Exp.7: Clamping Circuits

1- Objectives:

- To become familiar with the function and operation of clampers.

2-Circuit elements:

- Function generator.
- Oscilloscope.
- Silicon diode.
- Resistor $10 \mathrm{~K} \Omega$.
- Capacitor $1 \mu \mathrm{~F}$.
- DC. Power supply unit (1.5 V).

3-Procedure:

Part 1: Clampers (Effect of R)

1- Determine the time constant ($\tau=\mathrm{RC}$) for the network of fig 1.
(calculated) $\tau=$ \qquad

$$
5 \tau=
$$

2-Calculate the period of the applied signal and then determine half the period. (calculated) $\mathrm{T}=$

$$
\mathrm{T} / 2=
$$

3 - Using the result of 5τ and compare to $T / 2$.

Part 2: Clampers (R, C, diode combination)

Fig 1
1-Connect the circuit as shown in figure 1 . Note that the input is an $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ square wave at a frequency of 1000 Hz .

2- Calculate the voltage V_{C} and V_{o} when the applied square wave is +4 V .
(Calculated) $\mathrm{V}_{\mathrm{C}}=$ \qquad
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
3- Repeat (2) when the applied square wave is -4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$ \qquad

4- Sketch the expected waveform for V_{o}.

Calculated:

Measured:

5-Compare with the predicted results.
6-Reverse the diode of fig 1, and calculate the level of V_{C} and V_{o} when $V_{i}=+4 V$.
(Calculated) $\mathrm{V}_{\mathrm{C}}=$ \qquad
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
7- Repeat (6) when the applied square wave is -4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
8- Sketch the expected waveform for V_{0}.
9 - Compare with the predicted results.

Calculated:

Measured:

Part 3: Clampers with a DC battery

1-Connect the circuit as shown in figure 2. Note that the input is a $8 \mathrm{~V}_{\mathrm{p} \text {-p }}$ square wave at a frequency of 1000 Hz.

$\hat{y}=1$ 有 h 2

Fig 2
2- Calculate the voltage V_{C} and V_{o} when the applied square wave is +4 V .
(Calculated) $\mathrm{V}_{\mathrm{C}}=$
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
3- Repeat (2) when the applied square wave is -2 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
4- Sketch the expected waveform for V_{o}.
5-Compare with the predicted results.

Calculated:

Measured:

1-Reverse the battery of fig 2, and calculate the level of V_{C} and V_{o} when $V_{i}=+4 V$.
(Calculated) $\mathrm{V}_{\mathrm{C}}=$ \qquad
(Calculated) $\mathrm{V}_{\mathrm{o}}=$ \qquad
2-Repeat (6) when the applied square wave is -4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
3- Sketch the expected waveform for V_{o}.

4-Compare with the predicted results.

Calculated:

Measured:

