Exp.7: Clamping Circuits

1- Objectives:

• To become familiar with the function and operation of clampers.

2-Circuit elements:

- Function generator.
- Oscilloscope.
- Silicon diode.
- Resistor 10 K Ω .
- Capacitor 1µF.
- DC. Power supply unit (1.5 V).

3-Procedure:

Part 1: Clampers (Effect of R)

1- Determine the time constant (τ =RC) for the network of fig 1.

(calculated)
$$\tau =$$

2- Calculate the period of the applied signal and then determine half the period.

3-Using the result of 5 τ and compare to T/2.

Part 2: Clampers (R, C, diode combination)

Fig 1

- 1- Connect the circuit as shown in figure 1. Note that the input is an 8 V_{p-p} square wave at a frequency of 1000 Hz.
- 2- Calculate the voltage V_C and V_o when the applied square wave is +4 V.

(Calculated)
$$V_C =$$

(Calculated) $V_o =$ _____

3- Repeat (2) when the applied square wave is -4 V.

(Calculated)
$$V_o =$$

4- Sketch the expected waveform for $V_{\rm o}$.

Calculated:

Measured:

- 5- Compare with the predicted results.
- 6- Reverse the diode of fig 1, and calculate the level of V_C and V_o when $V_i = +4 \ V$.

(Calculated)
$$V_C =$$

(Calculated)
$$V_o =$$

7-Repeat (6) when the applied square wave is -4 V.

(Calculated)
$$V_o =$$

- 8-Sketch the expected waveform for $\ensuremath{V_{\mathrm{o}}}$.
- 9- Compare with the predicted results.

Calculated:

Measured:

Part 3: Clampers with a DC battery

1- Connect the circuit as shown in figure 2. Note that the input is a 8 V_{p-p} square wave at a frequency of 1000 Hz.

Fig 2

2-Calculate the voltage V_C and V_o when the applied square wave is +4 V.

(Calculated) $V_C =$

(Calculated)
$$V_o =$$

3- Repeat (2) when the applied square wave is -2 V.

(Calculated)
$$V_o =$$

- 4- Sketch the expected waveform for $V_{\rm o}$.
- 5- Compare with the predicted results.

Calculated:

Measured:

1-Reverse the battery of fig 2, and calculate the level of V_C and V_o when $V_i = +4\ V$.

(Calculated)
$$V_C =$$

(Calculated)
$$V_o =$$

2-Repeat (6) when the applied square wave is -4 V.

(Calculated)
$$V_0 =$$

3-Sketch the expected waveform for $V_{\rm o}$.

4- Compare with the predicted results.

Calculated:

Measured:

