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Abstract
Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic
contribution.We performed ExomeArray (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of themost
significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart
from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10−33), we
observed one SNP showing significant association to POAG (CDC7–TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10−8). This
particular SNP has previously been shown to be strongly associatedwith optic disc area and vertical cup-to-disc ratio, which are
regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease
pathogenesis.

Introduction
Glaucoma is the leading cause of irreversible visual impairment
and blindness, affecting >60 million people worldwide, and it is
estimated that the number of affected individuals will reach
80 million in 2020 (1–3). Primary open angle glaucoma (POAG) is
the most prevalent form of glaucoma in most populations and
is characterized by progressive retinal ganglion cell (RGC) loss
that causes characteristic structural changes of the optic nerve
with associated with visual field loss in the face of an open drain-
age angle in the eye. POAG has a strong genetic component that
has been well documented (4). Indeed, several susceptibility loci
have been identified for POAG through the use of linkage and as-
sociation studies (5). Genes known to contribute to glaucoma in-
cludemyocillin (MYOC), optineurin (OPTN), TANK-binding kinase
1 (TBK1) and WD repeat domain 36 (WDR36) (6–12). However,
mutations in these genes account for no >5–10% of all POAG
cases in the general population (5).

It is likely that POAG, as a complex trait, results from the inter-
actions of multiple genes and environmental factors (13–15).
Genome-wide association studies (GWAS) have provided further
insights into the genetic basis of POAG (16). The first GWAS on
POAG was conducted on 1263 POAG cases and 34 877 controls
from Iceland. Genome-wide significant association was detected
at the CAV1–CAV2 locus on Chromosome 7q31 and subsequently
was replicated in a multi-ethnic sample collection from Sweden,
the UK, Australia, Hong Kong and China (17). This was rapidly
followed by five other GWAS studies, which utilized either ad-
vanced or non-advanced POAG cases derived from populations

of European or East Asian ancestries (18–22). These latter studies
led to the discovery of nine additional genetic regions associated
with POAGdisease risk (TMCO1, CDKN2B-AS1, SIX1-SIX6, an inter-
genic region on chromosome 8q22, ABCA1, GAS7, AFAP1, GMDS
and PMM2). Several of these genetic loci have been replicated in
ethnically diverse populations, demonstrating them to be bona
fide POAG associations with global implications (23–25).

Similar in concept and laboratory chemistry to the whole-
genome genotyping chip design, the exome array approach eval-
uates putative functional coding variants selected from the
exome sequences of >12 000 individuals (26). In addition, the
exome array also contains >5000 common variant SNPs from
GWAS arrays with a minor allele frequency (MAF) exceeding 5%
which can serve as ancestry informative markers. Exome array
genotyping allows us to specifically explore the possible contri-
bution of potentially functional coding variants in POAG disease
susceptibility.

Results
Common genetic variants in CDKN2B-AS1 and
TGFBR3-CDC7 are associated with POAG

We conducted a two-stage Exome Chip discovery and replication
on POAG cases and normal controls. For the discovery stage
(Stage 1), genotyping was performed using the Illumina Infinium
HumanExomeBeadChip (v1.0) on a total of 3822 POAG cases and
10 426 normal controls drawn from seven countries (Table 1). In
addition to the ≈247 000 SNP markers present on the standard
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Illumina Exome array (26), we also included an extra 25 000 cod-
ing frame SNP markers obtained from exome sequencing of 2000
individuals of East Asian descent. Stringent quality control (QC)
filters were applied to both SNPs and samples: per SNP call rate
≥99%, per-sample call rate ≥95%, non-monomorphic SNPs and
non-significant deviation from Hardy–Weinberg equilibrium
(HWE) P ≥ 10−6. Samples under suspicion of cross-contamination
and biologically related samples were removed by verification of
extreme heterozygosity and identical by descent/identical by
state information, if applicable. We further performed principal
component analysis (PCA) to verify that cases and controls
were well-matched ancestrally (Supplementary Material,
Fig. S1) (27–32). As a result, a total of 3504 POAG cases and 9746

controls passing QC filters were included for association analysis
using unconditional logistic regression, with adjustments for the
principal components (PCs). From these datasets, a total of 2206
POAG cases represent entirely new patient collections, which
have not been previously reported (Supplementary Material,
Table S1). Each study-specific point estimate was then summar-
ized using fixed-effects meta-analysis (Nmeta-analysis = 7 collec-
tions). A quantile–quantile plot derived from the meta-analysis
P-values showed no significant dispersion of test statistics from
the expected distribution (λGC = 1.042; Supplementary Material,
Fig. S2) suggesting that the association results were not con-
founded by cryptic population stratification. Using additive
effect models, we observed experiment-wide significant

