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General Properties of Measurable Functions

Let X and Y be two nonempty sets. We showed in the previous
chapter that the pull back of a σ-algebra under a mapping f : X −→
Y is a σ-algebra of X .

Definition

If (X ,A ) and (Y ,B) are two measurable spaces. A mapping
f : X −→ Y is called measurable if f −1(B) ⊂ A .
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Theorem

Let (X ,A ) and (Y ,B) be two measurable spaces, and suppose
that B generates the σ-algebra B. A function f : X → Y is
measurable if and only if f −1(B) ⊂ A .
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Proof

The sufficient condition is just the definition of the measurability.
For the ”if” direction, define

H = {V ∈ B : f −1(V ) ∈ A }.

H is a σ-algebra since the operation of taking the inverse image
commutes with the set operations of union, intersection and com-
plement.
If B ⊂ H, therefore, σ(B) ⊂ σ(H). But B = σ(B) and H = σ(H)
since H is a σ-algebra. This means that f −1(V ) ∈ A for every
V ∈ B.
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Remark

To show that a mapping f : X −→ Y is measurable; it suffices to
give a set C which generates B and f −1(C) ⊂ A .

Proposition

Let (X ,A ) be a measurable space and let f : X −→ R (or in R)
be a function. The function f is measurable, if one of the following
conditions is fulfilled

1 ∀a ∈ R {x ∈ X ; f (x) ≥ a} ∈ A .

2 ∀a ∈ R {x ∈ X ; f (x) < a} ∈ A .

3 ∀a ∈ R {x ∈ X ; f (x) ≤ a} ∈ A .

4 ∀a, b ∈ R {x ∈ X ; a < f (x) < b} ∈ A .

5 ∀a, b ∈ R {x ∈ X ; a ≤ f (x) < b} ∈ A .
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The space R (resp R) is endowed with the Borel σ-algebra BR (resp
BR).
This proposition is deduced from the fact that Borel σ−algebra is
generated by any one of the following set of intervals
a) {[a,+∞[; a ∈ R},
b) {]a,+∞[; a ∈ R},
c) {]−∞, a[; a ∈ R},
d) {]−∞, a]; a ∈ R},
e) {]a, b[; a, b ∈ R},
f) {[a, b[; a, b ∈ R},
g) {]a, b]; a, b ∈ R},
h) {[a, b]; a, b ∈ R}.
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Operations of Measurable Functions

Proposition

Let (X0,A0), (X1,A1) and (X2,A2) three measurable spaces and
let f1 : X0 −→ X1 and f2 : X1 −→ X2 be two measurable mappings,
then the mapping f2 ◦ f1 is measurable.

The proposition results from the following that

(f2 ◦ f1)−1(A2) = f −1
1 (f −1

2 (A2)) ⊂ f −1
1 (A1) ⊂ A0.
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Proposition

Let (X ,A ) be a measurable space.
a) If f : X −→ R is measurable of (X ,A ), then |f | is measurable.
b) If (fn)n∈N is a sequence of measurable functions of (X ,A ) with
real values, then the functions g,h,k defined by g = sup

n∈N
fn,

h = limn→+∞fn and k = limn→+∞fn are measurable.
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Proof

a) If a < 0; {x ∈ X ; |f (x)| > a} = X .
If a ≥ 0; {x ∈ X ; |f (x)| > a} = {x ∈ X ; f (x) > a} ∪ {x ∈
X ; f (x) < −a} = f −1(]a,+∞]) ∪ f −1([−∞,−a[) ∈ A .
b) {x ∈ X ; g(x) > a} =

⋃
n∈N{x ∈ X ; fn(x) > a} ∈ A .

h(x) = infn∈N(supj≥n fj(x))

{x ∈ X ; h(x) > a} =
+∞⋂
n=1

∞⋃
j=n

{x ∈ X ; fj(x) > a} ∈ A .

k(x) = supn∈N(inf j≥n fj(x))

{x ∈ X ; k(x) > a} =
+∞⋃
n=1

∞⋂
j=n

{x ∈ X ; fj(x) > a} ∈ A .
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Remark

It results from the previous proposition that if f is measurable then
the functions f + = sup(f , 0) and f − = inf(f , 0) are measurable,
and if (fn)n∈N is a sequence of measurable functions which converges
point wise toward a function f on X , then f is measurable.
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Corollary

For any sequence (fn)n∈N of real measurable functions on a
measurable space X , if C = {x ∈ X ; lim

n→+∞
fn(x) exists in R}.

