
Chapter 4
• Beyond Classical Search: Local Search
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3. Local beam search

Idea: Keep track of 𝑘 states rather than just one.

• Start with 𝑘 randomly generated states

• At each iteration, all the successors of all 𝑘 states are generated.

• If any one is a goal state, stop;

• else select the 𝑘 best successors from the complete list and repeat.
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Is this the same as running 𝑘 
random restarts in parallel 
instead of in sequence?
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3. Local beam search

• More efficient than hill-climbing.

• However, the 𝑘 states tend to regroup very quickly in the same region 
→ lack of diversity.

• Improvement: use stochastic methods to generate new state from the 
old ones.

• Stochastic beam search: Instead of choosing the best 𝑘 from the 
successors, choose 𝑘 successors at random, with the probability of 
choosing a given successor being an increasing function of its value

• Another Example: genetic algorithm.
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4. Genetic algorithms

• A successor state is generated by combining two parent states

• Start with 𝑘 randomly generated states (population)

• A state (individual) is represented as a string over a finite alphabet 
(often a string of 0s and 1s)

• Evaluation function (fitness function): Higher values for better states.

• Produce the next generation of states by selection, crossover, and 
mutation.
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Simple GA reproduction cycle

1. Select parents for the mating pool 

 (size of mating pool = population size)

2. Shuffle the mating pool

3. For each consecutive pair apply crossover with probability pc , 

otherwise copy parents

4. For each offspring apply mutation (bit-flip with probability pm 

independently for each bit)

5. Replace the whole population with the resulting offspring



SGA operators: 1-point crossover

• Choose a random point on the two parents

• Split parents at this crossover point

• Create children by exchanging tails

• Pc typically in range (0.6, 0.9)



One-point crossover

• Randomly choose one position in the chromosomes
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Parents 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0

Offspring 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0



One-point crossover

• Randomly choose one position in the chromosomes
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Parents 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0

Offspring 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0



Two-point crossover

• Randomly choose two positions in the chromosomes
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Parents 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0

Offspring 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0



SGA operators: mutation

• Alter each gene independently with a probability pm 

• pm is called the mutation rate

• Typically between 1/pop_size and 1/ chromosome_length



Mutation

• There are different ways to perform mutation

• The idea is to introduce a small change

• Replace a bit by its complement
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1 0 1 0 0 0 1 1 1 0

1 0 1 1 0 0 1 0 1 0



• Main idea: better individuals get higher chance

• Chances proportional to fitness

• Implementation: roulette wheel technique

• Assign to each individual a part of the 
roulette wheel

•  Spin the wheel n times to select n 
individuals

SGA operators: Selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%



Example

• Simple problem: max x2 over {0,1,…,31}

• GA approach:

• Representation: binary code, e.g. 01101  13

• Population size: 4

• 1-point xover, bitwise mutation 

• Roulette wheel selection

• Random initialisation

• We show one generational cycle done by hand 



x2 example: selection



X2 example: crossover



X2 example: mutation



The simple GA

• Has been subject of many (early) studies

• still often used as benchmark for novel GAs

• Shows many shortcomings, e.g.

• Representation is too restrictive

• Mutation & crossovers only applicable for bit-string & 
integer representations

• Selection mechanism sensitive for converging populations 
with close fitness values

• Generational population model (step 5 in SGA repr. cycle) 
can be improved with explicit survivor selection



4. Representation: Traveling Salesman Problem

• The Find a tour of a given set of cities so that each city is visited only 
once, and the total distance traveled is minimized

• Representation is an ordered list of city numbers.

1) London     3) Dunedin        5) Beijing       7) Tokyo

2) Venice       4) Singapore     6) Phoenix     8) Victoria

Chromosome1 (3   5   7   2   1   6   4   8)

Chromosome2 (2   5   7   6   8   1   3   4)
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4. Representation: 8-queens

• An 8-queens state must specify the positions of 8 queens, each in a 
column of 8 squares, and so requires 8 × log2 8 = 24 bits

•  Alternatively, the state could be represented as 8 digits, each in the 
range from 1 to 8.

• The two encodings behave differently. 

• Successful use of GA requires careful engineering of the 
representation 
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8 queens 3 bits to specify 8 positions



4. Representation: 8-queens
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1 6 2 5 7 4 8 3Individual = 



4. Fitness Function: 8-queens

• A fitness function should return higher values for better states

• 8-queens problem: we use the number of nonattacking pairs of 
queens

• has a value of 28 for a solution (7+6+5+4+3+2+1)

• Calculate the fitness of every individual in the population

• The probability of being chosen for reproducing is directly 
proportional to the fitness score 
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4. Fitness Function: 8-queens

35

Fitness Probability

24

11 + 20 + 23 + 24
=

24

78
= 0.308

23

11 + 20 + 23 + 24
=

23

78
= 0.295

20

11 + 20 + 23 + 24
=

20

78
= 0. 256

11

11 + 20 + 23 + 24
=

11

78
= 0.141



4. Selection: 8-queens
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Fitness Probability

• Two pairs are selected at random for reproduction, in accordance with the probabilities in (b)
• Notice that one individual is selected twice and one not at all 



4. Crossover: 8-queens
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• A crossover point is chosen randomly from the positions in the string 



4. Crossover: 8-queens
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4. Mutation: 8-queens
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• Each location is subject to random mutation with a small independent probability
• Mutation probability is low (e.g., 0.001)



GA: how does it work?

• Replace the old population with the new population

• Repeat the previous steps until the best individual is found or the 
maximum number of iterations is reached
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GA algorithm
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Genetic algorithms

• The goal of crossover is local search: look for new individuals that are 
similar to the best individuals in the population.

• This is called exploitation

• The goal of mutation is to explore new parts of the search space.

• This is called exploration
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