Lebesgue Integral

Mongi BLEL

King Saud University

March 27, 2024

Table of contents

- 1 Measurable Functions
- 2 Simple Functions
- Integration
- 4 Convergence Theorems
- 5 Integral Depending on Parameters
- 6 Comparison of Riemann and Lebesgue integrals

Mongi BLEL Lebesgue Integral

Measurable Functions

General Properties of Measurable Functions

Let X and Y be two nonempty sets. We showed in the previous chapter that the pull back of a σ -algebra under a mapping $f: X \longrightarrow Y$ is a σ -algebra of X.

Definition

If (X, \mathscr{A}) and (Y, \mathscr{B}) are two measurable spaces. A mapping $f: X \longrightarrow Y$ is called measurable if $f^{-1}(\mathscr{B}) \subset \mathscr{A}$.

Theorem

Let (X, \mathscr{A}) and (Y, \mathscr{B}) be two measurable spaces, and suppose that \mathcal{B} generates the σ -algebra \mathscr{B} . A function $f: X \to Y$ is measurable if and only if $f^{-1}(\mathcal{B}) \subset \mathscr{A}$.

Proof

The sufficient condition is just the definition of the measurability. For the "if" direction, define

$$\mathcal{H} = \{ V \in \mathscr{B} \colon f^{-1}(V) \in \mathscr{A} \}.$$

 \mathcal{H} is a σ -algebra since the operation of taking the inverse image commutes with the set operations of union, intersection and complement.

If $\mathcal{B} \subset \mathcal{H}$, therefore, $\sigma(\mathcal{B}) \subset \sigma(\mathcal{H})$. But $\mathscr{B} = \sigma(\mathcal{B})$ and $\mathcal{H} = \sigma(\mathcal{H})$ since \mathcal{H} is a σ -algebra. This means that $f^{-1}(V) \in \mathscr{A}$ for every $V \in \mathscr{B}$.

Remark

To show that a mapping $f: X \longrightarrow Y$ is measurable; it suffices to give a set \mathcal{C} which generates \mathscr{B} and $f^{-1}(\mathcal{C}) \subset \mathscr{A}$.

Proposition

Let (X, \mathscr{A}) be a measurable space and let $f: X \longrightarrow \mathbb{R}$ (or in $\overline{\mathbb{R}}$) be a function. The function f is measurable, if one of the following conditions is fulfilled

$$\bullet \quad \forall a \in \mathbb{R} \ \{x \in X; \ f(x) \ge a\} \in \mathscr{A}.$$

$$2 \forall a \in \mathbb{R} \ \{x \in X; \ f(x) < a\} \in \mathscr{A}.$$

$$\Im \ \forall a, b \in \mathbb{R} \ \{x \in X; \ a \leq f(x) < b\} \in \mathscr{A}.$$

The space \mathbb{R} (resp \mathbb{R}) is endowed with the Borel σ -algebra $\mathscr{B}_{\mathbb{R}}$ (resp $\mathscr{B}_{\mathbb{R}}$).

This proposition is deduced from the fact that Borel σ -algebra is generated by any one of the following set of intervals

a)
$$\{[a, +\infty[; a \in \mathbb{R}\}, b) \{]a, +\infty[; a \in \mathbb{R}\}, c) \{] - \infty, a[; a \in \mathbb{R}\}, d) \{] - \infty, a]; a \in \mathbb{R}\}, e) \{]a, b[; a, b \in \mathbb{R}\}, f) \{[a, b[; a, b \in \mathbb{R}], f) \{[a, b]; a, b \in \mathbb{R}\}, g) \{]a, b]; a, b \in \mathbb{R}\}, h) \{[a, b]; a, b \in \mathbb{R}\}.$$

Operations of Measurable Functions

Proposition

Let (X_0, \mathscr{A}_0) , (X_1, \mathscr{A}_1) and (X_2, \mathscr{A}_2) three measurable spaces and let $f_1: X_0 \longrightarrow X_1$ and $f_2: X_1 \longrightarrow X_2$ be two measurable mappings, then the mapping $f_2 \circ f_1$ is measurable.

The proposition results from the following that

$$(f_2 \circ f_1)^{-1}(\mathscr{A}_2) = f_1^{-1}(f_2^{-1}(\mathscr{A}_2)) \subset f_1^{-1}(\mathscr{A}_1) \subset \mathscr{A}_0.$$

Proposition

Let (X, \mathscr{A}) be a measurable space. a) If $f: X \longrightarrow \overline{\mathbb{R}}$ is measurable of (X, \mathscr{A}) , then |f| is measurable. b) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions of (X, \mathscr{A}) with real values, then the functions g,h,k defined by $g = \sup_{n \in \mathbb{N}} f_n$, $h = \overline{\lim}_{n \to +\infty} f_n$ and $k = \underline{\lim}_{n \to +\infty} f_n$ are measurable.

Proof

a) If
$$a < 0$$
; $\{x \in X; |f(x)| > a\} = X$.
If $a \ge 0$; $\{x \in X; |f(x)| > a\} = \{x \in X; f(x) > a\} \cup \{x \in X; f(x) < -a\} = f^{-1}(]a, +\infty]) \cup f^{-1}([-\infty, -a]) \in \mathscr{A}$.
b) $\{x \in X; g(x) > a\} = \bigcup_{n \in \mathbb{N}} \{x \in X; f_n(x) > a\} \in \mathscr{A}$.
 $h(x) = \inf_{n \in \mathbb{N}} (\sup_{j \ge n} f_j(x))$

$$\{x \in X; h(x) > a\} = \bigcap_{n=1}^{+\infty} \bigcup_{j=n}^{\infty} \{x \in X; f_j(x) > a\} \in \mathscr{A}.$$

 $k(x) = \sup_{n \in \mathbb{N}} (\inf_{j \ge n} f_j(x))$

$$\{x \in X; k(x) > a\} = \bigcup_{n=1}^{+\infty} \bigcap_{j=n}^{\infty} \{x \in X; f_j(x) > a\} \in \mathscr{A}.$$

Remark

It results from the previous proposition that if f is measurable then the functions $f^+ = \sup(f, 0)$ and $f^- = \inf(f, 0)$ are measurable, and if $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions which converges point wise toward a function f on X, then f is measurable.

Corollary

For any sequence $(f_n)_{n\in\mathbb{N}}$ of real measurable functions on a measurable space X, if $C = \{x \in X; \lim_{n \to +\infty} f_n(x) \text{ exists in } \overline{\mathbb{R}}\}$. Then C is measurable.

Proof

Let
$$D = C^c$$
, $D = \{x \in X; \underline{\lim}_{n \to +\infty} f_n(x) < \overline{\lim}_{n \to +\infty} f_n(x)\}$. If we set $g = \underline{\lim}_{n \to +\infty} f_n$ and $h = \overline{\lim}_{n \to +\infty} f_n$. For each rational r , let

$$D_r = \{x \in X; g(x) < r < h(x)\} = \{g(x) < r\} \cap \{h(x) > r\}$$

which is measurable. $D = \bigcup_{r \in \mathbb{Q}} D_r$ which proves the measurability of D.

Simple Functions

Definition

Let (X, \mathscr{A}) be a measurable space. A function $f: X \longrightarrow \mathbb{R}$ (or $(\overline{\mathbb{R}})$) is called a **simple function** if it is measurable and takes a finite number of values.