Table 1. Sample collections of POAG cases and controls for Stages 1 (discovery) and 2 (replication)

Collection N cases N controls Ethnicity Age of
cases

Age of
controlsa

Collection comment

Singapore 850 2347 Singaporean Chinese 71.6 ± 10.1 58.88 ± 9.6 New recruitment
Japan 923 640 Japanese 65.3 ± 13.1 71.9 ± 5.8 Previously GWAS in Nakano et al. (25)
USA-African-
Americans

590 636 African American 65.4 ± 12.3 54.8 ± 9.8 New recruitment

China-Beijing 587 461 Northern Chinese 58.5 ± 12.5 Population-
based controls

New recruitment

Hong Kong 375 2962 Southern Chinese 62.3 ± 15.3 Population-
based controls

Previously described for replication in
Thorleifsson et al. (17)

South India 121 716 Indian 60.9 ± 12.0 51.0 ± 6.5 New recruitment
Vietnam 58 1984 Vietnamese 63 ± 7.1 Population-

based controls
New recruitment

Total discovery 3504 9746 2206 cases are new discovery samples
Stage 2 replication
Singapore-2 520 5473 Singaporean Chinese 71.1 ± 10 Population-

based controls
New recruitment

Japan-2 935 996 Japanese 64.3 ± 14.0 57.5 ± 13.9 N = 411 used for replication in Nakano
et al. (25)

USA-Afican-
American 2

497 304 African-American 69.1 ± 11.0 66.7 ± 13.1 New recruitment

South India-2 453 2496 Indian 62.5 ± 9.9 58.9 ± 10.1 New recruitment
Korea 400 454 Korean 59.0 ± 11.8 40.3 ± 14.1 New recruitment
Saudi Arabia 236 655 Middle Eastern 60.8 ± 12.7 54.4 ± 11.7 New recruitment
Malaysia 132 2540 Malay 65.1 ± 8.2 58.7 ± 11.0 New recruitment
China-Beijing 2 115 251 Northern Chinese 54.2 ± 12.4 71.53 ± 7.16 New recruitment
UK 336 6090 European 71.4 ± 10.8 Population-

based controls
New recruitment

China-Shantou 247 289 Southern Chinese 52.9 ± 19.4 75.7 ± 6.1 Previously described for replication in
Thorleifsson et al. (17)

Germany 56 142 European 67.9 ± 11.4 78.4 ± 8.9 New recruitment
Vietnam-2 76 245 Vietnamese 52.4 ± 17.4 51.3 ± 17.8 New recruitment
France 80 75 European 75.6 ± 8.5 73.5 ± 8.3 New recruitment
China-Shanghai,
Chengdu 2

181 286 Southern Chinese 54.7 ± 16.5 84.7 ± 11.7 Previously described in Chen et al. (19)

China-Shanghai,
Chengdu

608 1005 Southern Chinese 49.6 ± 17.0 62.9 ± 12.1 Previously described in Chen et al. (19)

USA (NEIGHBOR) 2170 2347 European descendant 66.4 68 Previously described inWiggs et al. (22)
USA (GLAUGEN) 976 1140 European descendant 63.6 65.5 Previously described inWiggs et al. (22)
Australia
(ANZRAG)

1155 1992 European descendant 60.5 ± 14.3 55.6 ± 14.4 Previously described in Gharahkhani
et al. (20)

Total replication 9173 26 780 3425 cases are new replication
samples

Total all samples 12 677 36 526 5631 cases are new in this report.

aPopulation-based controls are ascertained from large-scale studies and do not have demographic data available. Based onmanywell-described examples, both by others

and us, the frequency of POAG in the general population is uncommon (i.e. <5%). In this regard, the false-negative rate for POAG status in the population-based controls is

likely to be low and thus the effect of loss of statistical power is negligible.
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(P = 0.05/272 000 SNPs = 1.84 × 10−7) evidence of association at
CDKN2B-AS1 (rs2157719 [G], per-allele OR = 0.73, P = 1.10 × 10−7)
(Supplementary Material, Fig. S3).

All SNP markers showing P < 0.0005 in the discovery stage
were followed up in a validation stage (Stage 2) comprised of up
to 9173 POAG cases and 26 780 controls. A total of 21 SNPs at 20
independent loci were brought forward for validation genotyping
using Sequenom MassARRAY iPLEX or in silico look-ups if gen-
ome-wide genotyping data were available (see Supplementary
Material, Table S2).

CDKN2B-AS1 rs2157719 once again showed significant evi-
dence of association in themeta-analysis of all replication collec-
tions (OR = 0.70, P = 2.48 × 10−27) as well as meta-analysis of all
samples tested (rs2157719 [G], OR = 0.71, Pmeta = 2.81 × 10−33) (Sup-
plementary Material, Table S2 and Fig. S4). No heterogeneity of
effect between Asians (OR = 0.72, P = 1.15 × 10−15) and Europeans
(OR = 0.69, P = 5.54 × 10−19) were detected for this marker
(Fig. 1A), consistent with themultiple previous reports describing
association at this locus (18,22,25). Apart from CDKN2B-AS1
rs2157719, a second SNP marker (CDC7-TGFBR3 rs1192415)
showed clear evidence of replication in Stage 2 (OR = 1.12,
P = 1.04 × 10−5, Fig. 1B and Supplementary Material, Table S2).
On meta-analysis with the exome-chip discovery findings, gen-
ome-wide significant evidence of association was observed for
rs1192415 (OR = 1.13, Pmeta = 1.6 × 10−8) (Fig. 1B; Supplementary
Material, Table S2). Although the risk allele ranged from between
11 and 34% across all ethnic groups studied for this marker, the
association observed appeared to be uniform and consistent
across most groups with little overall heterogeneity (I2 index

< 20%, Supplementary Material, Table S3). For rs1192514, the as-
sociation appeared stronger in Asians (OR = 1.17, P = 1.48 × 10−7)
compared with Europeans (OR = 1.10, P = 0.01) (Fig. 1B), although
the difference was not statistically significant (Phet = 0.17). One
other marker (FNDC3B rs4894796) was nominally significant in
the replication stage (OR = 0.95, P = 0.02) and remained suggest-
ively associated with POAG in the overall meta-analysis (OR =
0.93, P = 1.40 × 10−5) (Fig. 1C; Supplementary Material, Table S2).
However, the association appeared to be nearly entirely driven
by the Asian POAG collections (OR = 0.89) comparedwith the Eur-
opeans (OR = 0.99, Phet between Asians and Europeans = 0.0042)
(Fig. 1C). A recently reported GWAS on POAG showed strong asso-
ciationwith commonSNPmarkersmapping toAFAP1 (rs4478172)
(20). Looking up on our exome dataset, we successfully geno-
typed rs7437940 (r2 = 0.18, D′ = 0.97 with rs4478172) which also
mapped within AFAP1. We note significant association at this
AFAP1 marker (rs7437940: Stage 1 P = 1.94 × 10−5, Stage 2 P = 0.08,
P-value for meta-analysis = 4.25 × 10−6) (Supplementary Material,
Table S2), which supports the previous report (20).

Expression of POAG-associated genes in ocular tissues

We examined the mRNA expression of CDC7, TGFBR3 and
FNDC3B in multiple eye tissues. Expression of all three genes
was observed in tissues relevant to POAG such as the trabecular
meshwork, optic disc and nerve. In contrast to TGFBR3 and
FNDC3B, which were expressed in all tested ocular tissues,
CDC7 expression was absent in the iris, ciliary body and choroid
(Fig. 2).