Then C is measurable.
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Proof

Let D = C c , D = {x ∈ X ; limn→+∞fn(x) < limn→+∞fn(x)}. If we
set g = limn→+∞fn and h = limn→+∞fn. For each rational r , let

Dr = {x ∈ X ; g(x) < r < h(x)} = {g(x) < r} ∩ {h(x) > r}

which is measurable. D =
⋃

r∈QDr which proves the measurability
of D.
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Simple Functions

Definition

Let (X ,A ) be a measurable space. A function f : X −→ R (or
(R)) is called a simple function if it is measurable and takes a
finite number of values.

Let f : X −→ R̄ be a simple function. If {c1, . . . , cm} is the set of
values of f ; cj ̸= ck for j ̸= k , and Aj = f −1{cj}, then X =

⋃m
j=1 Aj ,

Aj ∩ Ak = ∅ if j ̸= k and f =
m∑
j=1

cjχAj
.

We remark that f is measurable if and only if Aj is measurable for
all j = 1, . . . ,m.
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Theorem

Let (X ,A ) be a measurable space and f : X −→ R
1 If f is a measurable and bounded, there exists a sequence of

simple functions which converges uniformly on X to f .

2 If f is a non-negative measurable function. Then there exists
a sequence of non-negative simple functions which increases
to f .
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Proof

1) Let M > 0 such that ∀x ∈ X , |f (x)| < M. We denote by
N0 = N ∪ {0}. For (n, k) ∈ N0 × Z and −2n ≤ k ≤ 2n − 1, we set

An,k = {x ∈ X ;
kM

2n
≤ f (x) <

(k + 1)M

2n
}

and we define fn by

fn =
2n−1∑
k=−2n

kM

2n
χAn,k

.

The subsets An,k are measurable and fn is measurable, for all n ∈ N.
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For any x0 ∈ X , there exists k0 such that x0 ∈ An,k0 . Then fn(x0) =
Mk0
2n

and |f (x0)− fn(x0)| <
M

2n
. Then the sequence (fn)n converges

uniformly on X to f .

Mongi BLEL Lebesgue Integral



Measurable Functions
Simple Functions

Integration
Convergence Theorems

Integral Depending on Parameters
Riemann and Lebesgue Integrals

2) For all n ∈ N, let gn = inf(f , n)− 1
n . The function gn is bounded

measurable, then from the first case there exists a sequence of simple

functions (fm)m such that ||fn − gn||∞ <
1

2n
. We conclude that

lim
n→+∞

fn = lim
n→+∞

gn = lim
n→+∞

inf(f , n) = f .
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fn ≤ gn +
1

2n
= inf(f , n) − 1

n
+

1

2n
≤ inf(f , n + 1) − 1

n + 1
+

1

2n+1
≤ fn+1. (It suffices to prove that for n big enough −1

n
+

1

2n
<

− 1

n + 1
+

1

2n+1
.)
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Integration

For constructing the integral of real measurable functions on a mea-
sure space (X ,A , µ), we proceed by steps. We begin by the case
of the integral of simple functions, then we define the integral of
non-negative measurable functions by the increasing limit and we
show that the monotone limit allows to define the integral of the
non-negative measurable functions, and finally the decomposition of
a measurable arbitrary functions f = f + − f − as the difference of
two non-negative measurable functions extends the definition of the
integral to the measurable functions.
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Definition

If f =
N∑

k=1

λkχ{f=λk} is a non-negative simple function, we define

the integral of f by∫
X
f (x)d µ(x) =

N∑
k=1

λkµ({f = λk})

We take the convention that if A = {x ∈ Ω; f (x) = 0} and

µ(A) = +∞, then

∫
X
f (x)d µ(x) = 0. ( 0× (+∞) = 0).

