Chapter 4

* Beyond Classical Search: Local Search

Local search algorithms

* In many problems, the path to the goal is irrelevant. The itself is
the solution
* In such problems, the goal state is described by giving constraints

that need to be satisfied
* Examples: 8-queens problem, TSP, Job scheduling

* There is no need then to keep track of the path - keep only a single
current node and improve it.

* Less memory.
* Applicable in large (even infinite) spaces.

* Such algorithms are called local search algorithms

Local search algorithms

* Local search algorithms are useful for solving pure
, where we want to find the best state according to an
objective function.

* Local search algorithms use a single node and try to minimize or
maximize a cost (or objective) function:

* 8-Queens: objective = number of queens under attack.

e TSP: objective = the total travelled distance.
* Minimization = maximization:

* Maximizing [is equivalent to minimizing —f or constant — [

Modeling for local search

To apply local search:
* State representation: typically use a

* Initial state(s): Start with a random complete assignment (we allow

for inconsistent assignments). This formulation is called Complete
state formulation.

* Actions: Change the values of one variable.

* Objective function (no goal test: the algorithms search for a minimum
(or the maximum) of the function).

Modeling for local search

objective function ,
A — global maximum

shoulder

N

local maximum

/

“flat” local maximum

/

» State space

current
state

Local Search Algorithms

1. Hill Climbing

2. Simulated Annealing
3. Beam Search

4. Genetic Algorithm

1. Hill-climbing

* Move to the neighbor with the best value
* Best value depends on minimization or maximization

* Keeps only node: state + value of the objective function

function HILL-CLIMBING(problem) returns a state that is a local maximum
current <— problem .INITIAL
while true do
neighbor <— a highest-valued successor state of current
if VALUE(netghbor) < VALUE(current) then return current
current <— neighbor

1. Hill-climbing

Current Solution
Cost 1

States

1. Hill-climbing

Current Solution
Cost 1

States

1. Hill-climbing

Cost 1

Current Solution

States

10

1. Hill-climbing

Cost 1

Current Solution

States

11

1. Hill-climbing

Cost

A

Current Solution

Problem: depending on
initial state, can get stuck
in local minima/maxima
or flat regions.

[

States

12

1. Hill-Climbing

1. Hill-Climbing

1. Hill-Climbing

1. Hill-climbing: 8-queens problem

* Each state has 8 queens on the board, one
per column.

* The successors of a state are all possible
states generated by moving a single queen
to another square in the same column

e each state has 8 x 7 = 56 successors

16

1. Hill-climbing: 8-queens problem

* h = number of pairs of queens that are attacking
each other, either directly or indirectly

e h = 17 for the state

e Bestis h = 12, hill climbing chooses randomly
between successors set

18

14

14

1. Hill-climbing

 Known as greedy local search

e Can perform quite well, takes 5 steps to reach
this state (h = 1) from previous state

e Gets stuck at local optima, every move after
the current move is worse

* For a randomly generated 8-queens state,
steepest-ascent hill climbing gets stuck 86%
of the time

» works quickly, taking just 4 steps on average

when it succeeds and 3 when it gets stuck

18

1. Hill-climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum
current <— problem INITIAL
while {rue do
neighbor < a highest-valued successor state of current
if VALUE(neighbor) < VALUE(current) then return current
current <— neighbor

What if we can move sideways?
i.e. remove the equal sign

19

1. Hill-climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum
current <— problem INITIAL
while {rue do
neighbor <— a highest-valued successor state of current
if VALUE(netghbor) < VALUE(current) then return current
current < neighbor

What if we can move sideways?
i.e. remove the equal sign

* Might get stuck in an infinite loop, better to use a limit

 Example: 8-queens problem allow 100 consecutive sideways moves
* Problem instances solved 94%

* Averages 21 steps for each successful instance and 64 for each failure

1. Hill-climbing variations

* Simple hill climbing: chooses the first uphill
generated, which might not be the best move

* Might pick 15, if it was generated first

* Steepest ascent hill climbing: looks at all the
neighbors and then picks the best valued
successor

* Will always pick one of the 12’s

18

14

14

14

12

14

16

21

1. Hill-climbing variations

* Stochastic hill climbing: chooses at random from among the uphill
moves; the probability of selection can vary with the steepness of the
uphill move

A hill-climbing algorithm that never makes “downhill”
moves toward states with lower value (or higher cost) is guaranteed
to be incomplete, because it can get stuck on a local maximum

version: Random-restart hill climbing: conduct a series of
hill-climbing searches from randomly generated initial states until a
goal is found

2. Simulated annealing

* Random walk: move to a successor chosen uniformly at random from
the set of successors

* complete but extremely inefficient ®

* What if we combine hill climbing with a random walk in some way
that yields both efficiency and completeness?

23

2. Simulated annealing

What Is Simulated Annealing?
<&

e Simulated Annealing (SA)
— SA 1s applied to solve optimization problems
— SA is a stochastic algorithm
— SA is escaping from local optima by allowing worsening
moves

— SA is a memoryless algorithm, the algorithm does not use
any information gathered during the search

— SA is applied for both combinatorial and continuous
optimization problems

— SA 1s simple and easy to implement.
— SA i1s motivated by the physical annealing process

2. Simulated annealing

SA vs Greedy Algorithms: Ball on terrain example
-]

Initial posifian

af the nﬁll Simulated Annealing explores

mare Chooses this move with a
. small proshability (Hill Climbing)

|

Creedy Algorithm
gete stuck here!
Lacally Optimum
Solution, F J

L.~

Upon a large no. of iterations,
54 converges 1o this salutian,

25

2. Simulated Annealing: IDEA

* Shake the surface: get to a local
minimum.

* Shake just hard enough to bounce A R
the ball out of local minima but not N N
1 : ' ; O Ny 3:‘:!.‘4\’,‘0," \..\-}\‘-:3}:‘»";}
hard enough to dislodge it from the et S
- 3 Uity PENINIIN
global minimum o
* Simulated-annealing starts by

shaking hard (at a high
temperature) and then slowly
reduce the intensity of the shaking
(lower the temperature).

26

2. Simulated annealing

Real Annealing Technique
.- _00_00000000__]

e Annealing Technique is known as a thermal
process for obtaining low-energy state of a solid in
a heat bath.

e The process consists of the following two steps:

— Increasing temperature: Increase the temperature of
the heat bath to a maximum value at which the solid
melts.

— Decreasing temperature: Decrease carefully the
temperature of the heat bath until the particles arrange
themselves in the ground state of the solid.

27

2. Simulated annealing

Real Annealing Technique
o]

e [n the liquid phase all particles arrange themselves
randomly, whereas 1n the ground state of the solid,
the particles are arranged in a highly structured
lattice, for which the corresponding energy is
minimal.

e The ground state of the solid 1s obtained only if:

— the maximum value of the temperature 1s sufficiently
high and

— the cooling 1s done sufficiently slow.
e Strong solid are grown from careful and slow
cooling.

28

2. Simulated annealing

Real Annealing Technique
-

e Metastable states
— If the initial temperature s not sufficiently high or a fast
cooling 1s applied, metastable states (imperfections) are
obtained.
e Quenching
— The process that leads to metastable states 1s called
quenching
e Thermal equilibrinum

— [If the lowering of the temperature 1s done sufficiently
slow, the solid can reach thermal equilibrium at each
temperature.

29

2. Simulated annealing

Real Annealing and Simulated Annealing
- 0000000000000

e The analogy between the physical system and the
optimization problem.

System state G— Solution
Molecular positions {=——» Decision variables
Energy L G Obijective function
Minimizing energy &) Minimizing cost
Ground state (=) Global optimal solution
Metastable state = Local optimum
Quenching R — Local search
Temperature {&=)» Control parameter T
=

Real annealing Simulated annealing

30

2. Simulated annealing

Real Annealing and Simulated Annealing
- 00000}

e The objective function of the problem is analogous
to the energy state of the system.

e A solution of the optimization problem corresponds
(0 a system state.

e The decision variables associated with a solution of
the problem are analogous to the molecular
positions.

e The global optimum corresponds to the ground state
of the system.

e Finding a local minimum implies that a metastable
state has been reached.

31

2. Simulated annealing

* |dea: escape local minima by allowing some “bad” moves but
gradually decrease their frequency.

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL-STATE)

for £ =1 to oo do
T «— schedule(t)
if 7' = 0 then return current
next < afrandomly|selected successor of current ~ Pick a random,
AFE «— next.VALUE — current.VALUE " not best, move
if AF > 0 then current «— next
else current «— next only with probability e2&/T

32

2. Simulated annealing

* |dea: escape local maxima by allowing some “bad” moves but
gradually decrease their frequency.