Figure 1. Forest plots showing evidence of association between SNPs: (A) CDKN2B-AS1 rs2157719, (B) CDC7/TGFBR3 rs1192415 and (C) FNDC3B rs4894796. The vertical line

represents a per-allele odds ratio of 1.00. The oblongs represent point estimates (referring to the per-allele odds ratio), with theheight of the oblongs inversely proportional

to the standard error of the point estimates. Horizontal lines indicate the 95% confidence interval for each point estimate. Meta-analysis of Stages 1 and 2, OR, Pmeta and I2

was labeled on the right-hand side for corresponding analysis. For rs4894796 genotyping, see Supplementary Material, Information for sample collections.
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We also investigated the localization of FNDC3B protein in nor-
malocular tissues, focusingourattentiononcorneaand the tissues
of the outflowpathway. FNDC3B could be immunolocalized to cells

in the trabecular meshwork and all three layers of the cornea
(Fig. 2). ImmunolocalizationofTGFBR3andCDC7 couldnot be simi-
larly investigated due to lack of availability of specific antibodies.

Figure 1 Continued
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Analysis of rare variants from the exome-chip
discovery collection

We next proceeded to conduct gene-based tests on mutational
load to further investigate the role of low-frequency variants
in POAG for all patient collections in the discovery stage.
Gene-based tests are an alternative to single-marker tests for
association, which are often underpowered to detect associ-
ation with rare variants. To more directly address the impact
of low frequency, non-synonymous genetic variants, we

considered only the variants with MAF of <5% (33). As a result,
we were able to assess a total of 7822 genes having at least
two such variants using the sequence kernel association opti-
mal test (34). We note two genes (MYO18A and SULF2) which
showed nominal evidence of association on burden test
(P = 6.26 × 10−7 and P = 5.78 × 10−5, respectively), but these find-
ings are primarily driven by the small Vietnamese collection
(N = 58 cases and N = 1984 controls). Removal of this dataset
resulted in a marked reduction of the burden test association
results (Supplementary Material, Table S4).

Figure 2. Analysis of FNDC3B, TGFBR3 and CDC7 expression in ocular tissues. (A) The FNDC3B-specific 162 bp and TGFBR3-specific 152 bp amplification product was

observed in all analyzed ocular tissues. CDC7-specific 242 bp product was observed in sclera, cornea, trabecular meshwork, retina, optic disc and optic nerve. The

ubiquitously expressed gene, ACTB was used as the normalizing control. A no template sample acted as the negative control (NC) to ensure non-contamination of the

RT–PCR reaction mix. The variable M denotes molecular-weight marker. (B) Immunoblot of whole cell lysates from NPCE, retinal pigment epithelial (ARPE19) and HTM

cells, probed for FNDC3B and β-actin, as a loading control. Positions of the ∼133 and ∼44 kDa forms of FNDC3B are indicated. All ocular cells analyzed expressed the

∼133 kDa protein, while ARPE19 cells expressed a smaller ∼44 kDa isoform of FNDC3B. (C) Immunolocalization of FNDC3B in human eye tissues. Strong

immunofluorescence labeling of FNDC3B (green) was seen in the ciliary muscle (CM) (top row). Scale bar: 100 µm. In the trabecular meshwork (TM, middle row),

FNDC3B (green) labeling was relatively weaker. Scale bar: 40 µm. FNDC3B positive immunoreactivity was also observed in cornea epithelial (*) and cornea endothelial

cells (white arrows) (bottom row). Nuclei were stained with DAPI (blue). Scale bar: 100 µm.
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Discussion
The present study supports the association of POAG a locus that
has been previously implicated with vertical cup-disc ratio, a
glaucoma-associated endophenotype. This locus is defined by
rs1192415, a common SNP marker mapping to the intergenic re-
gion between CDC7 and TGFBR3 (allele [G], OR = 1.13, Pmeta = 1.6 ×
10−8). We were also able to strongly corroborate the established
association of POAG with CDKN2B-AS1.CDC7-TGFBR3 rs1192415
has previously been reported to be strongly associated with over-
all optic disc area, which together with VCDR is a glaucoma-re-
lated quantitative trait (35,36). Examination of this locus in
>4700 POAG cases and >90 000 controls of European descent in
a recent study showed direction of effect consistent with our
data (OR = 1.06, P = 0.12) (37). Indeed, in the European section of
our study (N = 4773 cases and 11786 controls), we note a similar
effect size (OR = 1.10, P = 0.01) in keeping with that shown by
Springelkamp and others. The effect of this locus appeared to
be much stronger in Asians (OR = 1.17, P = 1.48 × 10−7), leading to
a genome-wide significant association upon meta-analysis of
all collections. Each copy of the rs1192415 minor allele is asso-
ciated with a relatively modest increase in POAG risk of 1.13 at
exome-wide significance. The consistency of the effect across
21 of 24 POAG collections (Phet = 0.22, I2 index for heterogeneity =
16.9%), lend further credence to the observed association.