In particular if f = χA, where A is a measurable subset, then∫
X
χA(x)d µ(x) = µ(A).
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Proposition

Let E + be the cone of non-negative simple functions on the measure
space (X ,A , µ). The integral defined on E + has the following
properties

1 ∀ α ∈ R+, ∀f ∈ E +;

∫
X
α f (x)d µ(x) =

α

∫
X
f (x)d µ(x).

2 ∀f , g ∈ E +;

∫
X
(f + g)(x)d µ(x) =∫

X
f (x)d µ(x) +

∫
X
g(x)d µ(x).
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3 ∀f , g ∈ E + such that f ≤ g ;

∫
X
f (x)d µ(x) ≤∫

X
g(x)d µ(x).

4 If (fn)n is an increasing sequence in E + and if f = lim
n→+∞

fn is

the limit of the sequence (fn)n belongs to E +, then∫
X

f (x)d µ(x) = lim
n→+∞

∫
X
fn(x)d µ(x).
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Proof

It is evident that if α ≥ 0 and f and g of E + then αf and f+g ∈ E +.
( E + is a convex cone).

1 The first property is evident.

2 Let f and g be two elements of E +. We denote by F (resp
G ) the set of values of f (resp of g).

f =
∑
a∈F

aχ{f=a}, g =
∑
b∈G

bχ{g=b}.

We have

∀ a ∈ F ; {f = a} =
⋃
b∈G

{f = a, g = b}.
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∀ b ∈ G ; {g = b} =
⋃
a∈F

{f = a, g = b}.

∫
X
f (x)d µ(x) =

∑
a∈F

aµ{f = a} =
∑

(a,b)∈F×G

aµ{f = a, g = b}

∫
X
g(x)d µ(x) =

∑
b∈G

aµ{g = b} =
∑

(a,b)∈F×G

bµ{f = a, g = b}

∫
X
f (x)d µ(x)+

∫
X
g(x)d µ(x) =

∑
(a,b)∈F×G

(a+b)µ{f = a, g = b}

{f + g = u} =
⋃

(a,b)∈F×G ,a+b=u{f = a, g = b}. It results
that
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µ{f + g = u} =
∑

(a,b)∈F×G ,a+b=u

µ{f = a, g = b}

Then∫
X
f (x)d µ(x) +

∫
X
g(x)d µ(x) =

∑
u

uµ{f + g = u}

=

∫
X
(f + g)(x)d µ(x).

3 If

∫
X
f (x)d µ(x) = +∞, then

∫
X
g(x)d µ(x) = +∞. The

result is evident if

∫
X
f (x)d µ(x) < +∞ and∫

X
g(x)d µ(x) = +∞.
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Assume now that

∫
X
f (x)d µ(x) < +∞ and∫

X
g(x)d µ(x) < +∞, then the subsets {x ∈ X ; f (x) = +∞}

and {x ∈ X ; g(x) = +∞} are null sets.
Let {a1, . . . , an} and {b1, . . . , bn} the sets of finite values of
f respectively of g .

f̃ =
n∑

j=1

ajχ{x∈X ; f (x)=aj} and g̃ =
m∑
j=1

bjχ{x∈X ; g(x)=bj}, then∫
X
f (x)d µ(x) =

∫
X
f̃ (x)d µ(x) and∫

X
g(x)d µ(x) =

∫
X
g̃(x)d µ(x) and h = g̃ − f̃ ∈ E+.
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We deduce from 2) that∫
X
g(x)d µ(x) =

∫
X
f (x)d µ(x)+

∫
X
h(x)d µ(x) ≥

∫
X
f (x)d µ(x).
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Lemma

Let (fn)n be an increasing sequence in E +, and if g ∈ E + such
that g ≤ limn→+∞ fn, then∫

X
g(x)d µ(x) ≤ lim

n→+∞

∫
X
fn(x)d µ(x).
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Proof

For y ∈ g(X ), let Ey = {x ∈ X ; g(x) = y}. To prove the lemma
it suffices to prove that for all y ∈ g(X )

∫
X
g(x)χEy (x)d µ(x) = yµ(Ey ) ≤ lim

n→+∞

∫
X
fn(x)χEy (x)d µ(x).

