similar to the best individuals in the population.

• This is called exploitation

• The goal of mutation is to explore new parts of the search space.

• This is called exploration

42

	Slide 1: Chapter 4
	Slide 2: 3. Local beam search
	Slide 3: 3. Local Beam Search
	Slide 4: 3. Local Beam Search
	Slide 5: 3. Local Beam Search
	Slide 6: 3. Local Beam Search
	Slide 7: 3. Local Beam Search
	Slide 8: 3. Local Beam Search
	Slide 9: 3. Local Beam Search
	Slide 10: 3. Local Beam Search
	Slide 11: 3. Local Beam Search
	Slide 12: 3. Local Beam Search
	Slide 13: 3. Local Beam Search
	Slide 14: 3. Local Beam Search
	Slide 15: 3. Local beam search
	Slide 16: 4. Genetic algorithms
	Slide 17: Representation
	Slide 18: Simple GA reproduction cycle
	Slide 19: SGA operators: 1-point crossover
	Slide 20: One-point crossover
	Slide 21: One-point crossover
	Slide 22: Two-point crossover
	Slide 23: SGA operators: mutation
	Slide 24: Mutation
	Slide 25: SGA operators: Selection
	Slide 26: Example
	Slide 27: x2 example: selection
	Slide 28: X2 example: crossover
	Slide 29: X2 example: mutation
	Slide 30: The simple GA
	Slide 31: 4. Representation: Traveling Salesman Problem
	Slide 32: 4. Representation: 8-queens
	Slide 33: 4. Representation: 8-queens
	Slide 34: 4. Fitness Function: 8-queens
	Slide 35: 4. Fitness Function: 8-queens
	Slide 36: 4. Selection: 8-queens
	Slide 37: 4. Crossover: 8-queens
	Slide 38: 4. Crossover: 8-queens
	Slide 39: 4. Mutation: 8-queens
	Slide 40: GA: how does it work?
	Slide 41: GA algorithm
	Slide 42: Genetic algorithms

