Chapter 4

• Beyond Classical Search: Local Search

3. Local beam search

Idea: Keep track of k states rather than just one.

- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated.
 - If any one is a goal state, stop;
 - else select the k best successors from the complete list and repeat.

States

States

States

3. Local beam search

- More efficient than hill-climbing.
- However, the k states tend to regroup very quickly in the same region \rightarrow lack of diversity.
- Improvement: use stochastic methods to generate new state from the old ones.
- Stochastic beam search: Instead of choosing the best k from the successors, choose k successors at random, with the probability of choosing a given successor being an increasing function of its value
- Another Example: genetic algorithm.

4. Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A **state** (individual) is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function): Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation.

Representation

Simple GA reproduction cycle

- 1. Select parents for the mating pool
 - (size of mating pool = population size)
- 2. Shuffle the mating pool
- 3. For each consecutive pair apply crossover with probability $\rm p_{c}$, otherwise copy parents
- 4. For each offspring apply mutation (bit-flip with probability p_m independently for each bit)
- 5. Replace the whole population with the resulting offspring

SGA operators: 1-point crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails
- P_c typically in range (0.6, 0.9)

One-point crossover

• Randomly choose one position in the chromosomes

One-point crossover

• Randomly choose one position in the chromosomes

Two-point crossover

• Randomly choose two positions in the chromosomes

SGA operators: mutation

- Alter each gene independently with a probability p_m
- p_m is called the mutation rate
 - Typically between 1/pop_size and 1/ chromosome_length

Mutation

- There are different ways to perform mutation
- The idea is to introduce a small change
 - Replace a bit by its complement

SGA operators: Selection

- Main idea: better individuals get higher chance
 - Chances proportional to fitness
 - Implementation: roulette wheel technique
 - Assign to each individual a part of the roulette wheel
 - Spin the wheel n times to select n individuals

- fitness(A) = 3
- fitness(B) = 1
- fitness(C) = 2

Example

- Simple problem: max x² over {0,1,...,31}
- GA approach:
 - Representation: binary code, e.g. $01101 \leftrightarrow 13$
 - Population size: 4
 - 1-point xover, bitwise mutation
 - Roulette wheel selection
 - Random initialisation
- We show one generational cycle done by hand

x² example: selection

String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	$0\ 1\ 1\ 0\ 1$	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

X² example: crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ \ 1$	4	$0\ 1\ 1\ 0\ 0$	12	144
2	$1\ 1\ 0\ 0 \mid 0$	4	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ \ 0\ 0\ 0$	2	$1\ 1\ 0\ 1\ 1$	27	729
4	$1 \ 0 \ \ 0 \ 1 \ 1$	2	$1 \ 0 \ 0 \ 0 \ 0$	16	256
Sum					1754
Average					439
Max					729

X² example: mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ 0$	1 1 1 0 0	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	11 <u>0</u> 11	27	729
4	$1 \ 0 \ 0 \ 0 \ 0$	1 0 1 0 0	18	324
Sum				2354
Average				588.5
Max				729

The simple GA

- Has been subject of many (early) studies
 - still often used as benchmark for novel GAs
- Shows many shortcomings, e.g.
 - Representation is too restrictive
 - Mutation & crossovers only applicable for bit-string & integer representations
 - Selection mechanism sensitive for converging populations with close fitness values
 - Generational population model (step 5 in SGA repr. cycle) can be improved with explicit survivor selection

4. Representation: Traveling Salesman Problem

- The Find a tour of a given set of cities so that each city is visited only once, and the total distance traveled is minimized
- Representation is an ordered list of city numbers.
- 1) London 3) Dunedin 5) Beijing 7) Tokyo
- 2) Venice 4) Singapore 6) Phoenix 8) Victoria

Chromosome1 (3 5 7 2 1 6 4 8) Chromosome2 (2 5 7 6 8 1 3 4)

4. Representation: 8-queens

• An 8-queens state must specify the positions of 8 queens, each in a column of 8 squares, and so requires $8 \times \log_2 8 = 24$ bits

8 queens 3 bits to specify 8 positions

- Alternatively, the state could be represented as 8 digits, each in the range from 1 to 8.
- The two encodings behave differently.
- Successful use of GA requires careful engineering of the representation

4. Representation: 8-queens

Individual = 16257483W wil W W W

4. Fitness Function: 8-queens

- A fitness function should return higher values for better states
- 8-queens problem: we use the number of *nonattacking* pairs of queens
 - has a value of 28 for a solution (7+6+5+4+3+2+1)
- Calculate the fitness of every individual in the population
- The probability of being chosen for reproducing is directly proportional to the fitness score

4. Fitness Function: 8-queens

35

4. Selection: 8-queens

- Two pairs are selected at random for reproduction, in accordance with the probabilities in (b)
- Notice that one individual is selected twice and one not at all

4. Crossover: 8-queens

• A crossover point is chosen randomly from the positions in the string

4. Crossover: 8-queens

4. Mutation: 8-queens

- Each location is subject to random **mutation** with a small independent probability
- Mutation probability is low (e.g., 0.001)

GA: how does it work?

- Replace the old population with the new population
- Repeat the previous steps until the best individual is found or the maximum number of iterations is reached

GA algorithm

function GENETIC-ALGORITHM(*population*, *fitness*) **returns** an individual **repeat**

```
weights ← WEIGHTED-BY(population, fitness)
population2 ← empty list
for i = 1 to SIZE(population) do
    parent1, parent2 ← WEIGHTED-RANDOM-CHOICES(population, weights, 2)
    child ← REPRODUCE(parent1, parent2)
    if (small random probability) then child ← MUTATE(child)
    add child to population2
    population ← population2
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness
```

function REPRODUCE(parent1, parent2) returns an individual

```
n \leftarrow \text{LENGTH}(parent1)
c \leftarrow \text{random number from 1 to } n
return APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, c + 1, n))
```

Genetic algorithms

- The **goal** of crossover is local search: look for new individuals that are similar to the best individuals in the population.
 - This is called exploitation
- The **goal** of mutation is to explore new parts of the search space.
 - This is called exploration