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL-STATE)
for £ =1 to oo do

T «— schedule(t)

if 7' = 0 then return current

next < a randomly selected successor of current

AFE «— next. VALUE — current.VALUE _ Always accept
if| AE > O|then current «— next better moves
else current — next only with probability e2&/T

33

2. Simulated annealing

* |dea: escape local maxima by allowing some “bad” moves but
gradually decrease their frequency.

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL-STATE)
for £ =1 to oo do
T «— schedule(t)
if 7' = 0 then return current
next < a randomly selected successor of current
AFE «— next.VALUE — current.VALUE Accept bad
if AF > 0 then current «— next

: e AE,T > moves with a
else current <— next only with [probability e orobability

34

2. Simulated annealing

negative number/
T

* Compute the probabilityp = e

* Generate a uniform random number x € [0,1]
e If (x < p): move

* If (x > p): do not move

2. Simulated annealing

Template of SA
-1

+ —AE .
e At high temperature, ¢—7 1s close to 1,
— therefore the majority of the moves are accepted and the
algorithm becomes equivalent to a simple random walk in
the configuration space .

_AE -
e At low temperature, .—7— 1s close to 0,

— therefore the majority of the moves increasing energy 1s
refused.

e At an intermediate temperature,

— the algorithm intermittently authorizes the
transformations that degrade the objective function

36

2. Simulated annealing

Template of SA
- 0000000000000

e From an initial solution, SA proceeds in several
iterations.
e At each iteration, a random neighbor 1s generated.

e Moves that improve the cost function are always
accepted.
e Otherwise, the neighbor is selected with a given

probability that depends on the current temperature and
the amount of degradation AE of the objective function.

e AE represents the difference in the objective value
(energy) between the current solution and the generated
neighboring solution.

37

2. Simulated annealing

Template of SA
<&

e The higher the temperature, the more significant the
probability of accepting a worst move.

e At a given temperature, the lower the increase of the
objective function, the more significant the
probability of accepting the move.

38

2. Simulated annealing

Template of SA
- __00000000_]

e As the algorithm progresses, the probability that
such moves are accepted decreases.

A Objactive

. Hiaher probabilty
to accept the move y'

LiwET pivoatity
to accept the move xinitial solutian
p X" naighbor solution

Search space

2. Simulated annealing

Inhomogeneous variant

C— Start _:l
v

[nitialize Solution and
Temperature

¥

Generale 1 Random

Input: Cooling schedule.

Neighbor 5 = 5p 2 /* Generation of the initial solution */
* T = T, = /* Starting temperature */
F!. l = N should we REEE"“ . f
"'---.._.E“er s ”t]“?_.'.--"' T accept? ’ Generate a random neighbor s :
N AFE — fls'y— file):
- _‘f_ e ;- . o F))
v |-..r I[fAE =0 Then s =" /* Accept the neighbor solution */
Accept Neighbor Solution Else Accept 5" with a probability ¢ 7 ;
¥ T = g(T): /" Temperature update */
Update Temperature |« Until Stopping criteria satisfied /*e.g. T < T, */
Output: Best solution found.
N

Y

End)

2. Simulated annealing

Bad move
1000 -100 0.9048374180359595
999 -100 0.9047468482529377
700 -100 0.8668778997501816
500 -100 0.8187307530779818
200 -100 0.6065306597126334
100 -100 0.36787944117144233
10 -100 0.0000453999297624849

-50
-50

-50

-50

-50

Lesser but still bad move

0.951229424500714
0.9511818166118072

0.9310627797040227

0.9048374180359595

0.7788007830714

0.6065306597126334

0.006737946999085469

41

2. Simulated annealing

Variation of the probability as a function of T when AE is fixed

0.8 -

0.6 -

negative number/
e T

0.4

42

2. Simulated annealing

Variation of the probability as a function of AE when T is fixed

0.8 -

negative number/ 06 -
e T

0.4

0.2 —

-10 -8 -6 -4 -2 0

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

.. current

States

2. Simulated annealing in Action ...

Cost 1

.. current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

. current

States

2. Simulated annealing in Action ...

Cost 1

. current

States

2. Simulated annealing in Action ...

Cost 1

. current

States

2. Simulated annealing in Action ...

Cost 1

. current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

2. Simulated annealing in Action ...

Cost 1

current

States

61

2. Simulated annealing in Action ...

Cost 1

current

Don’t accept

States

62

2. Simulated annealing in Action ...

Cost 1

current

States

63

2. Simulated annealing in Action ...

Cost 1

current

States

64

2. Simulated annealing

2. Simulated annealing

2. Simulated annealing

2. Simulated annealing

Bad move

68

2. Simulated annealing

2. Simulated annealing

Bad move

70

2. Simulated annealing

2. Simulated annealing

2. Simulated annealing

2. Simulated annealing

Bad move not
taken

74

2. Properties of simulated annealing search

e Can prove: If T decreases slowly enough, then simulated annealing
search will find a global optimum with probability approaching 1.

* Widely used in VLSI layout, airline scheduling, etc.

	Slide 1: Chapter 4
	Slide 2: Local search algorithms
	Slide 3: Local search algorithms
	Slide 4: Modeling for local search
	Slide 5: Modeling for local search
	Slide 6: Local Search Algorithms
	Slide 7: 1. Hill-climbing
	Slide 8: 1. Hill-climbing
	Slide 9: 1. Hill-climbing
	Slide 10: 1. Hill-climbing
	Slide 11: 1. Hill-climbing
	Slide 12: 1. Hill-climbing
	Slide 13: 1. Hill-Climbing
	Slide 14: 1. Hill-Climbing
	Slide 15: 1. Hill-Climbing
	Slide 16: 1. Hill-climbing: 8-queens problem
	Slide 17: 1. Hill-climbing: 8-queens problem
	Slide 18: 1. Hill-climbing
	Slide 19: 1. Hill-climbing
	Slide 20: 1. Hill-climbing
	Slide 21: 1. Hill-climbing variations
	Slide 22: 1. Hill-climbing variations
	Slide 23: 2. Simulated annealing
	Slide 24: 2. Simulated annealing
	Slide 25: 2. Simulated annealing
	Slide 26: 2. Simulated Annealing: IDEA
	Slide 27: 2. Simulated annealing
	Slide 28: 2. Simulated annealing
	Slide 29: 2. Simulated annealing
	Slide 30: 2. Simulated annealing
	Slide 31: 2. Simulated annealing
	Slide 32: 2. Simulated annealing
	Slide 33: 2. Simulated annealing
	Slide 34: 2. Simulated annealing
	Slide 35: 2. Simulated annealing
	Slide 36: 2. Simulated annealing
	Slide 37: 2. Simulated annealing
	Slide 38: 2. Simulated annealing
	Slide 39: 2. Simulated annealing
	Slide 40: 2. Simulated annealing
	Slide 41: 2. Simulated annealing
	Slide 42: 2. Simulated annealing
	Slide 43: 2. Simulated annealing
	Slide 44: 2. Simulated annealing in Action …
	Slide 45: 2. Simulated annealing in Action …
	Slide 46: 2. Simulated annealing in Action …
	Slide 47: 2. Simulated annealing in Action …
	Slide 48: 2. Simulated annealing in Action …
	Slide 49: 2. Simulated annealing in Action …
	Slide 50: 2. Simulated annealing in Action …
	Slide 51: 2. Simulated annealing in Action …
	Slide 52: 2. Simulated annealing in Action …
	Slide 53: 2. Simulated annealing in Action …
	Slide 54: 2. Simulated annealing in Action …
	Slide 55: 2. Simulated annealing in Action …
	Slide 56: 2. Simulated annealing in Action …
	Slide 57: 2. Simulated annealing in Action …
	Slide 58: 2. Simulated annealing in Action …
	Slide 59: 2. Simulated annealing in Action …
	Slide 60: 2. Simulated annealing in Action …
	Slide 61: 2. Simulated annealing in Action …
	Slide 62: 2. Simulated annealing in Action …
	Slide 63: 2. Simulated annealing in Action …
	Slide 64: 2. Simulated annealing in Action …
	Slide 65: 2. Simulated annealing
	Slide 66: 2. Simulated annealing
	Slide 67: 2. Simulated annealing
	Slide 68: 2. Simulated annealing
	Slide 69: 2. Simulated annealing
	Slide 70: 2. Simulated annealing
	Slide 71: 2. Simulated annealing
	Slide 72: 2. Simulated annealing
	Slide 73: 2. Simulated annealing
	Slide 74: 2. Simulated annealing
	Slide 75: 2. Properties of simulated annealing search

