Chapter 4

* Beyond Classical Search: Local Search

3. Local beam search

: Keep track of k states rather than just one.
e Start with k randomly generated states

e At each iteration, all the successors of all k states are generated.
* Tfanyoneisa state, stop;

 else select the k best successors from the complete list and repeat.

3. Local Beam Search

Cost 1

States

3. Local Beam Search

Cost 1

States

3. Local Beam Search

Cost 1

Pick the k least cost
from the entire list

States

3. Local Beam Search

Cost 1

Pick the k least cost
from the entire list

States

3. Local Beam Search

Cost 1

Pick the k least cost
from the entire list

Is this the same as running k
random restarts in parallel
instead of in sequence?

States

3. Local Beam Search

Cost 1

States

3. Local Beam Search

Cost 1

States

3. Local Beam Search

Pick the k least cost
from the entire list

Cost 1

States

10

3. Local Beam Search

Pick the k least cost
from the entire list

Cost 1

States

11

3. Local Beam Search

Cost 1

States

12

3. Local Beam Search

Cost 1

States

13

3. Local Beam Search

Cost 1

States

14

3. Local beam search

* More efficient than hill-climbing.

* However, the k states tend to regroup very quickly in the same region
- lack of diversity.

. use stochastic methods to generate new state from the
old ones.

 Stochastic beam search: Instead of choosing the best k from the
successors, choose k successors at random, with the probability of
choosing a given successor being an increasing function of its value

* Another Example: genetic algorithm.

4. Genetic algorithms

* A successor state is generated by combining two parent states
e Start with kK randomly generated states (population)

A state (individual) is represented as a string over a finite alphabet
(often a string of Os and 15s)

 Evaluation function (fitness function): Higher values for better states.

* Produce the next generation of states by selection, crossover, and
mutation.

Representation

Phenotype space Genotype space =

L
Encoding {0.1} /'
—(representation), 10010001

10010030
010001001

011101001 /
Decodlng

(inverse representation)

Simple GA reproduction cycle

1. Select parents for the mating pool
(size of mating pool = population size)
2. Shuffle the mating pool

3. For each consecutive pair apply crossover with probability p.. ,
otherwise copy parents

4. For each offspring apply mutation (bit-flip with probability p,,
iIndependently for each bit)

5. Replace the whole population with the resulting offspring

SGA operators: 1-point crossover

* Choose a random point on the two parents
» Split parents at this crossover point
* Create children by exchanging tails

* P_typically in range (0.6, 0.9)

0(0|0|0|0(0|0(0|O0|O|O0(0|O[0(0|0]|0O
parents

AR e IR e A A A

CROOMCRESR 1 |1 (1 (1 (1|11 1[1(1[1]1
children

1(1(1]1|1({0}0({0|0|0|0(0|0(0(0|0|0

One-point crossover

« Randomly choose one position in the chromosomes

offpring 10 1 o fofaifotferfaller fellofaifalo 0 1 1 1 0

20

One-point crossover

« Randomly choose one position in the chromosomes

/
_— |

offpring 10 1 o fofaifotferfaller fellofaifalo 0 1 1 1 0

21

Two-point crossover

 Randomly choose two positions in the chromosomes

offpring 10 1 o folfaiier 1 1 o [effefaifal o o 1 forfaifon

22

SGA operators: mutation

* Alter each gene independently with a probability p,,

* p, is called the mutation rate
* Typically between 1/pop_size and 1/ chromosome_length

parent i O i o o

child 0(1{0(0(1|0{1(1{0|0(0|1|0]1

Mutation

* There are different ways to perform mutation

* The idea is to introduce a small change

* Replace a bit by its complement

SGA operators: Selection

* Main idea: better individuals get higher chance
* Chances proportional to fitness
* Implementation: roulette wheel technique

* Assign to each individual a part of the
roulette wheel

* Spin the wheel n times to select n
individuals

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2

Example

* Simple problem: max x% over {0,1,...,31}

* GA approach:
* Representation: binary code, e.g. 01101 <> 13

Population size: 4

1-point xover, bitwise mutation

Roulette wheel selection

Random initialisation

* We show one generational cycle done by hand

x? example: selection

String Initial |x Value| Fitness |Prob;|Expected|Actual
no population flz) = z* count | count
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1.00 4.00 4
Average 0.25 1.00 1
Max 0.49 1.97 2

X2 example: crossover

String Mating |Crossover| Offspring |x Value| Fitness
no. pool point |after xover f(x) = x°
1 01101 4 01100 12 144
2 1100]0 4 11001 25 625
2 11[/000 2 11011 27 729
4 100|011 2 10000 16 256
Sum 1754
Average 439
Max 729

X% example: mutation

String | Offspring Offspring |x Value| Fitness

no. after xover|after mutation flz) =27
1 01100 111100 26 676
2 11001 11001 25 625
2 11011 11011 27 729
4 10000 10/100 18 324
Sum

Average

Max

The simple GA

* Has been subject of many (early) studies

 still often used as benchmark for novel GAs

* Shows many shortcomings, e.g.
* Representation is too restrictive

* Mutation & crossovers only applicable for bit-string &
integer representations

* Selection mechanism sensitive for converging populations
with close fitness values

* Generational population model (step 5 in SGA repr. cycle)
can be improved with explicit survivor selection

4. Representation: Traveling Salesman Problem

* The Find a tour of a given set of cities so that each city is visited only
once, and the total distance traveled is minimized

e Representation is an ordered list of city numbers.
) London) Dunedin 5) Beijing 7) Tokyo
2) Venice 4) Singapore 6) Phoenix 8) Victoria

Chromosomel (3 5 7 2 6 4 8)
Chromosome2 (2 5 7 6 8 4)

4. Representation: 8-queens

* An 8-queens state must specify the positions of 8 queens, each in a
column of 8 squares, and so requires 8 X log, 8 = 24 bits

T

8 queens

* Alternatively, the state could be represented as 8 digits, each in the
range from 1 to 8.