The result is trivial if y = 0. For 0 < t < y , we set An = Ey ∩ {x ∈
X ; fn(x) ≥ t}. (An)n is an increasing sequence of measurable sets
and Ey = lim

n→+∞
An, because for all x ∈ Ey , fn(x) > t for n large.
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tµ{Ey ∩ {x ∈ X ; fn(x) > t}} =

∫
X
tχEy∩{x∈X ; fn(x)>t}(x)d µ(x)

≤
∫
X
fn(x)χEy (x)d µ(x).

So tµ(Ey ) ≤ lim
n→+∞

∫
X
fn(x)χEy (x)d µ(x). This is for any 0 < t <

y , then

yµ(Ey ) ≤ lim
n→+∞

∫
X
fn(x)χEy (x)d µ(x).
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To prove 4) of the proposition (23), we denote g = lim
n→+∞

fn. Then

fn ≤ g , ∀n ∈ N and the increasing sequence
(∫

X
fn(x)d µ(x)

)
n
is

bounded above by

∫
X
g(x) d µ(x).

For the other sense we applied the lemma (30).

Mongi BLEL Lebesgue Integral



Measurable Functions
Simple Functions

Integration
Convergence Theorems

Integral Depending on Parameters
Riemann and Lebesgue Integrals

Definition

Let f be a non-negative measurable function on a measure space
(X ,A , µ), we define∫

X
f (x)d µ(x) = sup{

∫
X
g(x)d µ(x); g ≤ f and g ∈ E +}

this is a non-negative number finite or infinite.
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Remark

If f is a non-negative measurable function on a measure space
(X ,B, µ), the theorem (16) yields the existence of an increasing
sequence (fn)n of E + which converges to f . Then we have

lim
n→+∞

∫
X
fn(x)d µ(x) ≤

∫
X
f (x)d µ(x). In the other hand for every

function g ∈ E + such that g ≤ f = limn→+∞ fn, we have from

lemma (30) that

∫
X
g(x)d µ(x) ≤ lim

n→+∞

∫
X
fn(x)d µ(x). So from

the definition (34);

∫
X
f (x)d µ(x) ≤ lim

n→+∞

∫
X
fn(x)dµ(x) and then∫

X
f (x)d µ(x) = lim

n→+∞

∫
X
fn(x)d µ(x). This result is independent

of the increasing sequence (fn)n which converges to f . Then we
have now the following theorem
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Theorem

Let f and g be two non-negative measurable functions on a
measure space (X ,A , µ), and let λ be a non-negative real
number, then we have

1

∫
X
λf (x)d µ(x) = λ

∫
X
f (x)d µ(x)

2

∫
X
(f + g)(x)d µ(x) =

∫
X
f (x)d µ(x) +

∫
X
g(x)d µ(x)

3 If f ≤ g then

∫
X
f (x)d µ(x) ≤

∫
X
g(x)d µ(x).
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Proof

For the proof it is enough to consider two increasing sequences (fn)n
and (gn)n of E + which converge respectively to f and g , and then
we apply the proposition (23).
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Definition

Let f , g be two functions defined on (X ,A , µ). We say that f = g
almost everywhere, written f = g a.e., if {x ∈ X ; f (x) ̸= g(x)} is
a null set. In particular if A is a measurable subset, then χA = 0
a.e. if and only if µ(A) = 0.
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Definition

Let f be a function defined on (X ,A , µ). We say that f is defined
almost everywhere on X if there exist a null subset N such that f
is defined on the complementary of N.
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Definition

A sequence (fn)n of functions defined on (X ,A , µ) is said
convergent almost everywhere to a function f if the set of x where
the sequence (fn(x))n is no convergent to f (x)is a null set.
We will denote by limn→+∞ fn any arbitrary measurable function f
such that (fn)n −→ f almost everywhere on X .
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Proposition

Let f and g be two non-negative measurable functions defined on
a measure space (X ,A , µ).

1

∫
X
f (x)d µ(x) = 0 if and only if f = 0 a.e.