It is of note that the G allele of the rs1192415 is associatedwith
increase in disc area and therefore a larger VCDR. This may indi-
cate a lower threshold for diagnosing glaucoma in those indivi-
duals harboring the risk allele (38). However, as the diagnosis of
POAG in this study was not based solely upon the presence of
an increased cup–disc ratio but also compatible visual field loss,
it is unlikely that selection bias has influenced the result ob-
tainedwith rs1192415.Wenote that FNDC3Bwas one of 16 loci as-
sociated with central corneal thickness (sentinel SNP being
rs4894535) in a meta-analysis conducted on >20 000 individuals
of European and Asian descent (39). That study also showed
marker rs4894535 to be associated with POAG in 2979 cases and
7399 controls of European descent (OR = 0.83, P = 5.6 × 10−4). We
were able to confirm association of rs4894535 with POAG in
5810 cases and 13 175 controls with readily available DNA for
genotyping across 13 collections in this study (OR = 0.91,
P = 0.0018; Supplementary Material, Table S5), thus lending
further support for this association.

It is noteworthy that the FNDC3B SNP we report here
(rs4894796) was nominally associated with POAG in the overall
meta-analyses (OR = 0.93, P = 1.4 × 10−5). In particular, the associ-
ation at rs4894796was observed to be particularly strong inAsians
(OR= 0.89, P = 7.93 × 10−8) comparedwith Europeans (OR = 0.99, P =
0.71). Unsurprisingly, rs4894796was foundwithin a different link-
agedisequilibrium (LD) block than the SNPassociatedwith central
corneal thickness and POAG (rs4894535). The low LD between
rs4894796 and rs4894535 suggests that the association signal at
the latter SNP is not likely to be driven by rs4894796. An in-
depth inspection of the LDpatterns of this genetic region between
European and East Asian populations, which currently appear
visually identical according to available heat maps (http://www.
hapmap.org), may be useful to better understand the degree of
LD dissimilarity between populations and its bearing on the re-
sults obtained for FNDC3B. Of note, a further SNP (rs6445055) at
FNDC3B showed genome-wide significant association for intrao-
cular pressure (IOP) (P = 4.9 × 10−8), but only marginal association
was seen for POAG per se (P = 0.03, OR = 0.92) in 4284 POAG cases
and 95 560 controls of European descent (21). As the FNDC3B
SNP associations with POAG are still suggestive rather than

affirmative it is presumptive at this stage to speculate that it
could be one of the links for IOP-dependentmechanisms of POAG.

This is one of the largest studies on the genetics of POAG, yet
the power to detect genes with small effects was limited. One
crucial reason for this apparent loss of power could be the
scope of the genetic content which was used for interrogation
(as exomic content only comprises <2% of the entire human gen-
ome, much useful data could be missed if the bulk of the true
positive genetic associations for POAG lie in the non-coding re-
gions of the genome). The fact that our discovery cohort was
not mono-ethnic may also have reduced the power to detect
ethnic specific variants of small effect sizes due to significant dif-
ferences in allele frequencies between ethnic groups. The pheno-
typic heterogeneity and the lack of standardized clinical criteria
across the cohorts may also have contributed to a loss in
power. The level of IOP is commonly used to subdivide POAG
into two subtypes: POAG with high IOP (>21 mmHg; named
high-tension glaucoma, HTG) and NTG with normal IOP
(<21 mmHg). In our cohorts, we had differing number of these
subtypes with some cohorts having more NTG or HTG than
others. In this study, we also did not subdivide POAG subjects
into HTG andNTG to discover subtype-specific variants, focusing
instead on identifying genetic variants for the overarching
phenotype of POAG. However, when CDC7-TGFBR3 rs1192415
and FNDC3B rs4894796 were analyzed within NTG and HTG sub-
groups, they did not show differences in strength of association
by subtype (data not shown).

