Chapter 4

* Beyond Classical Search: Local Search




Local search algorithms

* In many problems, the path to the goal is irrelevant. The itself is
the solution
* In such problems, the goal state is described by giving constraints

that need to be satisfied
* Examples: 8-queens problem, TSP, Job scheduling

* There is no need then to keep track of the path - keep only a single
current node and improve it.

* Less memory.
* Applicable in large (even infinite) spaces.

* Such algorithms are called local search algorithms



Local search algorithms

* Local search algorithms are useful for solving pure
, where we want to find the best state according to an
objective function.

* Local search algorithms use a single node and try to minimize or
maximize a cost (or objective) function:

* 8-Queens: objective = number of queens under attack.

e TSP: objective = the total travelled distance.
* Minimization = maximization:

* Maximizing [ is equivalent to minimizing —f or constant — [



Modeling for local search

To apply local search:
* State representation: typically use a

* Initial state(s): Start with a random complete assignment (we allow

for inconsistent assignments). This formulation is called Complete
state formulation.

* Actions: Change the values of one variable.

* Objective function (no goal test: the algorithms search for a minimum
(or the maximum) of the function).



Modeling for local search
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Local Search Algorithms

1. Hill Climbing

2. Simulated Annealing
3. Beam Search

4. Genetic Algorithm



1. Hill-climbing

* Move to the neighbor with the best value
* Best value depends on minimization or maximization

* Keeps only node: state + value of the objective function

function HILL-CLIMBING( problem) returns a state that is a local maximum
current <— problem .INITIAL
while true do
neighbor <— a highest-valued successor state of current
if VALUE(netghbor) < VALUE(current) then return current
current <— neighbor



1. Hill-climbing
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1. Hill-climbing

Cost

A

Current Solution

Problem: depending on
initial state, can get stuck
in local minima/maxima
or flat regions.

[

States

12



1. Hill-Climbing
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1. Hill-climbing: 8-queens problem

* Each state has 8 queens on the board, one
per column.

* The successors of a state are all possible
states generated by moving a single queen
to another square in the same column

e each state has 8 x 7 = 56 successors
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1. Hill-climbing: 8-queens problem

* h = number of pairs of queens that are attacking
each other, either directly or indirectly

e h = 17 for the state

e Bestis h = 12, hill climbing chooses randomly
between successors set
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1. Hill-climbing

 Known as greedy local search

e Can perform quite well, takes 5 steps to reach
this state (h = 1) from previous state

e Gets stuck at local optima, every move after
the current move is worse

* For a randomly generated 8-queens state,
steepest-ascent hill climbing gets stuck 86%
of the time

» works quickly, taking just 4 steps on average

when it succeeds and 3 when it gets stuck
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1. Hill-climbing

function HILL-CLIMBING( problem) returns a state that is a local maximum
current <— problem INITIAL
while {rue do
neighbor < a highest-valued successor state of current
if VALUE(neighbor) < VALUE(current) then return current
current <— neighbor

What if we can move sideways?
i.e. remove the equal sign
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1. Hill-climbing

function HILL-CLIMBING( problem) returns a state that is a local maximum
current <— problem INITIAL
while {rue do
neighbor <— a highest-valued successor state of current
if VALUE(netghbor) < VALUE(current) then return current
current < neighbor

What if we can move sideways?
i.e. remove the equal sign

* Might get stuck in an infinite loop, better to use a limit

 Example: 8-queens problem allow 100 consecutive sideways moves
* Problem instances solved 94%

* Averages 21 steps for each successful instance and 64 for each failure



1. Hill-climbing variations

* Simple hill climbing: chooses the first uphill
generated, which might not be the best move

* Might pick 15, if it was generated first

* Steepest ascent hill climbing: looks at all the
neighbors and then picks the best valued
successor

* Will always pick one of the 12’s
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1. Hill-climbing variations

* Stochastic hill climbing: chooses at random from among the uphill
moves; the probability of selection can vary with the steepness of the
uphill move

A hill-climbing algorithm that never makes “downhill”
moves toward states with lower value (or higher cost) is guaranteed
to be incomplete, because it can get stuck on a local maximum

version: Random-restart hill climbing: conduct a series of
hill-climbing searches from randomly generated initial states until a
goal is found



2. Simulated annealing

* Random walk: move to a successor chosen uniformly at random from
the set of successors

