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Measurable Functions

General Properties of Measurable Functions

Let X and Y be two nonempty sets. We showed in the previous
chapter that the pull back of a o-algebra under a mapping f: X —
Y is a o-algebra of X.

Definition

If (X, <) and (Y, %) are two measurable spaces. A mapping
f: X — Y is called measurable if f~1(%) C /.
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Measurable Functions

Let (X, o) and (Y, Z) be two measurable spaces, and suppose
that B generates the o-algebra Z. A function f: X — Y is
measurable if and only if f~}(B) C <.
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The sufficient condition is just the definition of the measurability.
For the "if" direction, define

H={Ver: fV)e}

‘H is a o-algebra since the operation of taking the inverse image
commutes with the set operations of union, intersection and com-
plement.

If B C H, therefore, o(B) C o(H). But Z = o(B) and H = o(H)
since H is a o-algebra. This means that f~1(V) € o for every
Ve O
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To show that a mapping f: X — Y is measurable; it suffices to
give a set C which generates % and f1(C) C &/.

Proposition

Let (X, .27) be a measurable space and let f: X — R (or in R)
be a function. The function f is measurable, if one of the following
conditions is fulfilled

QO VacR {xeX; f(x)>a} e .
Q@ VaeR {xeX; f(x)<a}ed.
Q@ VacR {xeX; f(x)<a} e .
Q Va,beR {xeX; a<f(x)<b}e.
Q@ Va,beR {xeX; a<f(x)<b}e.
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The space R (resp R) is endowed with the Borel o-algebra % (resp
Br).
This proposition is deduced from the fact that Borel o—algebra is
generated by any one of the following set of intervals

a) {[a, +o0[; a € R},

b) {]a, +oo[; a € R},
c) {] — o0, a; a€R},
d) {] —o0,a]; a€ R},
e) {]a, b[; a,b € R},
f) {[a, b[; a,b € R},
g) {la, b]; a,b € R},
h) {[a, b]; a,b € R}.

O
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Operations of Measurable Functions

Proposition

Let (Xo, 9%), (X1,9%4) and (X2, 9%) three measurable spaces and
let f1: Xo — X1 and f: X3 — X5 be two measurable mappings,
then the mapping f, o f; is measurable.

The proposition results from the following that

(o h) k) = H(f (k) C 1 (A) C .
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Proposition

Let (X, &) be a measurable space.
a) If f: X — R is measurable of (X,.27), then |f| is measurable.
b) If (fn)nen is a sequence of measurable functions of (X, «7) with

real values, then the functions g,h,k defined by g = sup f,,
neN

h=limp_toofn and k = lim,_, _f, are measurable.
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a)lfa<0; {xeX; |f(x)|>a}=X.

If a>0; {x € X; [f(x)] >a} ={xe X, f(x) >alU{x €
X; f(x) < —a} = f1(Ja,+o0]) U FY([—00, —a]) € &

b) {x € X; g(x) > a} = Upenix € X; fu(x) > a} € .

h(x) = inf,,eN(suijn fi(x))

+o0o oo
{xeX; h(x)>a} =[] J{xeX; fi(x)>a}ea.
n=1 j=n
k(x) = suppen(infj>n fi(x))

“+00 oo

{x e X; k(x)>a}:Uﬂ{x€X; fi(x) > a} € o.

n=1 j=n
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It results from the previous proposition that if f is measurable then
the functions f™ = sup(f,0) and f~ = inf(f,0) are measurable,
and if (f,)nen is a sequence of measurable functions which converges

point wise toward a function f on X, then f is measurable.
O
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For any sequence (f,)nen of real measurable functions on a

measurable space X, if C = {x € X; ET fa(x) exists in R}.
Then C is measurable.
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Let D=C, D={x€X; lim,_,, fa(x) < limy—roofa(x)}. If we
set g =lim, ,, f, and h = lim,_, . f, For each rational r, let

D, ={xeX; g(x) <r<h(x)} ={g(x) <r}n{h(x)>r}

which is measurable. D = Ure@ D, which proves the measurability
of D. g
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Simple Functions

Definition

Let (X, o) be a measurable space. A function f: X — R (or
(R)) is called a simple function if it is measurable and takes a
finite number of values.

