
Chapter 4
• Beyond Classical Search: Local Search
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Local search algorithms

• In many problems, the path to the goal is irrelevant. The goal state itself is 
the solution

• In such problems, the goal state is described implicitly by giving constraints 
that need to be satisfied

• Examples: 8-queens problem, TSP, Job scheduling

• There is no need then to keep track of the path → keep only a single 
current node and improve it.

• Less memory.

• Applicable in large (even infinite) spaces.

• Such algorithms are called local search algorithms
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Local search algorithms

• Local search algorithms are useful for solving pure optimization 
problems, where we want to find the best state according to an 
objective function. 

• Local search algorithms use a single node and try to minimize or 
maximize a cost (or objective) function:

• 8-Queens: objective = number of queens under attack.

• TSP:  objective = the total travelled distance.

• Minimization ≡ maximization:

• Maximizing 𝑓 is equivalent to minimizing  −𝑓 or 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑓
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Modeling for local search

To apply local search:

• State representation: typically use a complete-state formulation 

• Initial state(s): Start with a random complete assignment (we allow 
for inconsistent assignments). This formulation is called Complete 
state formulation.

• Actions: Change the values of one variable.

• Objective function (no goal test: the algorithms search for a minimum 
(or the maximum) of the function).
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Modeling for local search
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Local Search Algorithms

1. Hill Climbing

2. Simulated Annealing

3. Beam Search

4. Genetic Algorithm
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1. Hill-climbing

• Move to the neighbor with the best value

• Best value depends on minimization or maximization

• Keeps only node: state + value of the objective function
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1. Hill-climbing
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1. Hill-climbing
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Problem: depending on 
initial state, can get stuck 
in local minima/maxima 
or flat regions.



1. Hill-Climbing

13

4 3

2

1

3
2

3

3

0

1



1. Hill-Climbing
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1. Hill-Climbing
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1. Hill-climbing: 8-queens problem

• Each state has 8 queens on the board, one 
per column.

• The successors of a state are all possible 
states generated by moving a single queen 
to another square in the same column 

• each state has 8 × 7 = 56 successors
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1. Hill-climbing: 8-queens problem

• ℎ = number of pairs of queens that are attacking 
each other, either directly or indirectly 

• ℎ =  17 for the state

• Best is ℎ = 12, hill climbing chooses randomly 
between successors set
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1. Hill-climbing

• Known as greedy local search

• Can perform quite well, takes 5 steps to reach 
this state (ℎ = 1) from previous state

• Gets stuck at local optima, every move after 
the current move is worse

• For a randomly generated 8-queens state, 
steepest-ascent hill climbing gets stuck 86% 
of the time

• works quickly, taking just 4 steps on average 
when it succeeds and 3 when it gets stuck
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1. Hill-climbing
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1. Hill-climbing
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What if we can move sideways?
i.e. remove the equal sign

• Might get stuck in an infinite loop, better to use a limit
• Example: 8-queens problem  allow 100 consecutive sideways moves

• Problem instances solved 94%

• Averages 21 steps for each successful instance and 64 for each failure 



1. Hill-climbing variations
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• Simple hill climbing: chooses the first uphill 
generated, which might not be the best move

• Might pick 15, if it was generated first

• Steepest ascent hill climbing: looks at all the 
neighbors and then picks the best valued 
successor

• Will always pick one of the 12’s



1. Hill-climbing variations
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• Stochastic hill climbing: chooses at random from among the uphill 
moves; the probability of selection can vary with the steepness of the 
uphill move

• Incomplete: A hill-climbing algorithm that never makes “downhill” 
moves toward states with lower value (or higher cost) is guaranteed 
to be incomplete, because it can get stuck on a local maximum 

• Complete version: Random-restart hill climbing: conduct a series of 
hill-climbing searches from randomly generated initial states until a 
goal is found



2. Simulated annealing

• Random walk: move to a successor chosen uniformly at random from 
the set of successors

• complete but extremely inefficient  

• What if we combine hill climbing with a random walk in some way 
that yields both efficiency and completeness?
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2. Simulated Annealing: IDEA

• Shake the surface: get to a local 
minimum.

• Shake just hard enough to bounce 
the ball out of local minima but not 
hard enough to dislodge it from the 
global minimum

• Simulated-annealing starts by 
shaking hard (at a high 
temperature) and then slowly 
reduce the intensity of the shaking 
(lower the temperature). 
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2. Simulated annealing

• Idea: escape local minima by allowing some “bad” moves but 
gradually decrease their frequency.
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2. Simulated annealing

• Idea: escape local maxima by allowing some “bad” moves but 
gradually decrease their frequency.
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2. Simulated annealing

• Idea: escape local maxima by allowing some “bad” moves but 
gradually decrease their frequency.
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2. Simulated annealing

How do we move with probability?

• Compute the probability 𝑝 =  𝑒 ൗ𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟
𝑇

• Generate a uniform random number 𝑥 ∈ 0,1

• If (𝑥 ≤ 𝑝): move

• If (𝑥 > 𝑝): do not move
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2. Simulated annealing

𝑇 ∆𝐸 𝑝 =  𝑒 ൗ∆𝐸
𝑇 ∆𝐸 𝑝 =  𝑒 ൗ∆𝐸

𝑇

1000 -100 0.9048374180359595 -50 0.951229424500714

999 -100 0.9047468482529377 -50 0.9511818166118072

…..

700 -100 0.8668778997501816 -50 0.9310627797040227

…..

500 -100 0.8187307530779818 -50 0.9048374180359595

…..

200 -100 0.6065306597126334 -50 0.7788007830714

…..

100 -100 0.36787944117144233 -50 0.6065306597126334

…..

10 -100 0.0000453999297624849 -50 0.006737946999085469
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2. Simulated annealing
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𝑒 ൗ𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟
𝑇

Variation of the probability as a function of 𝑇 when ∆𝐸 is fixed

𝑇



2. Simulated annealing
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Variation of the probability as a function of ∆𝐸 when 𝑇 is fixed

∆𝐸

𝑒 ൗ𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟
𝑇



2. Simulated annealing in Action … 
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2. Simulated annealing in Action … 
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2. Simulated annealing in Action … 
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2. Simulated annealing in Action … 
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2. Simulated annealing in Action … 
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2. Simulated annealing
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2. Simulated annealing
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2. Simulated annealing
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2. Properties of simulated annealing search

• Can prove: If 𝑇 decreases slowly enough, then simulated annealing 
search will find a global optimum with probability approaching 1.

• Widely used in VLSI layout, airline scheduling, etc.
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