2 If f = g a.e then

∫
X
f (x)d µ(x) =

∫
X
g(x) d µ(x).
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Proof

1 We suppose that

∫
X
f (x)d µ(x) = 0. If

An = {x ∈ X ; f (x) ≥ 1
n}, then χAn ≤ nf and∫

X
χAn(x)d µ(x) = µ(An) ≤ n

∫
X
f (x)d µ(x) = 0. Then for

all n ∈ N; µ(An) = 0. It results that {x ; f (x) ̸= 0} =
⋃

n An

is a null set.
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If f = 0 almost everywhere. The set A = {x ∈ X ; f (x) ̸= 0}
is a null. The function g = ∞.χA is a step function and

f ≤ g . Since

∫
X
g(x)dµ(x) = 0, then

∫
X
f (x)d µ(x) = 0.

(We can give an other solution based on the Monotone
Convergence Theorem that will be proved:
We define fn = inf(f , n) for all n ∈ N. The sequence (fn)n is

increasing and

∫
X
fn(x)d µ(x) = 0, then it follows from the

Monotone Convergence Theorem

∫
X
f (x)d µ(x) = 0.)
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2 We suppose that f ≤ g . The function h = g − f is defined a.e
and equal to 0 a.e.

If

∫
X
f (x)d µ(x) =

∫
X
g(x)d µ(x) = +∞, we have the

desired result.

If

∫
X
f (x)d µ(x) < +∞, and

∫
X
g(x)d µ(x) < +∞, we have

0 =

∫
X
h(x)d µ(x) =

∫
X
g(x)d µ(x)−

∫
X
f (x)d µ(x).

Let now define the function h = inf(f , g). h is a non-negative
measurable function and we have h = f = g almost
everywhere.
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Since h ≤ f then

∫
X
h(x)d µ(x) =

∫
X
f (x)d µ(x), and since

h ≤ g then

∫
X
h(x)d µ(x) =

∫
X
g(x)d µ(x). It results that∫

X
f (x)d µ(x) =

∫
X
g(x)d µ(x).
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Definition

Let f : X −→ R̄ be a measurable function. If f + = sup(f , 0) and
f − = sup(−f , 0), then f = f + − f −. The function f is called
integrable with respect to the measure µ if and only if∫
X
f +(x)d µ(x) and

∫
X
f −(x)d µ(x) are finite.
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The integral of f will be denoted

∫
X
f (x) d µ(x) =

∫
X
f +(x)d µ(x)−∫

X
f −(x)d µ(x), and if f is measurable and

∫
X
f +(x)d µ(x) <

+∞ or

∫
X
f −(x)d µ(x) < +∞ we will denote of the same way∫

X
f (x)d µ(x) =

∫
X
f +(x)d µ(x)−

∫
X
f −(x)d µ(x).

We define L1(X ) the space of integrable functions on X .
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Proposition

The set L1(X ) is a vector space on R and the map

f 7−→
∫
X
f (x)d µ(x) is a linear form on L1(X ) and we have∣∣∣∫

X
f (x)d µ(x)

∣∣∣ ≤ ∫
X

∣∣f (x)∣∣d µ(x).
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Proof

Let f and g be two integrable functions.

Since
∣∣f+g

∣∣ ≤ |f |+|g |, then
∫
X

∣∣f (x)+g(x)
∣∣d µ(x)| ≤ ∫

X

∣∣f (x)∣∣d µ(x)+∫
X

∣∣g(x)∣∣ d µ(x), and then f + g ∈ L1(X ).

We have f + g = (f + g)+ − (f + g)− = f + − f − + g+ − g−, then
(f + g)+ + f − + g− = (f + g)− + f + + g+. It follows that
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∫
X
(f + g)+(x)d µ(x) +

∫
X
f −(x)d µ(x) +

∫
X
g−(x) d µ(x)

=

∫
X
(f + g)−(x)d µ(x) +

∫
X
f +(x) d µ(x)

+

∫
X
g+(x)d µ(x)
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and

∫
X
(f + g)(x)d µ(x) =

∫
X
(f + g)+(x)d µ(x)−

∫
X
(f + g)−(x) d µ(x)

=

∫
X
f +(x)d µ(x)−

∫
X
f −(x) d µ(x) +

∫
X
g+(x)d µ(x)−

∫
X
g−(x)d µ(x)

=

∫
X
f (x)d µ(x) +

∫
X
g(x)d µ(x).

The other properties are evident.
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Corollary

1 If f is measurable and a ≤ f ≤ b and µ(X ) < +∞, then

f ∈ L1(X ) and we have aµ(X ) ≤
∫
X
f (x) d µ(x) ≤ bµ(X ).