Let f: X — R be a simple function. If {c1, ..., cm} is the set of
values of f; ¢; # cx for j # k, and Aj = f~1{¢;}, then X = U, A;,

m
AiNAc=0ifj#kand f =) cxa,.

j=1
We remark that f is measurable if and only if A; is measurable for
allj=1,...,m.
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Let (X, .o/) be a measurable space and f: X — R
Q If f is a measurable and bounded, there exists a sequence of
simple functions which converges uniformly on X to f.
@ If f is a non-negative measurable function. Then there exists
a sequence of non-negative simple functions which increases
to f.
v
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1) Let M > 0 such that Vx € X, |f(x)] < M. We denote by
No = NU{0}. For (n,k) € Ng x Z and —2" < k < 2" — 1, we set

kM k+1)M
An’k:{XEX; 2n<f(X)<(+)

< !

and we define f, by

2n—1

kM
"= k—z:zn on Mk

The subsets A, x are measurable and f, is measurable, for all n € N.
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For any xg € X, there exists ko such that xo € Ap, 4, Then f5(x) =

Mk M
THO and |f(x0) — fa(x0)| < o0 Then the sequence (f,), converges

uniformly on X to f.
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2) For all n € N, let g, = inf(f, n) — L. The function g, is bounded
measurable, then from the first case there exists a sequence of simple

1
functions (fm)m such that ||f, — gnlloo < > We conclude that

lim f,= lim g,= lim inf(f,n)="*.

li
n——+o00 n——+00 n——+00
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1 . 1 1 . 1
fn1§ &n + o = inf(f,n) — = + > < inf(f,n+1) _1T11 +
Y] < fpy1. (It suffices to prove that for n big enough —= —|— > <
1 n 1 )
n+1 2ntl
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Integration

For constructing the integral of real measurable functions on a mea-
sure space (X, 7, 1), we proceed by steps. We begin by the case
of the integral of simple functions, then we define the integral of
non-negative measurable functions by the increasing limit and we
show that the monotone limit allows to define the integral of the
non-negative measurable functions, and finally the decomposition of
a measurable arbitrary functions f = f* — f~ as the difference of
two non-negative measurable functions extends the definition of the
integral to the measurable functions.
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Definition

Z|

If f= Z AkX{f=),} is @ non-negative simple function, we define

k=1
the integral of f by

/X F(x)d p(x Zw ({F = M)

We take the convention that if A= {x € Q; f(x) =0} and
1i(A) = +o0, then / F(x)d 1(x) = 0. ( 0 x (+00) = 0).
In particular if f = xa, where A is a measurable subset, then

[ xald ntx) = ua).
X
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Proposition

Let & be the cone of non-negative simple functions on the measure
space (X, «,u). The integral defined on & has the following

properties
Q@ Va eRf, Vfe &t /ozf(x)dp(x):
X
a/ f(x)d p(x).
X

@ Vg €& /X (F + &) (x)d p(x) =

[ #00d it + [ g6adnt.
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Q Vf,g € &" such that f < g; / f(x)d p(x) <
X

/X g(x)d ()

Q If (fp)n is an increasing sequence in &1 and if f = lim f, is

li
n—-+o00

the limit of the sequence (f,), belongs to &%, then

[ £ = tim [ 00d ()
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It is evident that if « > 0 and f and g of & then af and f+g € &T.
( &7 is a convex cone).

@ The first property is evident.

@ Let f and g be two elements of &*. We denote by F (resp
G) the set of values of f (resp of g).

f= ZQX{f:a}u 8= Z bx{g=b}-

acF beG
We have

VacF, {f=a}=|J{f=ag=0b}
beG

Y, Ol’lgl » Lebesgue Integral



Integration

VbegG; {g:b}:U{f:a,g:b}.
acF

[ f0dut) =S autf=ah = 3 anlf = ag=b}

acF (a,b)eFxG

/Xg(X)du(X) =Y aufg=by= > bu{f=ag=">b}

beG (a,p)eFxG

[ f00dn00+ [ gdut) = Y (@bl = ag = b)

(a,b)eFxG

{f+g=u}= U(a,b)eFxG,a+b:u{f = a,g = b}. It results
that
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p{f +g=u} = > uff=ag=0b}
(a,p)EF X G,a+b=u
Then

[ 0dut)+ [ 60dnt0 = S unlf+e =}

= [ (F+ 60dut)
o If /X f(x)d p(x) = +oo, then /Xg(x)d p(x) = +oo. The
result is evident if/ f(x)d p(x) < +o0 and
X

g(x)d p(x) = +oo.

X
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Assume now that / f(x)d pu(x) < 400 and
X

g(x)d p(x) < +oo, then the subsets {x € X; f(x) = +oo}
X
and {x € X; g(x) = 400} are null sets.
Let {a1, ... ,an} and {b1, ..., b,} the sets of finite values of
f respectively of g.

f= Z ajX{xeX; f(x)=a;} and § = Z bjX{xex; g(x)=b;}+ then
j=1

F(x)d p(x) = /X F(x)d p(x) and
Ex)dpu(x)and h=g —f e ET.