* The two encodings behave differently.

* Successful use of GA requires careful engineering of the
representation

4. Representation: 8-queens

individual= 16257483

aa

H HiE B

4. Fitness Function: 8-queens

e A fithess function should return values for better states

e 8-queens problem: we use the number of nonattacking pairs of
gueens

* has a value of 28 for a solution (7+6+5+4+3+2+1)
 Calculate the fitness of every individual in the population

* The probability of being chosen for reproducing is directly
proportional to the fitness score

4. Fithess Function:

Fitness Probability

v v
24748552 | 24 31%

el

32752411 | 23 29%

24415124 | 20 26%

i/

32543213 | 11 14%

(a) (b)
Initial Population Fitness Function

24 24

1120123 +24 78 2308

23 _23_0295
11+20+4+23+24 78

3-queens

20 _20_0256
11+20+4+23+24 78

11 11
= 0.141

11+20+23 +24 78

35

4. Selection: 8-queens

Fitness Probability

v | :
24748552 | 24 31% 32752411

|

32752411 [23 20% | 24748552

/

24415124 | 20 26% | 32752411

/

32543213 | 11 14% 24415?124

(a) (b) (©

Initial Population Fitness Function Selection

* Two pairs are selected at random for reproduction, in accordance with the probabilities in (b)
* Notice that one individual is selected twice and one not at all

4. Crossover: 3-queens

24748552 | 24 31% .| 32752411 32748552

|

32752411 [23 20% | 24748552 24752411

/

24415124 |_ 20 26% 327525411 >_< 327752124

/

24415411

32543213 | 11 14% 244155124

(a) (b) (© (d)

Initial Population Fitness Function Selection Crossover

* A crossover point is chosen randomly from the positions in the string

4. Crossover: 3-queens

4. Mutation: 8-queens

24748552

32752411

24 3%

23 29%

/

24415124

20 26%

32543213

/

11 14%

(a)

Initial Population

(b)

Fitness Function

32752411

24748552

32752411

24415124

>~
>~

(©

Selection

32748552

32748152

247752411

247752411

327752124

32252124

24415411

(d)

Crossover

24415417

(e)

Mutation

* Each location is subject to random mutation with a small independent probability
* Mutation probability is low (e.g., 0.001)

39

GA: how does it work?

* Replace the old population with the new population

* Repeat the previous steps until the best individual is found or the
maximum number of iterations is reached

GA algorithm

function GENETIC-ALGORITHM(population, fitness) returns an individual
repeat
weights <— WEIGHTED-BY (population, fitness)
population?2 <— empty list
for i = 1 to S1ZE(population) do
parentl, parent? <— WEIGHTED-RANDOM-CHOICES (population, weights,2)
child <~ REPRODUCE(parentl, parent?2)
if (small random probability) then child <— MUTATE(chzld)
add child to population2
population < population?2
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness

function REPRODUCE(parentl, parent?2) returns an individual
n <— LENGTH(parentl)
¢ < random number from 1 to n
return APPEND(SUBSTRING(parentl, 1, c), SUBSTRING(parent2, c + 1,n))

Genetic algorithms

* The goal of IS . look for new individuals that are
similar to the best individuals in the population.

* This is called exploitation

* The goal of is to new parts of the search space.

* This is called exploration

	Slide 1: Chapter 4
	Slide 2: 3. Local beam search
	Slide 3: 3. Local Beam Search
	Slide 4: 3. Local Beam Search
	Slide 5: 3. Local Beam Search
	Slide 6: 3. Local Beam Search
	Slide 7: 3. Local Beam Search
	Slide 8: 3. Local Beam Search
	Slide 9: 3. Local Beam Search
	Slide 10: 3. Local Beam Search
	Slide 11: 3. Local Beam Search
	Slide 12: 3. Local Beam Search
	Slide 13: 3. Local Beam Search
	Slide 14: 3. Local Beam Search
	Slide 15: 3. Local beam search
	Slide 16: 4. Genetic algorithms
	Slide 17: Representation
	Slide 18: Simple GA reproduction cycle
	Slide 19: SGA operators: 1-point crossover
	Slide 20: One-point crossover
	Slide 21: One-point crossover
	Slide 22: Two-point crossover
	Slide 23: SGA operators: mutation
	Slide 24: Mutation
	Slide 25: SGA operators: Selection
	Slide 26: Example
	Slide 27: x2 example: selection
	Slide 28: X2 example: crossover
	Slide 29: X2 example: mutation
	Slide 30: The simple GA
	Slide 31: 4. Representation: Traveling Salesman Problem
	Slide 32: 4. Representation: 8-queens
	Slide 33: 4. Representation: 8-queens
	Slide 34: 4. Fitness Function: 8-queens
	Slide 35: 4. Fitness Function: 8-queens
	Slide 36: 4. Selection: 8-queens
	Slide 37: 4. Crossover: 8-queens
	Slide 38: 4. Crossover: 8-queens
	Slide 39: 4. Mutation: 8-queens
	Slide 40: GA: how does it work?
	Slide 41: GA algorithm
	Slide 42: Genetic algorithms