All three loci we report in this study (CDKN2B-AS1, TGFBR3-
CDC7 and FNDC3B) contain genes which may contribute to the
regulation of transforming growth factor-β (TGF-β) signaling.
TGF-β has been implicated previously in glaucomatous optic
nerve damage and RGC death (40–42). The TGF-β family includes
TGFβ1, TGFβ2 and TGFβ3, all of which bind to TGF-β receptor
type-2 (TGFBR2). All TGF-β family members are dimeric polypep-
tide growth factors that inhibit the progression of cell cycle,
which in turn may lead to terminal differentiation or apoptosis
(40,43,44). TGF-β also modulates developmental and repair pro-
cesses in several tissues. TGF-β signaling has been implicated
in a wide variety of diseases including inflammation, auto-
immune disorders, fibrosis, cancer, cataracts aswell as glaucoma
(40,43,44). The most strongly POAG-associated locus, CDKN2B-
AS1, has been shown to regulate the transcription of cyclin-de-
pendent kinase inhibitor 2A and 2B (CDKN2A and CDKN2B)
(45), which inhibit cell proliferation via the TGF-β pathway by in-
ducing G1-phase cell cycle arrest (44). Burdon et al. reported the
up-regulation of CDKN2A and CDKN2B in response to elevated
IOP (18). Collectively, these data suggest a link between the
most well-recognized physiological risk factor of POAG and a
downstream molecular response that may lead to RGC death.
In this context, both CDC7 and TGFBR3 are also of interest and
could have relevance to glaucomatous optic nerve damage and
RGC death.

CDC7 encodes a cell division cycle protein with kinase activity
that also interacts with CDKN2A. TGFBR3 is a TGF-β super family
co-receptor, and is the most abundant of all TGF-β receptors (46).
Through protein crystallography, murine TGFR-3 ZP domain (ZP-
C) has been recently identified as a novel major TGF-β-binding
site (47). It has been suggested that TGFBR3may serve to enhance
the binding of TGF-β ligands to TGF-β type II receptors by binding
TGF-β and presenting it to TGFBR2, the receptor for all three TGF-β
ligands. A linkage between FNDC3B, an oncogene and TGF-β sig-
naling was also reported recently by Cai et al. Overexpression of
FNDC3B was shown to induce epithelial-to-mesenchymal transi-
tion and activate several cancer pathways, including PI3-kinase/
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Akt, Rb1 andTGF-β signaling (48). FNDC3Balso induced expression
of all three TGF-β ligands and promoted TGFBR1 cell-surface local-
ization (48). This connection of POAG-associated genes/loci with
the TGF-β signaling pathway therefore lends further credence to
the hypothesis of TGFB pathway involvement in glaucoma.

However, despite these attractive speculations on the genes
vicinal to the associated SNPs, it is possible that these variants
mayalso affect distant as yet unidentified target genes. Definitive
evidence for the involvement of these genes in the pathogenesis
of POAG awaits confirmation in other datasets, as well as the
identification and characterization of functional variants.

Materials and Methods
Sample collections

Ethics statement
Ethics approval was obtained from the Centralized Institutional
Review Board for the Singaporean patient sample and data col-
lection and for the conduct of this study. All study protocols for
patient and control sample collection were approved by the re-
spective relevant Medical Ethics Committees of each participat-
ing site. All studies were conducted under the tenets of the
Declaration of Helsinki with written informed consent obtained
from all participants.

POAG and health controls subjects inclusion criteria
POAG cases in this study were defined by the following criteria:
the presence of glaucomatous optic neuropathy (defined as loss
of neuroretinal rim with a vertical cup : disc ratio of >0.7 or an
inter-eye asymmetry of >0.2 and/or notching attributable to glau-
coma) with compatible visual field loss, open angles on gonio-
scopy, and absence of secondary causes of glaucomatous optic
neuropathy. POAG patients with a mean IOP without treatment
that is consistently <21 mmHg on diurnal testing are classified
as having NTG, whereas those with a mean IOP without treat-
ment that is consistently >21 mmHg are classified as having
HTG. Patients who were unable to give informed consent, or
with secondary glaucomadue to trauma, uveitis, neovasculariza-
tion, pseudoexfoliation, pigment dispersion, etc., were excluded
from this study.