\\
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We deduce from 2) that

[ £dnt = [ 0 ut | rdut) = [ F0od it

O

Y, Ol’lgl » Lebesgue Integral



Integration

Let (f,)n be an increasing sequence in &, and if g € & such
that g < lim,_, 1 f,, then

n—-+o00

[ £dnto < tim [ FiGod ().
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For y € g(X), let E, = {x € X; g(x) = y}. To prove the lemma
it suffices to prove that for all y € g(X)

| £0one () =yuE) < lim [ fx)xe, () ).
X n—-+o00 X

The result is trivial if y = 0. For 0 < t <y, weset A, = E,N{x €
X; fa(x) > t}. (An)n is an increasing sequence of measurable sets

and £, = nli}rroo Ap, because for all x € E,, fy(x) > t for n large.
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(B, N {x € X; fox) > t}} = /X EXE s s () d (%)

/ ()X, (x)d i(x).
X

IN

So tu(Ey) < ET / fa(x)xE, (x)d p(x). This is for any 0 < t <
n o0 X

y, then

yu(E) < lim [ fc)xe (d (),

n——+o00
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To prove 4) of the proposition (23), we denote g = lim f,. Then
n—-+o00
f, < g, Vn € N and the increasing sequence (/ fo(x)d ,u(x)) is
X n

bounded above by / g(x) d p(x).

For the other sense we applied the lemma (30).
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Definition

Let f be a non-negative measurable function on a measure space
(X, o, 1), we define

/ F(x)d p(x) = sup{/ ;g <fandge &t}

this is a non-negative number finite or infinite.
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If £ is a non-negative measurable function on a measure space
(X, B, 1), the theorem (16) yields the existence of an increasing
sequence (f,), of &% which converges to f. Then we have

lim / fa(x)d p(x) < / f(x)d pu(x). In the other hand for every
X

n——4-00 X
function g € & such that g < f = lim,_ 1 f,, we have from

lemma (30) that /Xg(x)d p(x) < nﬂToo/X fo(x)d p(x). So from

the definition (34); /Xf(x)d p(x) < lim /Xf,,(x)d,u(x) and then

n——+o00
/ f(x)d pu(x) = lim / fo(x)d p(x). This result is independent
X n—-+00 X

of the increasing sequence (f,), which converges to f. Then we
have now the following theorem
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Let f and g be two non-negative measurable functions on a
measure space (X, .o/, 1), and let A be a non-negative real
number, then we have

o /X)\f(x)du(x):)\/xf(x)du(x)
o /X (F + 8)(x)d u(x) = /X FOx)d () + /X 2(x)d u(x)
Q If f < g then /Xf(x)du(x) §/Xg(x)d,u(x).
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For the proof it is enough to consider two increasing sequences (f,),
and (g,)n of & which converge respectively to f and g, and then
we apply the proposition (23).

O
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Definition

Let f, g be two functions defined on (X, <7, ). We say that f = g
almost everywhere, written f = g a.e,, if {x € X; f(x) # g(x)} is
a null set. In particular if A is a measurable subset, then y4 =0
a.e. if and only if u(A) = 0.
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Definition

Let f be a function defined on (X, .o, ). We say that f is defined
almost everywhere on X if there exist a null subset N such that f
is defined on the complementary of N.
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Definition

A sequence (f,), of functions defined on (X, <7, i) is said
convergent almost everywhere to a function f if the set of x where
the sequence (f,(x))n is no convergent to f(x)is a null set.

We will denote by lim,_, o f, any arbitrary measurable function f
such that (f,), — f almost everywhere on X.
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Let f and g be two non-negative measurable functions defined on
a measure space (X, %, ).

o / f(x)d u(x) =0 if and only if f =0 a.e.
X

(2] Iff:ga.ethen/
X

F00d () = | 860 du(x)
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@ We suppose that / f(x)d pu(x) =0. If
X
Ap={x € X; f(x) > 1}, then xa, < nf and
/ XA, (x)d p(x) = p(An) < n/ f(x)d u(x) = 0. Then for
X

X
all n € N; p(Ap) = 0. It results that {x; f(x) # 0} =UJ, An
is a null set.
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If f =0 almost everywhere. The set A= {x € X; f(x) # 0}
is a null. The function g = 00.x4 is a step function and

f < g. Since / g(x)du(x) =0, then / f(x)d pu(x) =0.
X X
(We can give an other solution based on the Monotone

Convergence Theorem that will be proved:
We define f, = inf(f, n) for all n € N. The sequence (f,), is

increasing and [ f,(x)d u(x) = 0, then it follows from the
X

Monotone Convergence Theorem / f(x)d u(x)=0.)
X
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@ We suppose that f < g. The function h = g — f is defined a.e
and equal to 0 a.e.

If/ f(x)d u(x) = / g(x)d p(x) = +oo, we have the

X X

desired result.