2 If f is measurable and g ∈ L1(X ) and f ≤ g , then∫
X
f (x)d µ(x) ≤

∫
X
g(x)d µ(x).

3 If E is a measurable null set, then

∫
E
f (x)d µ(x) = 0 for any

measurable function f .

4 Any bounded measurable function and equal to zero in the
complementary of a subset of finite measure is integrable.
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Remarks

1 Let f be an integrable function with respect to a measure µ.
Then {x ∈ X ; f (x) = ±∞} is a null set.

2 On a measure space (X ,A , µ), the set of functions that are
f = 0 a.e. is a vector space of L1(X ,A ) closed under
countable (sup, inf). We denote L1(X ,A ) or L1(µ) the
quotient space L1(X ,A ) by the space of null a.e functions.
We call that f = g in L1(X ) if f = g µ-almost everywhere.
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Convergence Theorems
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Monotone Convergence Theorem

Theorem

[Monotone Convergence Theorem or Beppo-Levi’s Theorem]
Let (fn)n be an increasing sequence of non-negative measurable
functions on a measure space (X ,B, µ), then∫

X
lim

n→+∞
fn(x)d µ(x) = lim

n→+∞

∫
X

fn(x)d µ(x).
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Proof

For all integer n, there exists an increasing non-negative sequence
(φn,j)j of E + which converges to fn. For any j , set ψj = sup

1≤n≤j
φn,j .

Then the sequence (ψj)j ∈ E + is increasing because ψj = sup
1≤n≤j

φn,j ≤

sup
1≤n≤j

φn,j+1 ≤ sup
1≤n≤j+1

φn,j+1 = ψj+1.
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We want to prove now that the sequence (ψj)j converges to f . We
have for all j ≥ n, φn,j ≤ ψj , then fn = lim

j→+∞
φn,j ≤ lim

j→+∞
ψj , and

then f = lim
n→+∞

fn ≤ lim
j→+∞

ψj . In the other hand, the inequalities

φn,j ≤ fn ≤ f shows that ψj ≤ f and lim
j→+∞

ψj ≤ f . The sequence

(ψj)j is an increasing sequence of E + and converges to f . Then∫
X
f (x)d µ(x) = lim

j→+∞

∫
X
ψj(x)d µ(x). Moreover we have
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ψj ≤ fj , then

lim
j→+∞

∫
X
ψj(x)d µ(x) ≤ lim

j→+∞

∫
X
fj(x) d µ(x) ≤

∫
X
f (x)d µ(x),

which ends the proof of the theorem.
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Corollary

Let (fn)n be a sequence of non-negative measurable functions on a
measure space (X ,A , µ), then∫

X

+∞∑
n=1

fn(x)d µ(x) =
+∞∑
n=1

∫
X
fn(x)d µ(x)
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Corollary

Let (X ,A , µ) be a measure space and let f be a non-negative
measurable function. For all A ∈ A , let
τ(A) =

∫
X f (x)χA(x)d µ(x). Then τ is a non-negative measure on

(X ,A ) called measure of density f with respect to the measure µ.
The integral of a non-negative measurable function g by this
measure is given by∫

X
g(x) d τ(x) =

∫
X
f (x)g(x)d µ(x).
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Proof

Let (An)n be a finite or infinite sequence of measurable pairwise

disjoints sets. We have f χ∪nAn =
+∞∑
n=1

f χAn . This which yields

that

τ (
⋃
n

An) =

∫
X

f (x)χ∪nAn(x)d µ(x)

=

∫
X

+∞∑
n=1

f (x)χAn(x)d µ(x)

=
+∞∑
n=1

∫
X

f (x)χAn(x)d µ(x).
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The second part of the corollary is verified by any characteristic
function χA of a measurable set A. Then it is valid for any sim-
ple non-negative function. By using the increasing continuity of the
integrals, the result will be valid for non-negative measurable func-
tions.
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Fatou’s Lemma

Lemma

[Fatou’s Lemma]
Let (fn)n be a sequence of non-negative measurable functions on a
measure space (X ,A , µ), then∫

X
limn→+∞fn(x)d µ(x) ≤ limn→+∞

∫
X
fn(x)d µ(x).