Controls in this study were recruited in a hospital-based or
population-based manner. Hospital-based controls were all gen-
erally over the age of 40 years and confirmed to have no sign of
glaucoma or other major eye diseases except for mild cataract
and mild refractive errors (defined as |SE| < 3D) by an ophthalmic
examination. These subjects at time of recruitment had IOP of
<21 mmHgwith open angles, healthy optic nerves, normal visual
fields, and no family history of glaucoma. Population-based con-
trols were ethnically matched healthy individuals over the age of
40 years, unless indicated otherwise (see Table 1; Supplementary
Material for more details of the samples used in this study).

Genotyping and data QC

Study participants in the discovery stage were genotyped using
the Illumina’s Infinium HumanExomeBeadChip (Version 1.0) +
Semi-Custom BeadChip (Illumina Inc.) that contains ∼250 000
SNPs of base content and an additional 25 000 East Asian-specific
polymorphisms located on the coding frame. Stringent QC filters
were applied after the laboratory work in genotyping completed.
SNPmarkers that hadmissingness exceeding 5%, gross departure
from HWE (P-value <1e−6) or were monomorphic were excluded
from subsequent analysis. Likewise, individual samples with an

overall call rate <95% were excluded. Samples were subjected to
biological relationship verification by using the principle of vari-
ability in allele sharing according to the degree of relationship.
Identity-by-state information was derived by PLINK. Those indi-
viduals who showed evidence of cryptic relatedness were
removed before PC analysis was conducted. In addition, samples
showing gender discrepancies between the clinical gender and
genetically inferred gender were removed. A total of 1008 sam-
ples were excluded after rigorous application of QC filters (568
sample exclusions were due to PCA ancestral outliers, 246 were
excluded due to per-sample call rate <95%, 168 were excluded
due to first-degree familial relationships detected from the dis-
covery stage exome-chip genotyping, and 26 were excluded due
to suspicions of sample contamination). PC analysis was under-
taken using EIGENSTRAT to account for spurious associations
resulting from ancestral differences of individual SNPs (49). PCs
showing significant effect on univariate analysis were used to
correct for any underlying population substructure. We adjusted
for the top three PCs (PC1–PC3) for Singapore, Hong Kong, Japan,
USA-African Americans, China-Beijing and Vietnam. The Indian
POAG collection was adjusted for the top 10 PCs (PC1–PC10), as
there was more population substructure in this collection. After
adjustment, we observed minimal evidence of genomic inflation
(λGC = 1.042), thereby suggesting that this well-described method
of controlling for population stratification was adequate in our
study. Genotyping clouds for the key SNPs CDKN2B-AS1
rs2157719, CDC7-TGFBR3rs1192415 and FNDC3Brs4894796 were
directly visualized (Supplementary Material, Fig. S5) to ensure
good quality.

For Stage 2 (replication stage), genotyping was performed
using the Sequenom MassArray platform (www.sequenom.
com). Samples recruited at the latter stage of replication were
genotyped for the key SNPs CDC7-TGFBR3rs1192415, and
FNDC3Brs4894796 using pre-developed Taqman Assays (Applied
Biosystems, Foster City, CA, USA; www.appliedbiosystems.com)

Statistical analysis

We contrasted the genotypes between POAG cases and healthy
controls via single-SNP analysis using unconditional logistic re-
gression fitted for genotype trend effects (1-degree-of-freedom
score test). To do this, the PLINK software [version 1.07] (50) was
used formodelingwithin a logistic regression framework, adjust-
ing for age, gender and genetic ancestry (reflected by PCs). Man-
hattan and LD plots were created using Haploview [version 3.2]
(51). Q–Q and regional association plots were created using the
software R [www.r-project.org ] (52). Meta-analysis summarizing
the results across all cohorts was performed using both fixed and
random-effects modeling weighted in an inverse-variance man-
ner (53). This method weighs each study according to effective
sample size and cohort-specific MAF of the associated variants.
To avoid an otherwise unacceptable number of false positive sig-
nals as an artifact of multiple testing, the threshold for exome-
wide significance, P < 2 × 10−7, was considered to be statistically
significant. Heterogeneity of the meta-analyses was calculated
by measuring I2.