Let $f: X \longrightarrow \overline{\mathbb{R}}$ be a simple function. If $\{c_1, \ldots, c_m\}$ is the set of values of $f; c_j \neq c_k$ for $j \neq k$, and $A_j = f^{-1}\{c_j\}$, then $X = \bigcup_{j=1}^m A_j$, $A_j \cap A_k = \emptyset$ if $j \neq k$ and $f = \sum_{j=1}^m c_j \chi_{A_j}$. We remark that f is measurable if and only if A_j is measurable for all $j = 1, \ldots, m$.

Mongi BLEL Lebesgue Integral

Theorem

- Let (X, \mathscr{A}) be a measurable space and $f: X \longrightarrow \overline{\mathbb{R}}$
 - If *f* is a measurable and bounded, there exists a sequence of simple functions which converges uniformly on *X* to *f*.
 - If f is a non-negative measurable function. Then there exists a sequence of non-negative simple functions which increases to f.

Proof

1) Let M > 0 such that $\forall x \in X$, |f(x)| < M. We denote by $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For $(n, k) \in \mathbb{N}_0 \times \mathbb{Z}$ and $-2^n \le k \le 2^n - 1$, we set

$$A_{n,k} = \{x \in X; \ \frac{kM}{2^n} \le f(x) < \frac{(k+1)M}{2^n}\}$$

and we define f_n by

$$f_n = \sum_{k=-2^n}^{2^n-1} \frac{kM}{2^n} \chi_{A_{n,k}}.$$

The subsets $A_{n,k}$ are measurable and f_n is measurable, for all $n \in \mathbb{N}$.

For any $x_0 \in X$, there exists k_0 such that $x_0 \in A_{n,k_0}$. Then $f_n(x_0) = \frac{Mk_0}{2^n}$ and $|f(x_0) - f_n(x_0)| < \frac{M}{2^n}$. Then the sequence $(f_n)_n$ converges uniformly on X to f.

2) For all $n \in \mathbb{N}$, let $g_n = \inf(f, n) - \frac{1}{n}$. The function g_n is bounded measurable, then from the first case there exists a sequence of simple functions $(f_m)_m$ such that $||f_n - g_n||_{\infty} < \frac{1}{2^n}$. We conclude that

$$\lim_{n\to+\infty} f_n = \lim_{n\to+\infty} g_n = \lim_{n\to+\infty} \inf(f,n) = f.$$

$$f_n \leq g_n + \frac{1}{2^n} = \inf(f, n) - \frac{1}{n} + \frac{1}{2^n} \leq \inf(f, n+1) - \frac{1}{n+1} + \frac{1}{2^{n+1}} \leq f_{n+1}. \text{ (It suffices to prove that for } n \text{ big enough } -\frac{1}{n} + \frac{1}{2^n} < -\frac{1}{n+1} + \frac{1}{2^{n+1}}. \text{)}$$

Integration

For constructing the integral of real measurable functions on a measure space (X, \mathscr{A}, μ) , we proceed by steps. We begin by the case of the integral of simple functions, then we define the integral of non-negative measurable functions by the increasing limit and we show that the monotone limit allows to define the integral of the non-negative measurable functions, and finally the decomposition of a measurable arbitrary functions $f = f^+ - f^-$ as the difference of two non-negative measurable functions extends the definition of the integral to the measurable functions.

Definition

If $f = \sum_{k=1}^{N} \lambda_k \chi_{\{f=\lambda_k\}}$ is a non-negative simple function, we define the integral of f by

$$\int_X f(x) d\mu(x) = \sum_{k=1}^N \lambda_k \mu(\{f = \lambda_k\})$$

We take the convention that if $A = \{x \in \Omega; f(x) = 0\}$ and $\mu(A) = +\infty$, then $\int_X f(x) d \mu(x) = 0$. ($0 \times (+\infty) = 0$). In particular if $f = \chi_A$, where A is a measurable subset, then $\int_X \chi_A(x) d \mu(x) = \mu(A)$.

Proposition

Let \mathscr{E}^+ be the cone of non-negative simple functions on the measure space (X, \mathscr{A}, μ) . The integral defined on \mathscr{E}^+ has the following properties

•
$$\forall \alpha \in \mathbb{R}^+, \forall f \in \mathscr{E}^+; \int_X \alpha f(x) d \mu(x) = \alpha \int_X f(x) d \mu(x).$$

• $\forall f, g \in \mathscr{E}^+; \int_X (f+g)(x) d \mu(x) = \int_X f(x) d \mu(x) + \int_X g(x) d \mu(x).$

Proof

It is evident that if $\alpha \ge 0$ and f and g of \mathscr{E}^+ then αf and $f+g \in \mathscr{E}^+$. (\mathscr{E}^+ is a convex cone).

- **1** The first property is evident.
- Let f and g be two elements of &⁺. We denote by F (resp
 G) the set of values of f (resp of g).

$$f = \sum_{a \in F} a\chi_{\{f=a\}}, \quad g = \sum_{b \in G} b\chi_{\{g=b\}}.$$

We have

$$\forall a \in F; \{f = a\} = \bigcup_{b \in G} \{f = a, g = b\}.$$

$$\forall b \in G; \{g = b\} = \bigcup_{a \in F} \{f = a, g = b\}.$$

$$\int_X f(x)d\mu(x) = \sum_{a\in F} a\mu\{f=a\} = \sum_{(a,b)\in F\times G} a\mu\{f=a,g=b\}$$

$$\int_X g(x) d \mu(x) = \sum_{b \in G} a \mu \{g = b\} = \sum_{(a,b) \in F \times G} b \mu \{f = a, g = b\}$$

$$\int_{X} f(x) d\mu(x) + \int_{X} g(x) d\mu(x) = \sum_{(a,b) \in F \times G} (a+b) \mu\{f = a, g = b\}$$

$$\{f + g = u\} = \bigcup_{(a,b)\in F\times G, a+b=u} \{f = a, g = b\}.$$
 It results that

Mongi BLEL Lebesgue Integral

$$\mu\{f+g=u\}=\sum_{(a,b)\in F\times G, a+b=u}\mu\{f=a,g=b\}$$

Then

$$\int_{X} f(x) d \mu(x) + \int_{X} g(x) d \mu(x) = \sum_{u} u \mu \{f + g = u\}$$
$$= \int_{X} (f + g)(x) d \mu(x).$$

3 If $\int_{X} f(x) d \mu(x) = +\infty$, then $\int_{X} g(x) d \mu(x) = +\infty$. The result is evident if $\int_{X} f(x) d \mu(x) < +\infty$ and $\int_{X} g(x) d \mu(x) = +\infty$.
WONGY BLEL Lebesgue Integral

Assume now that
$$\int_X f(x) d\mu(x) < +\infty$$
 and
 $\int_X g(x) d\mu(x) < +\infty$, then the subsets $\{x \in X; f(x) = +\infty\}$
and $\{x \in X; g(x) = +\infty\}$ are null sets.
Let $\{a_1, \ldots, a_n\}$ and $\{b_1, \ldots, b_n\}$ the sets of finite values of
 f respectively of g .
 $\tilde{f} = \sum_{j=1}^n a_j \chi_{\{x \in X; f(x) = a_j\}}$ and $\tilde{g} = \sum_{j=1}^m b_j \chi_{\{x \in X; g(x) = b_j\}}$, then
 $\int_X f(x) d\mu(x) = \int_X \tilde{f}(x) d\mu(x)$ and
 $\int_X g(x) d\mu(x) = \int_X \tilde{g}(x) d\mu(x)$ and $h = \tilde{g} - \tilde{f} \in \mathcal{E}^+$.