If/ f(x)d pu(x) < 400, and / g(x)d p(x) < 400, we have
X X

0= [ H)du(x) = [ gddntx) | £ ().
Let now define the function h = inf(f, g). h is a non-negative

measurable function and we have h=f = g almost
everywhere.
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Since h < f then / h(x)d p(x) = / f(x)d p(x), and since
X X
h < g then / h(x)d p(x) = / g(x)d pu(x). It results that
X X

[ #00d i) = | gG0d ).
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Definition

Let f: X — R be a measurable function. If f+ = sup(f,0) and
f~ =sup(—f,0), then f = f© — f~. The function f is called
integrable with respect to the measure y if and only if

/ f+(x)d p(x) and / f~(x)d p(x) are finite.
X X
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The integral of f will be denoted / f(x)dp(x)= / f(x)d pu(x)—
X X

/f‘(x)du(x), and if f is measurable and /f+(x)du(x) <
X X

+oo or / f~(x)d u(x) < +oo we will denote of the same way

/Xf(x)d'u(x):/Xf+(x)d“(x)_/xf(X)dM(X)-

We define £}(X) the space of integrable functions on X.
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Proposition

The set £1(X) is a vector space on R and the map

fr— / f(x)d,u( is a linear form on £(X) and we have

/f(x d p(x /‘f )|d w(x).
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Let f and g be two integrable functions.
Since | fg| < \f!—f—]g!.then/}f(x)—l—g(x)‘du(x)\ g/\f(x)|du(x)+
X X

/X‘g(X)‘ d u(x), and then f + g € L1(X).

Wehave f+g=(f+g)" —(f+g) =f" —f +g" —g, then
(f+g)T+f +g =(f+g)~ +f"+g". It follows that
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and

/ (F +g)(x)dpu(x) = / (F + &) (x)d ju(x) — / (F +g)" (x) d u(x)
X X X
= + X X) — “(x X + X
— /Xf()du() /Xf()du()Jr/Xg(
— / F(x)d u(x) + / £()d ().
X X

The other properties are evident.
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Q If f is measurable and a < f < b and p(X) < 400, then
f € £LY(X) and we have au(X) < / f(x) du(x) < bu(X).
X
Q If f is measurable and g € £}(X) and f < g, then
[ 0dut < [ gtoduto).
X X

© If E is a measurable null set, then / f(x)d u(x) = 0 for any
E

measurable function f.

@ Any bounded measurable function and equal to zero in the
complementary of a subset of finite measure is integrable.
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Remarks

@ Let f be an integrable function with respect to a measure .
Then {x € X; f(x) = £oo} is a null set.

@ On a measure space (X, 7, 11), the set of functions that are
f =0 a.e. is a vector space of £!(X,.27) closed under
countable (sup,inf). We denote L1(X,.27) or L}(u) the
quotient space £1(X, /) by the space of null a.e functions.
We call that f = g in L}(X) if f = g p-almost everywhere.
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Convergence Theorems
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Monotone Convergence Theorem

[Monotone Convergence Theorem or Beppo-Levi's Theorem]
Let (f,)n be an increasing sequence of non-negative measurable
functions on a measure space (X, B, 1), then

/X lim fh(x)d p(x) = lim /Xf,,(x)d,u(x).

n—-+o00 n—-+o00
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For all integer n, there exists an increasing non-negative sequence

(¢n);j of & which converges to f,. For any j, set ¢j = sup ¢p;.
1<n<j

Then the sequence (¢);); € &7 isincreasing because 1); = sup ¢nj <
1<n<)

SUp @nj+1 < SUP  @njt1 = Vi1
1<n<j 1<n<j+1
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We want to prove now that the sequence (1);); converges to f. We

have for all j > n, ¢,; < j, then f, = lim ¢,; < lim 4, and
—+00 J—+00

then f = lim f, < lim 1. In the other hand, the inequalities
n—-4-o00 Jj—+o0
¢nj < fn < f shows that ¢); < f and lim 1); < f. The sequence
J—+00
(¢); is an increasing sequence of & and converges to f. Then

/ f(x)dpu(x) = lim / ¥j(x)d p(x). Moreover we have
X J=Foo Jx
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1; < f;, then

im [ 00d ) < tim [ 660 ) < [ F)dut.

Jj—+oo Jj—+o0o X

which ends the proof of the theorem. O
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Let (f,)n be a sequence of non-negative measurable functions on a
measure space (X, .7, u), then

+oo +oo
/X > Hl)dut) =3 /X £,(x)d ()
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Let (X, .o, ) be a measure space and let f be a non-negative
measurable function For all A e 7, let

= |[, 1 x)d p(x). Then 7 is a non-negative measure on
(X 42%) caIIed measure of density f with respect to the measure p.
The integral of a non-negative measurable function g by this
measure is given by

/X g(x) dr(x) = /X F(x)g(x)d ().
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Let (A,)n be a finite or infinite sequence of measurable pairwise
+o0

disjoints sets. We have fyxyu,a, = Z fxa,. This which yields

n=1

that
(JA) = /X F ()X, (x)d ()
“+oo
= [ a0 d )
X n=1

“+oo
-3 /X F(x) 0, (x)d ().
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The second part of the corollary is verified by any characteristic
function xa of a measurable set A. Then it is valid for any sim-
ple non-negative function. By using the increasing continuity of the
integrals, the result will be valid for non-negative measurable func-
tions.

