

General Chemistry

CHEM 101 (3+1+0)

Dr. Mohamed El-Newehy

http://fac.ksu.edu.sa/melnewehy

Chapter 4

Reactions in Aqueous Solutions

- A solution is a homogenous mixture of 2 or more substances
- The solute is(are) the substance(s) present in the smaller amount(s)
- o The **solvent** is the substance present in the larger amount

<u>Solution</u>	Solvent	<u>Solute</u>
Soft drink (I)	H_2O	Sugar, CO ₂
Air (<i>g</i>)	N_2	O ₂ , Ar, CH ₄

aqueous solutions of KMnO_4

Precipitation Reactions

$$Pb(NO_3)_2 (aq) + 2Nal (aq) \longrightarrow Pbl_2 (s) + 2NaNO_3 (aq)$$

$$molecular \ equation$$

$$Pb^{2+} + 2NO_3^- + 2Na^+ + 2l^- \longrightarrow Pbl_2 (s) + 2Na^+ + 2NO_3^-$$

$$ionic \ equation$$

 $Pb^{2+} + 2I^{-} \longrightarrow PbI_{2}(s)$ *net ionic equation*

Neutralization Reaction

acid + base
$$\longrightarrow$$
 salt + water

HCl (aq) + NaOH (aq) \longrightarrow NaCl (aq) + H₂O

Types of Oxidation-Reduction Reactions

1. Combination Reactions

A **combination reaction** is a reaction in which two or more substances combine to form a single product.

$$A + B \longrightarrow C$$

$$2\overset{0}{Al} + 3\overset{0}{Br_2} \longrightarrow 2\overset{+3}{AlBr_3}$$

Types of Oxidation-Reduction Reactions

2. Decomposition Reactions

- Decomposition reactions are the opposite of combination reactions.
- A decomposition reaction is the breakdown of a compound into two or more components.

$$C \longrightarrow A + B$$

$$^{+1+5}_{2KCIO_3} \xrightarrow{+1-1}_{2KCI} ^{0}_{1}$$

Types of Oxidation-Reduction Reactions

3. Combustion Reactions

A **combustion reaction** is a reaction in which a substance reacts with oxygen, usually with the release of heat and light to produce a flame

$$A + O_2 \longrightarrow B$$

$$2Mg + O_2 \longrightarrow 2MgO$$

Concentration of solution

The **concentration of a solution** is the amount of solute present in a given quantity of solvent or solution.

Molarity (M), or molar concentration, which is the number of moles of solute per liter of solution.

$$M = molarity = \frac{moles of solute}{liters of solution}$$

$$M = \frac{n}{V}$$

where *n* denotes the number of moles of solute.

V is the volume of the solution in liters.

Concentration of solution

What mass of KI is required to make 500. mL of a 2.80 *M* KI solution?

volume of KI solution
$$\stackrel{M \text{ KI}}{\longrightarrow}$$
 moles KI $\stackrel{\mathcal{M} \text{ KI}}{\longrightarrow}$ grams KI

500. mL x
$$\frac{11}{1000 \text{ mL}}$$
 x $\frac{2.80 \text{ mol KI}}{1 \text{ Lsoin}}$ x $\frac{166 \text{ g KI}}{1 \text{ mol KI}}$ = 232 g KI

Concentration of solution

EXAMPLE 4.6

How many grams of potassium dichromate $(K_2Cr_2O_7)$ are required to prepare a 250-mL solution whose concentration is 2.16 M?

Strategy How many moles of $K_2Cr_2O_7$ does a 1-L (or 1000 mL) 2.16 M $K_2Cr_2O_7$ solution contain? A 250-mL solution? How would you convert moles to grams?

Solution The first step is to determine the number of moles of $K_2Cr_2O_7$ in 250 mL or 0.250 L of a 2.16 M solution. Rearranging Equation (4.1) gives

moles of solute = molarity \times L soln

Thus,

$$\begin{array}{l} \text{moles of } K_2 C r_2 O_7 = \frac{2.16 \text{ mol } K_2 C r_2 O_7}{1 \text{ L sofm}} \times 0.250 \text{ L sofm} \\ = 0.540 \text{ mol } K_2 C r_2 O_7 \end{array}$$

The molar mass of K₂Cr₂O₇ is 294.2 g, so we write

$$\begin{array}{l} \text{grams of } K_2 \text{Cr}_2 \text{O}_7 \text{ needed} = 0.540 \text{ mol-} \underbrace{K_2 \text{Cr}_2 \text{O}_7}_{7} \times \frac{294.2 \text{ g } K_2 \text{Cr}_2 \text{O}_7}_{1 \text{ mol-} K_2 \text{Cr}_2 \text{O}_7} \\ = 159 \text{ g } K_2 \text{Cr}_2 \text{O}_7 \end{array}$$

Check As a ball-park estimate, the mass should be given by [molarity (mol/L) \times volume (L) \times molar mass (g/mol)] or [2 mol/L \times 0.25 L \times 300 g/mol] = 150 g. So the answer is reasonable.

Practice Exercise What is the molarity of an 85.0-mL ethanol (C_2H_5OH) solution containing 1.77 g of ethanol?

Concentration of solution

EXAMPLE 4.7

In a biochemical assay, a chemist needs to add $3.81\,\mathrm{g}$ of glucose to a reaction mixture. Calculate the volume in milliliters of a $2.53\,M$ glucose solution she should use for the addition.

Strategy We must first determine the number of moles contained in 3.81 g of glucose and then use Equation (4.2) to calculate the volume.

Solution From the molar mass of glucose, we write

$$3.81 \text{ g.C}_6H_{\overline{12}}O_{\overline{6}} \times \frac{1 \text{ mol } C_6H_{12}O_6}{180.2 \text{ g.C}_6H_{12}O_6} = 2.114 \times 10^{-2} \text{ mol } C_6H_{12}O_6$$

Next, we calculate the volume of the solution that contains 2.114×10^{-2} mole of the solute. Rearranging Equation (4.2) gives

$$V = \frac{n}{M}$$
= \frac{2.114 \times 10^{-2} \text{ mol C}_6 \text{H}_{12} \text{O}_6}{2.53 \text{ mol C}_6 \text{H}_{12} \text{O}_6 / \text{L soln}} \times \frac{1000 \text{ mL soln}}{1 \text{ L soln}}
= 8.36 \text{ mL soln}

Check One liter of the solution contains 2.53 moles of $C_6H_{12}O_6$. Therefore, the number of moles in 8.36 mL or 8.36×10^{-3} L is (2.53 mol \times 8.36×10^{-3}) or 2.12×10^{-2} mol. The small difference is due to the different ways of rounding off.

Practice Exercise What volume (in milliliters) of a 0.315 *M* NaOH solution contains 6.22 g of NaOH?