Expression analysis of genes

Expression of CDC7, TGFBR3 and FNDC3B was assessed by semi-
quantitative reverse transcription–PCR (RT–PCR) using gene-spe-
cific primers (CDC7-forward 5′-TTTTCTCCCCAGCGTGACC-3′,
CDC7-reverse 5′-GCAATTTTCTCTTCAGGTCCTAC-3′; TGFBR3-for-
ward 5′-TCTCCTCAGTCCACATCCAC-3′, TGFBR3-reverse 5′-TGC
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TGATGAAAACTGGACCAC-3′; FNDC3B-forward 5′-AGCATCATCT
TCCCCACACA-3′, FNDC3B-reverse 5′-AAGAAGGAGGGCTGTTG
AGG-3′) on total RNA extracted from a variety of ocular tissues
(cornea, sclera, retina and retinal pigment epithelium, iris, lens
capsule and optic nerve) as described earlier (54). We used the
ubiquitously expressed ACTB gene (forward 5′-CCAACCGCGA
GAAGATGA-3′and reverse 5′-CCAGAGGCGTACAGGGATAG-3′) as
amplification and normalizing control.

Western blotting

Cell lines obtained from American Type Culture Collection (Man-
assas, VA, USA) were the human retinal pigment epithelial cell
line (APRE19), human Trabecular Meshwork cell line (HTM) was
purchased from ScienCellResearch Laboratories (Carlsbad, CA,
USA) and the human non-pigmented ciliary epithelial cell line
(NPCE) is a kind gift from Prof. Miguel Coca-Prados from Yale
School of Medicine. Cell lysates were obtained by lysing individ-
ual cell lines with lysis buffer (50 m Tris–HCl, pH 8, 150 m

NaCl, 1.0% Nonidet P-40, 0.5% deoxycholate, 0.1% SDS, 0.2 m

NaVO4, 10 mNaF, 0.4 m EDTAand 10% glycerol). SDS–PAGE re-
solved proteins were transferred to Hybond-C Extra nitrocellu-
lose membranes (Amersham Life Science Inc., Arlington
Heights, IL, USA). Membranes were blocked and blotted by 5%
nonfat milk, 0.1% Tween 20 in Tris-buffered saline (20 m Tris–
HCl, pH 7.6, 150 m NaCl) for 1 h before incubation with
FNDC3Bfor 1 h (1 : 250) (Sigma-Aldrich Corp., St. Louis, MO,
USA). Actin-horseradish peroxidase (HRP) (1 : 50 000) from Santa
Cruz Biotechnology (Dallas, TX, USA). The bound primary anti-
bodies were detected by horseradish peroxidase-conjugated sec-
ondary antibodies (GE Healthcare Biosciences, Pittsburgh, PA,
USA), and visualized by Luminata Forte Western HRP substrate
(Millipore, Bedford, MA, USA).

Immunofluorescence confocal microscopy

Immunofluorescence confocal microscopy was performed on
antigen retrieved 4 µm paraffin sections. Blocking of tissue sec-
tions was performed with blocking buffer (5% nonfat milk, 5%
FBS, 0.1% PBS-Tween; 1× pen/strep) for 1 h at RT. FNDC3B anti-
body (Sigma-AldrichCorp.)wasdiluted (1 : 50) into blocking buffer
and incubated overnight at 4°C. Secondary FITC (1 : 300)-labelled
anti-rabbit antibody (Jackson Laboratories, Westgrove, PA, USA)
was also diluted in blocking buffer and incubated at RT for 1 h fol-
lowed by application of Vectashield with 4′,6-diamidino-2-
phenyl-indole (DAPI) (Vector Laboratories, Burlingame, CA, USA).
Coverslips were then used to overlay the sections and stored in
the dark at 4°C until viewing with Olympus Fluoview 1000 con-
focal microscope (Olympus Optical Co. Ltd., Tokyo, Japan).

Supplementary Material
Supplementary Material is available at HMG online.
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