* complete but extremely inefficient ®

* What if we combine hill climbing with a random walk in some way
that yields both efficiency and completeness?
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2. Simulated annealing

What Is Simulated Annealing?
<&

e Simulated Annealing (SA)
— SA 1s applied to solve optimization problems
— SA is a stochastic algorithm
— SA is escaping from local optima by allowing worsening
moves

— SA is a memoryless algorithm, the algorithm does not use
any information gathered during the search

— SA is applied for both combinatorial and continuous
optimization problems

— SA 1s simple and easy to implement.
— SA i1s motivated by the physical annealing process



2. Simulated annealing

SA vs Greedy Algorithms: Ball on terrain example
-]

Initial posifian

af the nﬁll Simulated Annealing explores

mare Chooses this move with a
. small proshability (Hill Climbing)

|

Creedy Algorithm
gete stuck here!
Lacally Optimum
Solution, F J

L.~

Upon a large no. of iterations,
54 converges 1o this salutian,
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2. Simulated Annealing: IDEA

* Shake the surface: get to a local
minimum.

* Shake just hard enough to bounce A R
the ball out of local minima but not N N
1 : ' ; O Ny 3:‘:!.‘4\’,‘0," \..\-}\‘-:3}:‘»";}
hard enough to dislodge it from the et S
- 3 Uity PENINIIN
global minimum o
* Simulated-annealing starts by

shaking hard (at a high
temperature) and then slowly
reduce the intensity of the shaking
(lower the temperature).
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2. Simulated annealing

Real Annealing Technique
.- _00_00000000__]

e Annealing Technique is known as a thermal
process for obtaining low-energy state of a solid in
a heat bath.

e The process consists of the following two steps:

— Increasing temperature: Increase the temperature of
the heat bath to a maximum value at which the solid
melts.

— Decreasing temperature: Decrease carefully the
temperature of the heat bath until the particles arrange
themselves in the ground state of the solid.
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2. Simulated annealing

Real Annealing Technique
o]

e [n the liquid phase all particles arrange themselves
randomly, whereas 1n the ground state of the solid,
the particles are arranged in a highly structured
lattice, for which the corresponding energy is
minimal.

e The ground state of the solid 1s obtained only if:

— the maximum value of the temperature 1s sufficiently
high and

— the cooling 1s done sufficiently slow.
e Strong solid are grown from careful and slow
cooling.
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2. Simulated annealing

Real Annealing Technique
-

e Metastable states
— If the initial temperature s not sufficiently high or a fast
cooling 1s applied, metastable states (imperfections) are
obtained.
e Quenching
— The process that leads to metastable states 1s called
quenching
e Thermal equilibrinum

— [If the lowering of the temperature 1s done sufficiently
slow, the solid can reach thermal equilibrium at each
temperature.
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2. Simulated annealing

Real Annealing and Simulated Annealing
- 0000000000000

e The analogy between the physical system and the
optimization problem.

System state G— Solution
Molecular positions  {=——» Decision variables
Energy L G Obijective function
Minimizing energy &) Minimizing cost
Ground state (=) Global optimal solution
Metastable state = Local optimum
Quenching R — Local search
Temperature {&=)»  Control parameter T
=

Real annealing Simulated annealing
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2. Simulated annealing

Real Annealing and Simulated Annealing
- 00000}

e The objective function of the problem is analogous
to the energy state of the system.

e A solution of the optimization problem corresponds
(0 a system state.

e The decision variables associated with a solution of
the problem are analogous to the molecular
positions.

e The global optimum corresponds to the ground state
of the system.

e Finding a local minimum implies that a metastable
state has been reached.
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2. Simulated annealing

* |dea: escape local minima by allowing some “bad” moves but
gradually decrease their frequency.

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL-STATE)

for £ =1 to oo do
T «— schedule(t)
if 7' = 0 then return current
next < afrandomly|selected successor of current ~ Pick a random,
AFE «— next.VALUE — current.VALUE " not best, move
if AF > 0 then current «— next
else current «— next only with probability e2&/T
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2. Simulated annealing

* |dea: escape local maxima by allowing some “bad” moves but
gradually decrease their frequency.

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL-STATE)
for £ =1 to oo do

T «— schedule(t)

if 7' = 0 then return current

next < a randomly selected successor of current

AFE «— next. VALUE — current.VALUE _ Always accept
if| AE > O|then current «— next better moves
else current — next only with probability e2&/T
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2. Simulated annealing

* |dea: escape local maxima by allowing some “bad” moves but
gradually decrease their frequency.