We deduce from 2) that

$$\int_X g(x)d\,\mu(x) = \int_X f(x)d\,\mu(x) + \int_X h(x)d\,\mu(x) \ge \int_X f(x)d\,\mu(x).$$

Lemma

Let $(f_n)_n$ be an increasing sequence in \mathscr{E}^+ , and if $g \in \mathscr{E}^+$ such that $g \leq \lim_{n \to +\infty} f_n$, then

$$\int_X g(x) d \mu(x) \leq \lim_{n \to +\infty} \int_X f_n(x) d \mu(x).$$

Proof

For $y \in g(X)$, let $E_y = \{x \in X; g(x) = y\}$. To prove the lemma it suffices to prove that for all $y \in g(X)$

$$\int_X g(x)\chi_{E_y}(x)d\,\mu(x) = y\mu(E_y) \leq \lim_{n \to +\infty} \int_X f_n(x)\chi_{E_y}(x)d\,\mu(x).$$

The result is trivial if y = 0. For 0 < t < y, we set $A_n = E_y \cap \{x \in X; f_n(x) \ge t\}$. $(A_n)_n$ is an increasing sequence of measurable sets and $E_y = \lim_{n \to +\infty} A_n$, because for all $x \in E_y$, $f_n(x) > t$ for n large.

$$t\mu\{E_{y} \cap \{x \in X; f_{n}(x) > t\}\} = \int_{X} t\chi_{E_{y} \cap \{x \in X; f_{n}(x) > t\}}(x)d\mu(x)$$

$$\leq \int_{X} f_{n}(x)\chi_{E_{y}}(x)d\mu(x).$$

So $t\mu(E_y) \leq \lim_{n \to +\infty} \int_X f_n(x) \chi_{E_y}(x) d \mu(x)$. This is for any 0 < t < y, then

$$y\mu(E_y) \leq \lim_{n \to +\infty} \int_X f_n(x)\chi_{E_y}(x)d\mu(x).$$

To prove 4) of the proposition (23), we denote $g = \lim_{n \to +\infty} f_n$. Then $f_n \leq g$, $\forall n \in \mathbb{N}$ and the increasing sequence $\left(\int_X f_n(x) d \mu(x)\right)_n$ is bounded above by $\int_X g(x) d \mu(x)$. For the other sense we applied the lemma (30).

Definition

Let f be a non-negative measurable function on a measure space (X, \mathscr{A}, μ) , we define

$$\int_X f(x) d\, \mu(x) = \sup\{\int_X g(x) d\, \mu(x); g \leq f ext{ and } g \in \mathscr{E}^+\}$$

this is a non-negative number finite or infinite.

Remark

If f is a non-negative measurable function on a measure space (X, \mathcal{B}, μ) , the theorem (16) yields the existence of an increasing sequence $(f_n)_n$ of \mathscr{E}^+ which converges to f. Then we have $\lim_{n \to +\infty} \int_{Y} f_n(x) d \mu(x) \leq \int_{Y} f(x) d \mu(x).$ In the other hand for every function $g \in \mathscr{E}^+$ such that $g \leq f = \lim_{n \to +\infty} f_n$, we have from lemma (30) that $\int_{Y} g(x) d \mu(x) \leq \lim_{n \to +\infty} \int_{Y} f_n(x) d \mu(x)$. So from the definition (34); $\int_{X} f(x) d\mu(x) \leq \lim_{n \to +\infty} \int_{Y} f_n(x) d\mu(x)$ and then $\int_X f(x) d \mu(x) = \lim_{n \to +\infty} \int_X f_n(x) d \mu(x).$ This result is independent of the increasing sequence $(f_n)_n$ which converges to f. Then we have now the following theorem

Mongi BLEL L

Theorem

Let f and g be two non-negative measurable functions on a measure space (X, \mathscr{A}, μ) , and let λ be a non-negative real number, then we have

•
$$\int_{X} \lambda f(x) d\mu(x) = \lambda \int_{X} f(x) d\mu(x)$$

•
$$\int_{X} (f+g)(x) d\mu(x) = \int_{X} f(x) d\mu(x) + \int_{X} g(x) d\mu(x)$$

• If $f \le g$ then $\int_{X} f(x) d\mu(x) \le \int_{X} g(x) d\mu(x)$.

For the proof it is enough to consider two increasing sequences $(f_n)_n$ and $(g_n)_n$ of \mathscr{E}^+ which converge respectively to f and g, and then we apply the proposition (23).

Definition

Let f, g be two functions defined on (X, \mathscr{A}, μ) . We say that f = g almost everywhere, written f = g a.e., if $\{x \in X; f(x) \neq g(x)\}$ is a null set. In particular if A is a measurable subset, then $\chi_A = 0$ a.e. if and only if $\mu(A) = 0$.

Definition

Let f be a function defined on (X, \mathscr{A}, μ) . We say that f is defined almost everywhere on X if there exist a null subset N such that f is defined on the complementary of N.

Definition

A sequence $(f_n)_n$ of functions defined on (X, \mathscr{A}, μ) is said convergent almost everywhere to a function f if the set of x where the sequence $(f_n(x))_n$ is no convergent to f(x) is a null set. We will denote by $\lim_{n\to+\infty} f_n$ any arbitrary measurable function fsuch that $(f_n)_n \longrightarrow f$ almost everywhere on X.

Proposition

Let f and g be two non-negative measurable functions defined on a measure space $(X, \mathscr{A}, \mu).$

•
$$\int_X f(x) d\mu(x) = 0$$
 if and only if $f = 0$ a.e.
• If $f = g$ a.e then $\int_X f(x) d\mu(x) = \int_X g(x) d\mu(x)$

Proof

6

We suppose that
$$\int_X f(x) d \mu(x) = 0$$
. If
 $A_n = \{x \in X; f(x) \ge \frac{1}{n}\}$, then $\chi_{A_n} \le nf$ and
 $\int_X \chi_{A_n}(x) d \mu(x) = \mu(A_n) \le n \int_X f(x) d \mu(x) = 0$. Then for
all $n \in \mathbb{N}; \mu(A_n) = 0$. It results that $\{x; f(x) \ne 0\} = \bigcup_n A_n$
is a null set.