Mongi BLEL Lebesgue Integral



Measurable Functions
Simple Functions

Integration
Convergence Theorems

Integral Depending on Parameters
Riemann and Lebesgue Integrals

Proof

limn→+∞fn = limn→+∞(inf j≥n fj). We have

∫
X
inf
j≥n

fj(x) d µ(x) ≤

inf
j≥n

∫
X
fj(x)d µ(x). The result follows from the Monotone Conver-

gence Theorem.
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Remark

Let fn = n2χ[0, 1
n
],

∫
R
limn→+∞fn(x)dλ(x) = 0

and limn→+∞

∫
R
fn(x)dλ(x) = +∞.
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Dominate Convergence Theorem

Theorem

(Dominate Convergence Theorem (or Lebesgue Theorem)
Let (fn)n be a sequence of measurable functions on a measure
space (X ,A , µ). We assume that
i) the sequence (fn)n converges almost everywhere on X to a
measurable function f definite almost everywhere.
ii) There exist a non-negative integrable function g such that
|fn| ≤ g almost everywhere for all n. Then the sequence (fn)n and
the function f are integrable and we have∫

X
f (x) d µ(x) = lim

n→+∞

∫
X
fn(x)d µ(x).
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The interest of the Dominated Convergence Theorem is that it does
not require uniform convergence to permute the limit and the inte-
gral.

Theorem

Let (fn)n be a sequence of measurable functions on a measure
space (X ,A , µ). We assume that there exist a non-negative
integrable function g such that for all n, |fn| ≤ g almost
everywhere. Then∫

X
limfn(x)d µ(x) ≤ lim

∫
X
fn(x)d µ(x) (1)

∫
X
limfnd µ(x) ≥ lim

∫
X
fn(x)d µ(x) (2)
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and if the sequence (fn)n converges almost everywhere on X to a
measurable function f defined almost everywhere, then f ∈ L1(X )
and we have ∫

X
f (x)d µ(x) = lim

n→+∞

∫
X
fn(x)d µ(x) (3)
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Proof

The function g is finite almost everywhere on X because it is inte-
grable. If we replace g by the function gχ{x ; g(x)<+∞} this which
not change the inequalities |fn| ≤ g almost everywhere. Thus we
can suppose that g is finite on X . We replace the sequence (fn)n
by the functions fnχ{|fn|≤g}, this which not modified the integrals∫
X
fn(x)d µ(x) neither the equivalence classes limn→+∞ fn almost

everywhere. Then we can suppose that |fn| ≤ g on X . From these
modifications, the functions (fn)n, limfn and limfn are finite and in-
tegrable on X . We apply the Fatou’s lemma to the sequence fn + g
we shall have∫

X
lim(fn + g)(x)d µ(x) ≤ lim

∫
X
(fn + g)(x)d µ(x)
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Since limn→+∞(fn + g) = (limn→+∞fn ) + g on X , we shall have∫
X
limn→+∞fn(x)d µ(x) ≤ limn→+∞

∫
X
fn(x)d µ(x)

And by Fatou’s lemma applied to the sequence (−fn + g)n we shall
have∫

X
limn→+∞(−fn)(x)d µ(x) ≤ limn→+∞

∫
X
−fn(x)d µ(x)
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Then ∫
X
limn→+∞fn(x)d µ(x) ≥ limn→+∞

∫
X
fn(x)d µ(x)

The result follows easily.
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Exercise

Let f be an integrable function on [0,+∞[. Find

lim
n→+∞

∫ +∞

0
e−n sin2 x f (x)dx .

Solution Let (fn)n be sequence defined by fn(x) = e−n sin2 x f (x) on
[0,∞[. A = {x ; f (x) = ±∞} ∪ {n ∈ Z; n ≥ 0}. For x ̸∈ A,
lim

n→+∞
fn(x) = 0 and |fn| ≤ |f | which is integrable, then

lim
n→+∞

∫ +∞

0
e−n sin2 x f (x)dx = 0.
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Applications- Double Series

We consider the measure space (N,P(N), µ) where µ is the mea-
sure defined by µ{n} = 1 for all n of N. In use the Dominate
Convergence Theorem, we have the following result

Theorem

Let (am,n)m,n be a double sequence of complex numbers such that
i) lim

n→+∞
am,n = am for all m ∈ N,

ii) there exist a sequence (bm)m of non-negative real numbers such

that
+∞∑
m=1

bm < +∞ and |am,n| ≤ bm for all n ∈ N.