O
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Fatou's Lemma

[Fatou's Lemma]
Let (f,)n be a sequence of non-negative measurable functions on a
measure space (X, .7, u), then

[ im0 ) < lim, e | G0 00)
X X
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lim, ., ofn =lim,ioo(infj>,f;). We have /legizj(x) du(x) <

|2f/ fi(x)d p(x). The result follows from the Monotone Conver-
jznJx

gence Theorem.
O
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Let fp = n’xpq 1 1, /an+oo x)dA(x) =0

and I|m,H+oo/ fa(x)dA(x) = 4o0.
R
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Dominate Convergence Theorem

(Dominate Convergence Theorem (or Lebesgue Theorem)

Let (f,)n be a sequence of measurable functions on a measure
space (X, .o/, ). We assume that

i) the sequence (f,), converges almost everywhere on X to a
measurable function f definite almost everywhere.

ii) There exist a non-negative integrable function g such that

|fa] < g almost everywhere for all n. Then the sequence (f,), and
the function f are integrable and we have

/Xf(x) du(x) = nﬂrp /f(x d p(x /
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The interest of the Dominated Convergence Theorem is that it does
not require uniform convergence to permute the limit and the inte-

gral.

Let (f,)n be a sequence of measurable functions on a measure
space (X, .o/, ). We assume that there exist a non-negative
integrable function g such that for all n, |f,| < g almost
everywhere. Then

/ limfy(x)d () < lim / £, (x)d 1(x) (1)
X X

/Xlimf,,d,u(x) > Iim/ fa(x)d p(x) (2)

X
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and if the sequence (f,), converges almost everywhere on X to a
measurable function f defined almost everywhere, then f € L1(X)
and we have

/Xf(x)du(x) —nﬂTmAfn(X)dﬂ(X) (3))
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The function g is finite almost everywhere on X because it is inte-
grable. If we replace g by the function gx(; g(x)<+oo} this which
not change the inequalities |f,| < g almost everywhere. Thus we
can suppose that g is finite on X. We replace the sequence (f,),
by the functions f,x|f,|<g}, this which not modified the integrals

/ fa(x)d pu(x) neither the equivalence classes lim,_, 4~ f, almost
X

everywhere. Then we can suppose that |f,] < g on X. From these
modifications, the functions (f,),, limf, and limf, are finite and in-
tegrable on X. We apply the Fatou's lemma to the sequence f,+ g
we shall have

/ lim(f, + £)(x)d ju(x) < lim / (fa + £)(x)d p(x)
X X



Convergence Theorems

Since lim,_,, (f,+g) = (lim,_,, .f, ) +g on X, we shall have

[ty (0 ) < lim, e [ 00 00
X X

And by Fatou's lemma applied to the sequence (—f, + g), we shall
have

[ im0 () < i, [ —6o6)d ()
X

Y, Ol’lgl » Lebesgue Integral



Convergence Theorems

Then

[ o0 ) = T | 0 0
X X

The result follows easily. g
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Exercise

Let f be an integrable function on [0, +oo[. Find

+o0 o

lim / e "M Xf(x)dx.

n—+oo [q

Solution Let (f,), be sequence defined by f,(x) = e~"""*f(x) on

[0,00[. A= {x; f(x) = oo} U{n € Z; n> 0} Forx¢&A,
lim f,(x) =0 and |f,| < |f| which is integrable, then

n—-+oo

+00 -
lim / e "M Xf(x)dx = 0.
0

n—-+o00
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Applications- Double Series

We consider the measure space (N, 2(N), u) where p is the mea-
sure defined by u{n} = 1 for all n of N. In use the Dominate
Convergence Theorem, we have the following result

Let (am,n)m,n be a double sequence of complex numbers such that
i) lim amp,=anforallmeN,
n——+00
ii) there exist a sequence (bpy)m of non-negative real numbers such
“+00
that Z bm < 400 and |am,n| < b, for all n € N.
m=1
+oo +oo
Then we have nll>Too E:Iam’,, = E:I B
m= m=




Integral Depending on Parameters

Integral Depending on Parameters

Let (X, .o, ) be a measure space, and let E be a metric space.