If f = 0 almost everywhere. The set $A = \{x \in X; f(x) \neq 0\}$ is a null. The function $g = \infty . \chi_A$ is a step function and $f \leq g$. Since $\int_{Y} g(x) d\mu(x) = 0$, then $\int_{Y} f(x) d\mu(x) = 0$. (We can give an other solution based on the Monotone Convergence Theorem that will be proved: We define $f_n = \inf(f, n)$ for all $n \in \mathbb{N}$. The sequence $(f_n)_n$ is increasing and $\int_{x} f_n(x) d \mu(x) = 0$, then it follows from the Monotone Convergence Theorem $\int_{Y} f(x) d \mu(x) = 0.$

Mongi BLEL Lebesgue Integral

2 We suppose that $f \leq g$. The function h = g - f is defined a.e and equal to 0 a.e. If $\int_{\mathcal{V}} f(x) d\mu(x) = \int_{\mathcal{V}} g(x) d\mu(x) = +\infty$, we have the desired result. If $\int_{Y} f(x) d\mu(x) < +\infty$, and $\int_{Y} g(x) d\mu(x) < +\infty$, we have $0 = \int_{Y} h(x)d\mu(x) = \int_{Y} g(x)d\mu(x) - \int_{Y} f(x)d\mu(x).$ Let now define the function $h = \inf(f, g)$. h is a non-negative measurable function and we have h = f = g almost everywhere.

Since
$$h \le f$$
 then $\int_X h(x) d \mu(x) = \int_X f(x) d \mu(x)$, and since $h \le g$ then $\int_X h(x) d \mu(x) = \int_X g(x) d \mu(x)$. It results that $\int_X f(x) d \mu(x) = \int_X g(x) d \mu(x)$.

Definition

Let $f: X \longrightarrow \mathbb{R}$ be a measurable function. If $f^+ = \sup(f, 0)$ and $f^- = \sup(-f, 0)$, then $f = f^+ - f^-$. The function f is called integrable with respect to the measure μ if and only if $\int_X f^+(x) d \mu(x)$ and $\int_X f^-(x) d \mu(x)$ are finite.

The integral of f will be denoted
$$\int_X f(x) d\mu(x) = \int_X f^+(x) d\mu(x) - \int_X f^-(x) d\mu(x)$$
, and if f is measurable and $\int_X f^+(x) d\mu(x) < +\infty$ or $\int_X f^-(x) d\mu(x) < +\infty$ we will denote of the same way $\int_X f(x) d\mu(x) = \int_X f^+(x) d\mu(x) - \int_X f^-(x) d\mu(x)$.
We define $\mathcal{L}^1(X)$ the space of integrable functions on X.

Proposition

The set
$$\mathcal{L}^1(X)$$
 is a vector space on \mathbb{R} and the map
 $f \mapsto \int_X f(x) d\mu(x)$ is a linear form on $\mathcal{L}^1(X)$ and we have
 $\left| \int_X f(x) d\mu(x) \right| \leq \int_X |f(x)| d\mu(x).$

Proof

Let f and g be two integrable functions.
Since
$$|f+g| \leq |f|+|g|$$
, then $\int_X |f(x)+g(x)| d\mu(x)| \leq \int_X |f(x)| d\mu(x) + \int_X |g(x)| d\mu(x)$, and then $f+g \in L^1(X)$.
We have $f+g = (f+g)^+ - (f+g)^- = f^+ - f^- + g^+ - g^-$, then $(f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+$. It follows that

$$\begin{aligned} \int_X (f+g)^+(x) d\,\mu(x) &+ \int_X f^-(x) d\,\mu(x) + \int_X g^-(x) d\,\mu(x) \\ &= \int_X (f+g)^-(x) d\,\mu(x) + \int_X f^+(x) d\,\mu(x) \\ &+ \int_X g^+(x) d\,\mu(x) \end{aligned}$$

and

$$\begin{aligned} \int_X (f+g)(x) d\,\mu(x) &= \int_X (f+g)^+(x) d\,\mu(x) - \int_X (f+g)^-(x) \,d\,\mu(x) \\ &= \int_X f^+(x) d\,\mu(x) - \int_X f^-(x) \,d\,\mu(x) + \int_X g^+(x) \\ &= \int_X f(x) d\,\mu(x) + \int_X g(x) d\,\mu(x). \end{aligned}$$

The other properties are evident.

Mongi BLEL Lebesgue Integral

Corollary

- If f is measurable and $a \le f \le b$ and $\mu(X) < +\infty$, then $f \in \mathcal{L}^1(X)$ and we have $a\mu(X) \le \int_{X} f(x) d \mu(x) \le b\mu(X)$.
- If f is measurable and $g \in \mathcal{L}^1(X)$ and $f \leq g$, then $\int_X f(x) d\mu(x) \leq \int_X g(x) d\mu(x).$
- If E is a measurable null set, then $\int_E f(x)d\mu(x) = 0$ for any measurable function f.
- Any bounded measurable function and equal to zero in the complementary of a subset of finite measure is integrable.

Mongi BLEL Lebesgue Integral

Remarks

- Let f be an integrable function with respect to a measure µ. Then {x ∈ X; f(x) = ±∞} is a null set.
- On a measure space (X, A, μ), the set of functions that are f = 0 a.e. is a vector space of L¹(X, A) closed under countable (sup, inf). We denote L¹(X, A) or L¹(μ) the quotient space L¹(X, A) by the space of null a.e functions. We call that f = g in L¹(X) if f = g μ-almost everywhere.

Convergence Theorems

Monotone Convergence Theorem

Theorem

[Monotone Convergence Theorem or Beppo-Levi's Theorem] Let $(f_n)_n$ be an increasing sequence of non-negative measurable functions on a measure space (X, \mathcal{B}, μ) , then

$$\int_X \lim_{n \to +\infty} f_n(x) d \mu(x) = \lim_{n \to +\infty} \int_X f_n(x) d \mu(x).$$

Proof

For all integer *n*, there exists an increasing non-negative sequence $(\varphi_{n,j})_j$ of \mathscr{E}^+ which converges to f_n . For any *j*, set $\psi_j = \sup_{1 \le n \le j} \varphi_{n,j}$. Then the sequence $(\psi_j)_j \in \mathscr{E}^+$ is increasing because $\psi_j = \sup_{1 \le n \le j} \varphi_{n,j} \le \sup_{1 \le n \le j} \varphi_{n,j+1} \le \sup_{1 \le n \le j+1} \varphi_{n,j+1} = \psi_{j+1}$.

We want to prove now that the sequence $(\psi_j)_j$ converges to f. We have for all $j \ge n$, $\varphi_{n,j} \le \psi_j$, then $f_n = \lim_{j \to +\infty} \varphi_{n,j} \le \lim_{j \to +\infty} \psi_j$, and then $f = \lim_{n \to +\infty} f_n \le \lim_{j \to +\infty} \psi_j$. In the other hand, the inequalities $\varphi_{n,j} \le f_n \le f$ shows that $\psi_j \le f$ and $\lim_{j \to +\infty} \psi_j \le f$. The sequence $(\psi_j)_j$ is an increasing sequence of \mathscr{E}^+ and converges to f. Then $\int_X f(x) d \mu(x) = \lim_{j \to +\infty} \int_X \psi_j(x) d \mu(x)$. Moreover we have

$$\psi_j \leq f_j$$
, then

$$\lim_{j \to +\infty} \int_X \psi_j(x) d \mu(x) \leq \lim_{j \to +\infty} \int_X f_j(x) \ d \mu(x) \leq \int_X f(x) d \mu(x),$$

which ends the proof of the theorem.