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL-STATE)
for £ =1 to oo do
T «— schedule(t)
if 7' = 0 then return current
next < a randomly selected successor of current
AFE «— next.VALUE — current.VALUE Accept bad
if AF > 0 then current «— next

: e AE,T > moves with a
else current <— next only with [probability e orobability
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2. Simulated annealing

negative number/
T

* Compute the probabilityp = e

* Generate a uniform random number x € [0,1]
e If (x < p): move

* If (x > p): do not move



2. Simulated annealing

Template of SA
-1

+ —AE .
e At high temperature, ¢—7 1s close to 1,
— therefore the majority of the moves are accepted and the
algorithm becomes equivalent to a simple random walk in
the configuration space .

_AE -
e At low temperature, .—7— 1s close to 0,

— therefore the majority of the moves increasing energy 1s
refused.

e At an intermediate temperature,

— the algorithm intermittently authorizes the
transformations that degrade the objective function
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2. Simulated annealing

Template of SA
- 0000000000000

e From an initial solution, SA proceeds in several
iterations.
e At each iteration, a random neighbor 1s generated.

e Moves that improve the cost function are always
accepted.
e Otherwise, the neighbor is selected with a given

probability that depends on the current temperature and
the amount of degradation AE of the objective function.

e AE represents the difference in the objective value
(energy) between the current solution and the generated
neighboring solution.
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2. Simulated annealing

Template of SA
<&

e The higher the temperature, the more significant the
probability of accepting a worst move.

e At a given temperature, the lower the increase of the
objective function, the more significant the
probability of accepting the move.
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2. Simulated annealing

Template of SA
- __00000000_]

e As the algorithm progresses, the probability that
such moves are accepted decreases.

A Objactive

. Hiaher probabilty
to accept the move  y'

LiwET pivoatity
to accept the move xinitial solutian
p X" naighbor solution

Search space



2. Simulated annealing

Inhomogeneous variant

C— Start _:l
v

[nitialize Solution and
Temperature

¥

Generale 1 Random

Input: Cooling schedule.

Neighbor 5 = 5p 2 /* Generation of the initial solution */
* T = T, = /* Starting temperature */
F!. l = N should we REEE"“ . f
"'---.._.E“er s ”t]“?_.'.--"' T accept? ’ Generate a random neighbor s :
N AFE — fls'y— file):
- _‘f_ e ;- . o F ) )
v |-..r I[fAE =0 Then s =" /* Accept the neighbor solution */
Accept Neighbor Solution Else Accept 5" with a probability ¢ 7 ;
¥ T = g(T): /" Temperature update */
Update Temperature |« Until Stopping criteria satisfied /*e.g. T < T, */
Output: Best solution found.
N

Y

End )




2. Simulated annealing

Bad move
1000 -100 0.9048374180359595
999 -100 0.9047468482529377
700 -100 0.8668778997501816
500 -100 0.8187307530779818
200 -100 0.6065306597126334
100 -100 0.36787944117144233
10 -100 0.0000453999297624849

-50
-50

-50

-50

-50

Lesser but still bad move

0.951229424500714
0.9511818166118072

0.9310627797040227

0.9048374180359595

0.7788007830714

0.6065306597126334

0.006737946999085469
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2. Simulated annealing

Variation of the probability as a function of T when AE is fixed

0.8 -

0.6 -

negative number/
e T

0.4
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2. Simulated annealing

Variation of the probability as a function of AE when T is fixed

0.8 -

negative number/ 06 -
e T

0.4

0.2 —

-10 -8 -6 -4 -2 0



2. Simulated annealing in Action ...

Cost 1

current

States
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2. Simulated annealing in Action ...

Cost 1

current

Don’t accept

States
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2. Simulated annealing in Action ...

Cost 1

current

States
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2. Simulated annealing




2. Simulated annealing




2. Simulated annealing




2. Simulated annealing

Bad move
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2. Simulated annealing
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2. Simulated annealing
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2. Simulated annealing

Bad move not
taken
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2. Properties of simulated annealing search

e Can prove: If T decreases slowly enough, then simulated annealing
search will find a global optimum with probability approaching 1.

* Widely used in VLSI layout, airline scheduling, etc.
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