Proposition

Let E be a metric space and f E x X — R a function such that
for all t € E; the mapping x — f(t, x) is integrable. We define

F(r) = /X £(t,%)d u(x)

Let a € E, we assume that

For almost all x € X; the mapping t — f(t, x) is continuous at a.
There exist a neighborhood V/(a) of a and an integrable function g
such that V t € V(a), |f(t,.)| < g(.). Then F is continuous at a.
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It suffices to apply the Dominate Convergence Theorem to the se-
quence (f(ap,.))n for n € N; where (a,), is a sequence in V/(a)
which converges to a. g
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Exercise

Let f be an integrable function on R with respect to Lebesgue mea-
sure A. We define

F(t) = /R Fx)e=2m d(x)

Show that f is continuous on R.
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Solution

Let g the function defined on R x R by g(x, t) = f(x)e~2™¢ The
function x — g(x, t) is continuous a.e, the mapping t — g(x, t)
is integrable and dominated by |f| which is integrable. Then fis
continuous on R.
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Proposition

Let ©2 be an open set of R and f 2 x X — R a function such that
for all t € Q; the mapping x — f(t, x) is integrable. We define

F(t) :/ f(t,x)d p(x).
X
We assume that

e for almost all x € X; the mapping t — f(t, x) is derivable on
f
Q. We denote gt(t,x) its derivative,

e the function f(t,.) is integrable on X and there exist a
non-negative integrable function g such that for almost all x € X,

f'
\gt(t,x)| < g(x) for all t € Q. Then F is derivable on € and for
all tin Q
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Let a € Q and (h,), be a sequence of real numbers converging to
0 and such that a+ h, € Q. (h, # 0, for all n). We define the
sequence (¢n)n by

f(a+ hp,x) — f(a,x)
hn

Pn(x) =

of

For almost all x € X, lim ¢,(x) = =(a, x) and according to the
n—oo ot

mean value theorem, for such x we have |p,(x)| < g(x). The Dom-

inate Convergence Theorem yields that the function x — a(t,x)

is integrable and

of o . F(a+h,)—F(a)
| Gi@ndnt) = tim [ ndntx) = tim SR
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Examples

© If for each a € Q there exists a neighborhood V/(a) and an
integrable function g such that for almost all x € X,

of
|a(t,x)| < g(x) for all t € V(a). Then F is differentiable on
Q and for all t € Q

d/ (t,x)d pu(x /atxdu)

@ If in addition E(t x) is continuous, then F is C*.
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Exercise

We consider the function F defined by

+o00 e xt
F(x) = ——dt
() A 1+ t2

@ Show that F is continuous for x > 0 and lim F(x) and

X—~+00
lim F(x) exist.
x—0

@ Show that F is of class C? for x > 0 and verify the equation

1
_ - 4
Yty =< (4)
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Solution

efxt

T e is continuous and

@ The function x —

—xt
lim ——— = 0. Moreover this function is dominated by
x—+o00 1 4 t2
1T which is integrable. Then F is continuous for x > 0
and lim F(x)=0.

X—r—+00
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—xt

@ The function x — f(x,t) = 1e+ 2 is C1,

of(x,t) —te te”
(x. ) — — _ is dominated by 2 forall x >a>0
1+ t2

Ox 1+1¢2
which is integrable. Then F is C! on [a, +oo] for all a > 0,
then F is C! on ]0, +oo].
O*f(x,t)  t2e
ox2 141t
t2e—at
1+1¢2 ,
[a, +-o0 for all a > 0, the F is C? on ]0, +oo[ and F (x) =

—+o00 t2e—xt “+o00 . 1
——dt=—F “dt = —F —.
/O T (x)+/0 e (x)+X

Moreover this function is dominated by

for all x > a > 0 which is integrable. Then F is C? on
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Exercise

Let f be an integrable function on [0, 1]. Prove that
1
lim / x"f(x)dx = 0.
0

n—-+o0o
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Solution

[x" f(x)| < |f(x)| which is integrable, and ll)T x" f(x) =0 a.e.
n (e¢]

The result follows by the Dominate Convergence Theorem.
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Exercise
Prove that .
_ nx
N e
Solution x
Let (f,)n be th defined Al by f(x) = ———. It
et (f,)n be the sequence defined on [0, 1] by f,(x) R

is easy to prove that the sequence (f,), is uniformly bounded on [0, 1]
3

33
by 74 and lim f,(x) = 0. Then by the Dominate Convergence

n—-oco
Theorem

1
lim /nX44dx:0
n—+4oo Jg 14 n*x
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Exercise

1

Find _lim /"X,de.
n—+oo Jy 1+ n?x*

Solution

Let (,)n the sequence defined in [0, 1] by f,(x) e

= 5 T (%) 5

1 n 1
nx 1 dt nx
0 but ——dx = — ——, th li ——dx =
" /0 1+ mxt ™ 2/0 1+t2 ennJToo/o 1+ mext
T