Corollary

Let $(f_n)_n$ be a sequence of non-negative measurable functions on a measure space (X, \mathscr{A}, μ) , then

$$\int_{X} \sum_{n=1}^{+\infty} f_n(x) d \mu(x) = \sum_{n=1}^{+\infty} \int_{X} f_n(x) d \mu(x)$$

Corollary

Let (X, \mathscr{A}, μ) be a measure space and let f be a non-negative measurable function. For all $A \in \mathscr{A}$, let $\tau(A) = \int_X f(x)\chi_A(x)d\,\mu(x)$. Then τ is a non-negative measure on (X, \mathscr{A}) called measure of density f with respect to the measure μ . The integral of a non-negative measurable function g by this measure is given by

$$\int_X g(x) d\tau(x) = \int_X f(x)g(x)d\mu(x).$$

Proof

Let $(A_n)_n$ be a finite or infinite sequence of measurable pairwise disjoints sets. We have $f\chi_{\cup_n A_n} = \sum_{n=1}^{+\infty} f\chi_{A_n}$. This which yields that

$$\tau \left(\bigcup_{n} A_{n}\right) = \int_{X} f(x)\chi_{\cup_{n}A_{n}}(x)d\mu(x)$$
$$= \int_{X} \sum_{n=1}^{+\infty} f(x)\chi_{A_{n}}(x)d\mu(x)$$
$$= \sum_{n=1}^{+\infty} \int_{X} f(x)\chi_{A_{n}}(x)d\mu(x).$$

Mongi BLEL

The second part of the corollary is verified by any characteristic function χ_A of a measurable set A. Then it is valid for any simple non-negative function. By using the increasing continuity of the integrals, the result will be valid for non-negative measurable functions.

Fatou's Lemma

Lemma

[Fatou's Lemma] Let $(f_n)_n$ be a sequence of non-negative measurable functions on a measure space (X, \mathscr{A}, μ) , then

$$\int_X \underline{\lim}_{n \to +\infty} f_n(x) d \mu(x) \leq \underline{\lim}_{n \to +\infty} \int_X f_n(x) d \mu(x).$$

Proof

$$\begin{split} & \underline{\lim}_{n \to +\infty} f_n = \lim_{n \to +\infty} (\inf_{j \ge n} f_j). \text{ We have } \int_X \inf_{j \ge n} f_j(x) \ d \ \mu(x) \le \\ & \inf_{j \ge n} \int_X f_j(x) d \ \mu(x). \text{ The result follows from the Monotone Convergence Theorem.} \end{split}$$

Mongi BLEL Lebesgue Integral

Remark

Let
$$f_n = n^2 \chi_{[0,\frac{1}{n}]}, \int_{\mathbb{R}} \underline{\lim}_{n \to +\infty} f_n(x) d\lambda(x) = 0$$

and $\underline{\lim}_{n \to +\infty} \int_{\mathbb{R}} f_n(x) d\lambda(x) = +\infty.$

Dominate Convergence Theorem

Theorem

(Dominate Convergence Theorem (or Lebesgue Theorem) Let $(f_n)_n$ be a sequence of measurable functions on a measure space (X, \mathscr{A}, μ) . We assume that i) the sequence $(f_n)_n$ converges almost everywhere on X to a measurable function f definite almost everywhere. ii) There exist a non-negative integrable function g such that $|f_n| \leq g$ almost everywhere for all n. Then the sequence $(f_n)_n$ and the function f are integrable and we have

$$\int_X f(x) \ d \mu(x) = \lim_{n \to +\infty} \int_X f_n(x) d \mu(x).$$

The interest of the Dominated Convergence Theorem is that it does not require uniform convergence to permute the limit and the integral.

Theorem

Let $(f_n)_n$ be a sequence of measurable functions on a measure space (X, \mathscr{A}, μ) . We assume that there exist a non-negative integrable function g such that for all n, $|f_n| \leq g$ almost everywhere. Then

$$\int_{X} \underline{\lim} f_n(x) d\,\mu(x) \leq \underline{\lim} \int_{X} f_n(x) d\,\mu(x) \tag{1}$$

$$\int_{X} \overline{\lim} f_n d\,\mu(x) \ge \overline{\lim} \int_{X} f_n(x) d\,\mu(x) \tag{2}$$

and if the sequence $(f_n)_n$ converges almost everywhere on X to a measurable function f defined almost everywhere, then $f \in L^1(X)$ and we have

$$\int_{X} f(x) d\mu(x) = \lim_{n \to +\infty} \int_{X} f_n(x) d\mu(x)$$
(3)

Proof

The function g is finite almost everywhere on X because it is integrable. If we replace g by the function $g\chi_{\{x; g(x) < +\infty\}}$ this which not change the inequalities $|f_n| \leq g$ almost everywhere. Thus we can suppose that g is finite on X. We replace the sequence $(f_n)_n$ by the functions $f_n \chi_{\{|f_n| \leq g\}}$, this which not modified the integrals $\int_{\mathcal{L}} f_n(x) d\mu(x)$ neither the equivalence classes $\lim_{n \to +\infty} f_n$ almost everywhere. Then we can suppose that $|f_n| < g$ on X. From these modifications, the functions $(f_n)_n$, $\overline{\lim} f_n$ and $\underline{\lim} f_n$ are finite and integrable on X. We apply the Fatou's lemma to the sequence $f_n + g$ we shall have

$$\int_X \underline{\lim}(f_n + g)(x) d \mu(x) \leq \underline{\lim} \int_X (f_n + g)(x) d \mu(x)$$

Mongi BLEL Lebesgue Integral

Since
$$\underline{\lim}_{n \to +\infty} (f_n + g) = (\underline{\lim}_{n \to +\infty} f_n) + g$$
 on X , we shall have
$$\int_X \underline{\lim}_{n \to +\infty} f_n(x) d \mu(x) \le \underline{\lim}_{n \to +\infty} \int_X f_n(x) d \mu(x)$$

And by Fatou's lemma applied to the sequence $(-f_n + g)_n$ we shall have

$$\int_X \underline{\lim}_{n \to +\infty} (-f_n)(x) d \mu(x) \leq \underline{\lim}_{n \to +\infty} \int_X -f_n(x) d \mu(x)$$

Then

$$\int_X \overline{\lim}_{n \to +\infty} f_n(x) d \mu(x) \ge \overline{\lim}_{n \to +\infty} \int_X f_n(x) d \mu(x)$$

Π

The result follows easily.

Exercise

Let f be an integrable function on $[0, +\infty[$. Find

$$\lim_{n\to+\infty}\int_0^{+\infty}e^{-n\sin^2x}f(x)dx.$$

Solution Let $(f_n)_n$ be sequence defined by $f_n(x) = e^{-n\sin^2 x} f(x)$ on $[0,\infty[. A = \{x; f(x) = \pm\infty\} \cup \{n \in \mathbb{Z}; n \ge 0\}$. For $x \notin A$, $\lim_{n \to +\infty} f_n(x) = 0$ and $|f_n| \le |f|$ which is integrable, then

$$\lim_{n\to+\infty}\int_0^{+\infty}e^{-n\sin^2x}f(x)dx=0.$$

Mongi BLEL Lebesgue Integral
Applications- Double Series

We consider the measure space $(\mathbb{N}, \mathscr{P}(\mathbb{N}), \mu)$ where μ is the measure defined by $\mu\{n\} = 1$ for all n of \mathbb{N} . In use the Dominate Convergence Theorem, we have the following result

Theorem

Let
$$(a_{m,n})_{m,n}$$
 be a double sequence of complex numbers such that
i) $\lim_{n \to +\infty} a_{m,n} = a_m$ for all $m \in \mathbb{N}$,
ii) there exist a sequence $(b_m)_m$ of non-negative real numbers such
that $\sum_{m=1}^{+\infty} b_m < +\infty$ and $|a_{m,n}| \le b_m$ for all $n \in \mathbb{N}$.
Then we have $\lim_{n \to +\infty} \sum_{m=1}^{+\infty} a_{m,n} = \sum_{m=1}^{+\infty} a_m$.