1
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Comparison of Riemann and Lebesgue integrals
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Riemann and Lebesgue Integrals

Let a and b two reals numbers, a < b. We consider the measure
space ([a, b], #*, \), where X is the Lebesgue measure on R and
B* is the Lebesgue o-algebra on [a, b]. For a bounded measurable

b
function f on [a, b], we denote / f(x)dx the Riemann integral for
a

f on [a, b] and / f(x)d \(x) the Lebesgue integral, if they exist.
[a,b]
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Let f be a bounded function on [a,b]. Then from the definition
of the Riemann integral and the proprieties of the lower and upper
Darboux sum of f, there exists an increasing sequence of partitions
(0n)n of [a, b] such that if o, = {xo = a,...,x,, = b} the sequence
(6n)n defined by 5 = supg<k<p,—1 |Xk+1 — xk| converges to 0. (4,
is called the norm of the partition). We denote
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U(f)= lim S(op,f)

n——+00

L(f)= lim s(on,f)

n—+00

Let (gn)n and (hp)n be the sequences of simple functions defined by

gn(x) = {’"k = infrepouman F(8) iF X < x <Xk

gn(b) = f(b)
h (X) _ Mk = Supte[xk7xk+1[ f(t) /f Xk S X < Xk+1
’ ha(b) = (b)
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The sequence (g,)n is increasing and the sequence (hy,), is decreas-
ing. For x € [a, b], the sequence (g,), converges to a function g
and the sequence (h,), converges to a function h. We remark that

b
U(on, ) :/ hn(X)dX:/[ 5 hn(x)d \(x).

b
L(op, f) :/a gn(x)dx = /[a ; gn(x)d A(x).

Y, Ol’lgl » Lebesgue Integral



Riemann and Lebesgue Integrals

Since g and h are measurable, it follows from the Monotone Con-
vergence Theorem that

b
im_ [ e =LO= [ gdr0) )

n—-+o00

b
lim / hn(x)dx = U(f) = /a r f(x)d A(x). (6)

n—-+o0o
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In the other hand g(x) < f(x) < h(x) Vx € [a, b].

Let f be a bounded function on [a, b].
a) If £ is Riemann-integrable on [a, b], then f is Lebesgue
integrable on [a, b] and

/[a,b] F(x)d M(x) = / i F(x)dx.

b) f is Riemann-integral on [a, b] if and only if, the set of
discontinuity of f is a null set.

c) If the set of discontinuity of f is a null set, then f is Lebesgue
integrable and

D
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For the proof we need the following lemma

+o0
Let f,g and h as above. For x € [a, b] \ (U 0,,), g(x) = h(x) if

n=1

and only if f is continuous at x.
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Proof of the lemma

Let x € [a,b] \ (U/X0n) and 8, = |loa||. The sequence (3,)n
converges to 0.
If f is continuous at x, then for ¢ > 0,3n > 0 such that Vt € [a, b]

and |t — x| <7, then |f(x) — f(t)| < e.
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Let ng such that ¥n > ng, dp, <.

For n > ng, o, is a partition of [a, b], then there exist k € {0,..., p,—
1} such that xx < x < xg41. Thus Vt E]Xk’XkJrl[, ‘f(X)— f(t)’ <eg,
then hp(x) = My < f(x) + ¢ and gp(x) = my > f(x) — ¢ and
hn(x) — gn(x) < e. This is for all n > ng. Then h(x) — g(x) < ¢
and this is for all € > 0, which gives that g(x) = h(x).
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Conversely if g(x) = h(x) and x ¢ (Uy_;0n). Since g(x) <
F(x) < h(x), then F(x) = g(x) = h(x), (&a(x))n and (ha(x))n
converges to f(x).

Let £ > 0, it follows from the above result that there exists ng € N
such that Vn > ng 0 < f(x) — gn(x) < e and 0 < hp(x) —f(x) < e.
on, I a partition of [a, b], then there exist k € {0, ..., ps, — 1} such
that x € [xk, xk+1[= /. We have
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hno(x) — & < f(x) < gno(x) + &

Moreover hp (x) = sup  f(t) and gn(x) = inf  f(t).

t€] X, Xpt1[ t€]xk Xk 11 [
Then Vt € I, f(t) —e < f(x) < f(t) + ¢ this which yields that f is
continuous at x. O
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Proof of the Theorem

a) If f is Riemann-integrable on [a, b], we have

b
L(f) = U(f) = / F(x)dx
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and from (5) and (6) we have / h(x)d\(x) = / g(x)d\(x).