Integral Depending on Parameters

Let (X, \mathscr{A}, μ) be a measure space, and let E be a metric space.

Proposition

Let *E* be a metric space and $f \in X \longrightarrow \mathbb{R}$ a function such that for all $t \in E$; the mapping $x \mapsto f(t, x)$ is integrable. We define

$$F(t) = \int_X f(t, x) d \mu(x)$$

Let $a \in E$, we assume that For almost all $x \in X$; the mapping $t \mapsto f(t, x)$ is continuous at a. There exist a neighborhood V(a) of a and an integrable function gsuch that $\forall t \in V(a)$, $|f(t, .)| \leq g(.)$. Then F is continuous at a.

It suffices to apply the Dominate Convergence Theorem to the sequence $(f(a_n, .))_n$ for $n \in \mathbb{N}$; where $(a_n)_n$ is a sequence in V(a) which converges to a.

Let f be an integrable function on \mathbb{R} with respect to Lebesgue measure λ . We define

$$\widehat{f}(t) = \int_{\mathbb{R}} f(x) e^{-2i\pi xt} \ d\lambda(x)$$

Show that \hat{f} is continuous on \mathbb{R} .

Solution

Let g the function defined on $\mathbb{R} \times \mathbb{R}$ by $g(x,t) = f(x)e^{-2i\pi xt}$. The function $x \mapsto g(x,t)$ is continuous a.e., the mapping $t \mapsto g(x,t)$ is integrable and dominated by |f| which is integrable. Then \hat{f} is continuous on \mathbb{R} .

Proposition

Let Ω be an open set of \mathbb{R} and $f \ \Omega \times X \longrightarrow \mathbb{R}$ a function such that for all $t \in \Omega$; the mapping $x \longmapsto f(t, x)$ is integrable. We define

$$F(t) = \int_X f(t, x) d \mu(x).$$

We assume that

• for almost all $x \in X$; the mapping $t \mapsto f(t,x)$ is derivable on Ω . We denote $\frac{\partial f}{\partial t}(t,x)$ its derivative,

• the function f(t, .) is integrable on X and there exist a non-negative integrable function g such that for almost all $x \in X$, $|\frac{\partial f}{\partial t}(t, x)| \le g(x)$ for all $t \in \Omega$. Then F is derivable on Ω and for all t in Ω

Proof

Let $a \in \Omega$ and $(h_n)_n$ be a sequence of real numbers converging to 0 and such that $a + h_n \in \Omega$. $(h_n \neq 0$, for all n). We define the sequence $(\varphi_n)_n$ by

$$\varphi_n(x) = \frac{f(a+h_n, x) - f(a, x)}{h_n}$$

For almost all $x \in X$, $\lim_{n \to \infty} \varphi_n(x) = \frac{\partial f}{\partial t}(a, x)$ and according to the mean value theorem, for such x we have $|\varphi_n(x)| \leq g(x)$. The Dominate Convergence Theorem yields that the function $x \mapsto \frac{\partial f}{\partial t}(t, x)$ is integrable and

$$\int_{X} \frac{\partial f}{\partial t}(a, x) \, d\,\mu(x) = \lim_{n \to +\infty} \int_{X} \varphi_n(x) d\,\mu(x) = \lim_{n \to +\infty} \frac{F(a+h_n) - F(a)}{h_n}$$
Mongi BLEL Lebesgue Integral

 If for each a ∈ Ω there exists a neighborhood V(a) and an integrable function g such that for almost all x ∈ X, | ∂f/∂t(t,x)| ≤ g(x) for all t ∈ V(a). Then F is differentiable on Ω and for all t ∈ Ω

$$\frac{d}{dt}\int_X f(t,x)d\,\mu(x) = \int_X \frac{\partial f}{\partial t}(t,x)d\,\mu(x)$$

If in addition $\frac{\partial f}{\partial t}(t,x)$ is continuous, then F is C^1 .

Exercise

We consider the function F defined by

$$F(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$$

- Show that F is continuous for $x \ge 0$ and $\lim_{x \to +\infty} F(x)$ and $\lim_{x \to 0} F(x)$ exist.
- **2** Show that *F* is of class C^2 for x > 0 and verify the equation

$$y'' + y = \frac{1}{x} \tag{4}$$

Mongi BLEL Lebesgue Integral

Solution

• The function $x \mapsto \frac{e^{-xt}}{1+t^2}$ is continuous and $\lim_{x \to +\infty} \frac{e^{-xt}}{1+t^2} = 0.$ Moreover this function is dominated by $\frac{1}{1+t^2}$ which is integrable. Then *F* is continuous for $x \ge 0$ and $\lim_{x \to +\infty} F(x) = 0.$

2 The function
$$x \mapsto f(x,t) = \frac{e^{-xt}}{1+t^2}$$
 is \mathcal{C}^1 ,
$$\frac{\partial f(x,t)}{\partial x} = \frac{-te^{-xt}}{1+t^2}$$
 is dominated by $\frac{te^{-at}}{1+t^2}$ for all $x \ge a > 0$ which is integrable. Then F is \mathcal{C}^1 on $[a, +\infty[$ for all $a > 0$, then F is \mathcal{C}^1 on $]0, +\infty[$.
$$\frac{\partial^2 f(x,t)}{\partial x^2} = \frac{t^2 e^{-xt}}{1+t^2}$$
. Moreover this function is dominated by $\frac{t^2 e^{-at}}{1+t^2}$ for all $x \ge a > 0$ which is integrable. Then F is \mathcal{C}^2 on $[a, +\infty[$ for all $x \ge a > 0$ which is integrable. Then F is \mathcal{C}^2 on $[a, +\infty[$ for all $x \ge a > 0$ which is integrable. Then F is \mathcal{C}^2 on $[a, +\infty[$ for all $a > 0$, the F is \mathcal{C}^2 on $]0, +\infty[$ and $F''(x) = \int_{0}^{+\infty} \frac{t^2 e^{-xt}}{1+t^2} dt = -F(x) + \int_{0}^{+\infty} e^{-xt} dt = -F(x) + \frac{1}{x}$.

Let f be an integrable function on [0, 1]. Prove that $\lim_{n \to +\infty} \int_0^1 x^n f(x) dx = 0.$

Solution

 $|x^n f(x)| \le |f(x)|$ which is integrable, and $\lim_{n \to +\infty} x^n f(x) = 0$ a.e. The result follows by the Dominate Convergence Theorem.

Exercise

Prove that

$$\lim_{n\to+\infty}\int_0^1\frac{nx}{1+n^4x^4}dx=0.$$

Solution

Let $(f_n)_n$ be the sequence defined on [0,1] by $f_n(x) = \frac{nx}{1+n^4x^4}$. It is easy to prove that the sequence $(f_n)_n$ is uniformly bounded on [0,1] by $\frac{3^{\frac{3}{4}}}{4}$ and $\lim_{n \to +\infty} f_n(x) = 0$. Then by the Dominate Convergence Theorem

$$\lim_{n\to+\infty}\int_0^1\frac{nx}{1+n^4x^4}dx=0.$$

Mongi BLEL Lebesgue Integral

Exercise

Find
$$\lim_{n \to +\infty} \int_{0}^{1} \frac{nx}{1 + n^{2}x^{4}} dx$$
.
Solution
Let $(f_{n})_{n}$ the sequence defined in $[0, 1]$ by $f_{n}(x) = \frac{nx}{1 + n^{2}x^{4}}$. $\lim_{n \to +\infty} f_{n}(x) = 0$ but $\int_{0}^{1} \frac{nx}{1 + n^{2}x^{4}} dx = \frac{1}{2} \int_{0}^{n} \frac{dt}{1 + t^{2}}$, then $\lim_{n \to +\infty} \int_{0}^{1} \frac{nx}{1 + n^{2}x^{4}} dx = \frac{\pi}{4}$.

Comparison of Riemann and Lebesgue integrals

Riemann and Lebesgue Integrals

Let *a* and *b* two reals numbers, a < b. We consider the measure space $([a, b], \mathscr{B}^*, \lambda)$, where λ is the Lebesgue measure on \mathbb{R} and \mathscr{B}^* is the Lebesgue σ -algebra on [a, b]. For a bounded measurable function *f* on [a, b], we denote $\int_a^b f(x) dx$ the Riemann integral for *f* on [a, b] and $\int_{[a,b]} f(x) d\lambda(x)$ the Lebesgue integral, if they exist.

Let f be a bounded function on [a, b]. Then from the definition of the Riemann integral and the proprieties of the lower and upper Darboux sum of f, there exists an increasing sequence of partitions $(\sigma_n)_n$ of [a, b] such that if $\sigma_n = \{x_0 = a, \ldots, x_{p_n} = b\}$ the sequence $(\delta_n)_n$ defined by $\delta_n = \sup_{0 \le k \le p_n - 1} |x_{k+1} - x_k|$ converges to 0. $(\delta_n)_n$ is called the norm of the partition). We denote

$$U(f) = \lim_{n \to +\infty} S(\sigma_n, f)$$

$$L(f) = \lim_{n \to +\infty} s(\sigma_n, f)$$

Let $(g_n)_n$ and $(h_n)_n$ be the sequences of simple functions defined by

$$g_n(x) = \begin{cases} m_k = \inf_{t \in [x_k, x_{k+1}]} f(t) & \text{if } x_k \le x < x_{k+1} \\ g_n(b) = f(b) \end{cases}$$
$$h_n(x) = \begin{cases} M_k = \sup_{t \in [x_k, x_{k+1}]} f(t) & \text{if } x_k \le x < x_{k+1} \\ h_n(b) = f(b) \end{cases}$$

The sequence $(g_n)_n$ is increasing and the sequence $(h_n)_n$ is decreasing. For $x \in [a, b]$, the sequence $(g_n)_n$ converges to a function g and the sequence $(h_n)_n$ converges to a function h. We remark that

$$U(\sigma_n, f) = \int_a^b h_n(x) dx = \int_{[a,b]} h_n(x) d\lambda(x).$$
$$L(\sigma_n, f) = \int_a^b g_n(x) dx = \int_{[a,b]} g_n(x) d\lambda(x).$$

Since g and h are measurable, it follows from the Monotone Convergence Theorem that

$$\lim_{n \to +\infty} \int_{a}^{b} g_{n}(x) dx = L(f) = \int_{[a,b]} g(x) d\lambda(x)$$
(5)
$$\lim_{n \to +\infty} \int_{a}^{b} h_{n}(x) dx = U(f) = \int_{[a,b]} f(x) d\lambda(x).$$
(6)

In the other hand $g(x) \leq f(x) \leq h(x) \ \forall x \in [a, b].$

Theorem

Let f be a bounded function on [a, b]. a) If f is Riemann-integrable on [a, b], then f is Lebesgue integrable on [a, b] and

$$\int_{[a,b]} f(x) d\lambda(x) = \int_a^b f(x) dx.$$

b) f is Riemann-integral on [a, b] if and only if, the set of discontinuity of f is a null set.

Mongi BLEL

c) If the set of discontinuity of f is a null set, then f is Lebesgue integrable and

Lebesgue Integral

For the proof we need the following lemma

Lemma

Let
$$f, g$$
 and h as above. For $x \in [a, b] \setminus \left(\bigcup_{n=1}^{+\infty} \sigma_n\right)$, $g(x) = h(x)$ if
and only if f is continuous at x .

Proof of the lemma

Let $x \in [a, b] \setminus (\bigcup_{n=1}^{+\infty} \sigma_n)$ and $\delta_n = ||\sigma_n||$. The sequence $(\delta_n)_n$ converges to 0.

If f is continuous at x, then for $\varepsilon > 0, \exists \eta > 0$ such that $\forall t \in [a, b]$ and $|t - x| < \eta$, then $|f(x) - f(t)| < \varepsilon$.

Let n_0 such that $\forall n \ge n_0$, $\delta_{n_0} < \eta$. For $n > n_0$, σ_n is a partition of [a, b], then there exist $k \in \{0, \dots, p_n - 1\}$ such that $x_k < x < x_{k+1}$. Thus $\forall t \in]x_k, x_{k+1}[, |f(x) - f(t)| < \varepsilon$, then $h_n(x) = M_k \le f(x) + \varepsilon$ and $g_n(x) = m_k \ge f(x) - \varepsilon$ and $h_n(x) - g_n(x) \le \varepsilon$. This is for all $n \ge n_0$. Then $h(x) - g(x) \le \varepsilon$ and this is for all $\varepsilon > 0$, which gives that g(x) = h(x).

Conversely if g(x) = h(x) and $x \notin (\bigcup_{n=1}^{\infty} \sigma_n)$. Since $g(x) \leq f(x) \leq h(x)$, then f(x) = g(x) = h(x), $(g_n(x))_n$ and $(h_n(x))_n$ converges to f(x). Let $\varepsilon > 0$, it follows from the above result that there exists $n_0 \in \mathbb{N}$ such that $\forall n \geq n_0 \ 0 \leq f(x) - g_n(x) < \varepsilon$ and $0 \leq h_n(x) - f(x) < \varepsilon$. σ_{n_0} is a partition of [a, b], then there exist $k \in \{0, \dots, p_{n_0} - 1\}$ such that $x \in [x_k, x_{k+1}] = I$. We have

$$h_{n_0}(x) - \varepsilon < f(x) < g_{n_0}(x) + \varepsilon$$

Moreover $h_{n_0}(x) = \sup_{t \in]x_k, x_{k+1}[} f(t)$ and $g_{n_0}(x) = \inf_{t \in]x_k, x_{k+1}[} f(t)$. Then $\forall t \in I$, $f(t) - \varepsilon < f(x) < f(t) + \varepsilon$ this which yields that f is continuous at x.

Proof of the Theorem

a) If f is Riemann-integrable on [a, b], we have

$$L(f) = U(f) = \int_{a}^{b} f(x) dx$$

Mongi BLEL Lebesgue Integral

and from (5) and (6) we have
$$\int_{[a,b]} h(x)d\lambda(x) = \int_{[a,b]} g(x)d\lambda(x)$$
.
Thus $\int_{[a,b]} (h(x) - g(x))d\lambda(x) = 0$. Moreover $h - g$ is a non-
negative integrable function, then $h = g$ a.e. and $f = g$ a.e. Thus
 f is measurable and $\int_{a}^{b} f(x)dx = \int_{[a,b]} f(x)d\lambda(x)$.
b) The function f Riemann-integrable if and only if $U(f) = L(f)$.
This is equivalent to $h = g$ a.e and the result is deduced from the
previous lemma; indeed

The function f Riemann-integrable if and only if h = g a.e which is equivalent to $\{x; h(x) \neq g(x)\} \cup (\bigcup_{n=1}^{\infty} \sigma_n)$ is a null set. This is equivalent to f continuous a.e on [a, b]. c) If the set of discontinuity of f is a null set, then $\lim_{n \to +\infty} g_n(x) =$ $\lim_{n \to +\infty} h_n(x) = f(x)$ at each point of continuity of f, then f is measurable and the Dominate Convergence Theorem yields

$$\lim_{n \to +\infty} \int_{[a,b]} g_n(x) d\lambda(x) = \int_{[a,b]} f(x) d\lambda(x)$$
$$\lim_{n \to +\infty} \int_{[a,b]} h_n(x) d\lambda(x) = \int_{[a,b]} f(x) d\lambda(x).$$

Thus f is Riemann integrable and

$$\int_{a}^{b} f(x) d\lambda(x) = \int_{a}^{b} f(x) dx.$$
Viongi BLEL Lebesgue Integral

We give now a new proof of the theorem (94)

Proposition

Let $f: [a, b] \to \mathbb{R}$ be a bounded function. f is Riemann integrable if and only if it is continuous almost everywhere on [a, b].

Proof

a) Suppose that f is Riemann integrable. For $x \in [a, b]$, we define

$$g(x) = \sup_{\delta > 0} \inf_{y \in [a,b], |y-x| \le \delta} f(y) = \liminf_{y \to x} f(y),$$

$$h(x) = \inf_{\delta > 0} \sup_{y \in [a,b], |y-x| \le \delta} f(y) = \limsup_{y \to x} f(y).$$

f is continuous at *x* if and only if g(x) = h(x). We have $g \le f \le h$. If σ is a partition of [a, b], then $U(\sigma, g) \le U(\sigma, f) \le U(\sigma, h)$ and $L(\sigma, g) \le s(\sigma, f) \le s(\sigma, h)$. But $U(\sigma, f) = U(\sigma, h)$ and $L(\sigma, g) = s(\sigma, f)$, because on any open interval $]c, d[\subset [a, b]$ we have

$$\inf_{x\in]c,d[}g(x)=\inf_{x\in]c,d[}f(x),\quad \sup_{x\in]c,d[}f(x)=\sup_{x\in]c,d[}h(x)$$

It follows that

 $L(f) = L(g) \leq U(g) \leq U(f), \quad L(f) \leq L(h) \leq U(h) = U(f).$

Since f is Riemann integrable, both g and h must be Riemann integrable, with integrals equal to $\int_{a}^{b} f(x)dx$. Then, they are both Lebesgue integrable, with the same integral. But $g \leq h$, so g = h a.e. Now f is continuous at any point where g and h are equal, so f is continuous a.e.

b) Now suppose that f is continuous a.e. For $n \in \mathbb{N}$, let σ_n be the uniform partition of [a, b] into 2^n intervals. Set

$$h_n(x) = \sup_{y \in]c,d[} f(y), \quad g_n(x) = \inf_{y \in]c,d[} f(y)$$

if]c, d[is an open interval of σ_n containing x and $h_n(x) = g_n(x) =$ f(x) if $x \in \sigma_n$. Then $(g_n)_n$, $(h_n)_n$ are respectively increasing and decreasing sequences of functions and $L(\sigma_n, f) = \int_{-\infty}^{b} g_n(x) dx$, $U(\sigma_n, f) = \int_a^b h_n(x) dx.$ $\lim_{n\to\infty} g_n(x) = \lim_{n\to\infty} h_n(x) = f(x)$ at any point x at which f is continuous, so $f = \lim_{n \to \infty} g_n = \lim_{n \to \infty} h_n$ a.e. By Dominated Convergence Theorem, $\lim_{n\to\infty}\int_{a}^{b}g_{n}(x)dx = \int_{a}^{b}f(x)dx = \lim_{n\to\infty}\int h_{n}(x)dx.$ This means that $L(f) \ge \int_a^b f(x) dx \ge U(f)$ and f is Riemann integrable.

Case of Generalized Riemann Integral

Theorem

Let f be a locally Lebesgue-integrable function defined on an interval]a, b[. f is Lebesgue-integrable on]a, b[if and only if the improper integral $\int_{a}^{b} f(x)dx$ is absolutely convergent and in this case the generalized Riemann integral and the Lebesgue integral coincide (i.e. $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)d\lambda(x)$.)

Proof

We assume that $\int_{a}^{b} f(x)dx$ is absolutely convergent. We consider two sequences $(a_n)_n$ and $(b_n)_n$ of]a, b[such that the sequence $(a_n)_n$ decreases to a and the sequence $(b_n)_n$ increases to b. Let $\varphi_n(x) = |f(x)|\chi_{[a_n,b_n]}$. The sequence $(\varphi_n)_n$ increases to $|f|\chi_{]a,b[}$. The functions φ_n are measurable then f is measurable. It follows from Monotone Convergence Theorem that

$$\lim_{n \to +\infty} \int_{\mathbb{R}} \varphi_n(x) d\lambda(x) = \int_a^b |f(x)| d\lambda(x).$$

Moreover from the previous Theorem
$$\int_{\mathbb{R}} \varphi_n(x) d\lambda(x) = \int_{a_n}^{b_n} |f(x)| dx$$

and from the previous definition
$$\lim_{n \to +\infty} \int_{\mathbb{R}} \varphi_n(x) d\lambda(x) = \int_a^b |f(x)| dx.$$

Mongi BLEL Lebesgue Integral
Measurable Functions Simple Functions Integration Convergence Theorems Integral Depending on Parameters Riemann and Lebesgue Integrals

Conversely If *f* is Lebesgue-integrable on]a, b[, then |f| is Lebesgue-integrable on]a, b[. Let $(a_n)_n$ and $(b_n)_n$ be two sequences in]a, b[such that the sequence $(a_n)_n$ decreases to *a* and $(b_n)_n$ increases to *b*. By the Monotone Convergence Theorem

$$\lim_{n \to +\infty} \int_{a}^{b} \varphi_{n}(x) d\lambda(x) = \int_{a}^{b} |f(x)| d\lambda(x) < +\infty.$$

Moreover $\int_{a}^{b} \varphi_{n}(x) d\lambda(x) = \int_{a_{n}}^{b_{n}} |f(x)| dx$, then
$$\lim_{n \to +\infty} \int_{a_{n}}^{b_{n}} |f(x)| dx \text{ exists in } \mathbb{R} \text{ and } \int_{a}^{b} |f(x)| dx < +\infty.$$