[a,b] [a,b]

Thus / (h(x) — g(x))dA\(x) = 0. Moreover h — g is a non-
a,b

negative integrable function, then h = g a.e. and f = g a.e. Thus

b
f is measurable and / f(x)dx:/ f(x)d A(x).
a a

)

b) The function f Riemann-integrable if and only if U(f) = L(f).
This is equivalent to h = g a.e and the result is deduced from the
previous lemma; indeed
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The function f Riemann-integrable if and only if h = g a.e which
is equivalent to {x; h(x) # g(x)} U (Us—; on) is a null set. This is
equivalent to f continuous a.e on [a, b].

c) If the set of discontinuity of f is a null set, then IiT gn(x) =
n——+-00
lim hp(x) = f(x) at each point of continuity of f, then f is
n—+00
measurable and the Dominate Convergence Theorem yields

im /{ablg,,(x)d)\(x): / F(x)dA(x)

n——+4o00 [a,b]
Iim/ hxd)\X:/ f(x)dA(x).
Jm, [ maa) = [ 7006

Thus f is Riemann integrable and




Riemann and Lebesgue Integrals

We give now a new proof of the theorem (94)

Proposition

Let f: [a, b] — R be a bounded function. f is Riemann integrable
if and only if it is continuous almost everywhere on [a, b].
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a) Suppose that f is Riemann integrable. For x € [a, b], we define

X) =su inf f(y) =liminf f(y),
&) 6>gy€[37bl7|y—><|§6 ) y—x ()

h(x) = inf sup f(y) =limsupf(y).
0>0 yela,b] |y —x|<s yox

f is continuous at x if and only if g(x) = h(x). We have g < f < h.
If o is a partition of [a, b], then U(o,g) < U(o,f) < U(o, h) and
L(o,g) < s(o,f) < s(o,h). But U(o,f) = U(o, h) and L(o,g) =
s(o, f), because on any open interval |c, d[C [a, b] we have
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inf _g(x)= inf f(x), sup f(x)= sup h(x).
x€le,d| x€le,d| x€le,d[ x€le,d[

It follows that

L(f) = L(g) < U(g) < U(f), L(f) < L(h) < U(h) = U(f).
Since f is Riemann integrable, both g and h must be Riemann
b

integrable, with integrals equal to / f(x)dx. Then, they are both

a
Lebesgue integrable, with the same integral. But g < h, so g = h
a.e. Now f is continuous at any point where g and h are equal, so
f is continuous a.e.
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b) Now suppose that f is continuous a.e. For n € N, let o, be the
uniform partition of [a, b] into 2" intervals. Set

ho(x) = sup f(y), &a(x)= inf f(y)
y€le,d| y€le,d|

if ]c, d[ is an open interval of o, containing x and h,(x) = gn(x) =
f(x) if x € o, Then (gn)n, (hn)n are respectively increasing
and decreasing sequences of functions and Loy, f) = fab gn(x)dx

U(on, f) = f hn(
limp—00 gn(x) = I|m,HOO hn(x) = f(x) at any point x at which f
is continuous, so f = le gn = I|m h, a.e. By Dominated Conver-
b b
gence Theorem, nll_)r‘r;o/a g,,(x)dx:/a f(x)dx:nIL)rT;O/h,,(x)dx.

This means that L(f) > fab f(x)dx > U(f) and f is Riemann inte-

grable.
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Case of Generalized Riemann Integral

Let f be a locally Lebesgue-integrable function defined on an
interval |a, b[. f is Lebesgue-integrable on ]a, b[ if and only if the
b

improper integral f(x)dx is absolutely convergent and in this

a
case the generalized Riemann integral and the Lebesgue integral

coincide (i.e. /ab f(x)dx = /ab f(x)d A(x).)
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b
We assume that f(x)dx is absolutely convergent. We con-

sider two sequencesa(a,,),, and (by,), of ]a, b[ such that the sequence
(an)n decreases to a and the sequence (b,), increases to b. Let
©n(x) = [f(xX)|X[an,b,)- The sequence (yn), increases to |f|x), p[-
The functions ¢, are measurable then f is measurable. It follows
from Monotone Convergence Theorem that

n—-+o00 R

b
lim /cp,,(x)d)\(x):/ |f(x)|d A(x).

Moreover from the previous Theorem /
R

bn
n(X)d A(x) = / ()] dx

b
and from the previous definition lim / en(x)d A(x) = / |f(x)|dx.
R a

n—-+oo
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Conversely If f is Lebesgue-integrable on |a, b|, then |f| is Lebesgue-
integrable on |a, b[. Let (a,)n and (bp), be two sequences in |a, b[
such that the sequence (a,), decreases to a and (b,), increases to
b. By the Monotone Convergence Theorem

lim /bcp,,(x)d)\ / |f(x)|d A(x) < +o0.

n—-400

b bn
I\/Ioreover/ cp,,(x)d)\(x):/ |f(x)|dx, then

n—-+o0o

b b
lim / |f(x)|dx exists in R and / |f(x)|dx < +o0. O
an a
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