Then we have lim
n→+∞

+∞∑
m=1

am,n =
+∞∑
m=1

am.
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Integral Depending on Parameters

Let (X ,A , µ) be a measure space, and let E be a metric space.

Proposition

Let E be a metric space and f E × X −→ R a function such that
for all t ∈ E ; the mapping x 7−→ f (t, x) is integrable. We define

F (t) =

∫
X

f (t, x)d µ(x)

Let a ∈ E , we assume that
For almost all x ∈ X ; the mapping t 7−→ f (t, x) is continuous at a.
There exist a neighborhood V (a) of a and an integrable function g
such that ∀ t ∈ V (a), |f (t, .)| ≤ g(.). Then F is continuous at a.
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Proof

It suffices to apply the Dominate Convergence Theorem to the se-
quence (f (an, .))n for n ∈ N; where (an)n is a sequence in V (a)
which converges to a.
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Exercise

Let f be an integrable function on R with respect to Lebesgue mea-
sure λ. We define

f̂ (t) =

∫
R
f (x)e−2iπxt dλ(x)

Show that f̂ is continuous on R.
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Solution
Let g the function defined on R×R by g(x , t) = f (x)e−2iπxt . The
function x 7−→ g(x , t) is continuous a.e, the mapping t 7−→ g(x , t)
is integrable and dominated by |f | which is integrable. Then f̂ is
continuous on R.
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Proposition

Let Ω be an open set of R and f Ω×X −→ R a function such that
for all t ∈ Ω; the mapping x 7−→ f (t, x) is integrable. We define

F (t) =

∫
X

f (t, x)d µ(x).

We assume that
• for almost all x ∈ X ; the mapping t 7−→ f (t, x) is derivable on

Ω. We denote
∂f

∂t
(t, x) its derivative,

• the function f (t, .) is integrable on X and there exist a
non-negative integrable function g such that for almost all x ∈ X ,

|∂f
∂t

(t, x)| ≤ g(x) for all t ∈ Ω. Then F is derivable on Ω and for

all t in Ω

d

dt

∫
X
f (t, x)d µ(x) =

∫
X

∂f

∂t
(t, x)d µ(x).
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Proof

Let a ∈ Ω and (hn)n be a sequence of real numbers converging to
0 and such that a + hn ∈ Ω. (hn ̸= 0, for all n). We define the
sequence (φn)n by

φn(x) =
f (a+ hn, x)− f (a, x)

hn

For almost all x ∈ X , lim
n→∞

φn(x) =
∂f

∂t
(a, x) and according to the

mean value theorem, for such x we have |φn(x)| ≤ g(x). The Dom-

inate Convergence Theorem yields that the function x 7−→ ∂f

∂t
(t, x)

is integrable and∫
X

∂f

∂t
(a, x) d µ(x) = lim

n→+∞

∫
X
φn(x)d µ(x) = lim

n→+∞

F (a+ hn)− F (a)

hn
.
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Examples

1 If for each a ∈ Ω there exists a neighborhood V (a) and an
integrable function g such that for almost all x ∈ X ,

|∂f
∂t

(t, x)| ≤ g(x) for all t ∈ V (a). Then F is differentiable on

Ω and for all t ∈ Ω

d

dt

∫
X
f (t, x)d µ(x) =

∫
X

∂f

∂t
(t, x)d µ(x).

2 If in addition
∂f

∂t
(t, x) is continuous, then F is C1.
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Exercise

We consider the function F defined by

F (x) =

∫ +∞

0

e−xt

1 + t2
dt

1 Show that F is continuous for x ≥ 0 and lim
x→+∞

F (x) and

lim
x→0

F (x) exist.

2 Show that F is of class C2 for x > 0 and verify the equation

y” + y =
1

x
(4)
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Solution

1 The function x 7−→ e−xt

1 + t2
is continuous and

lim
x→+∞

e−xt

1 + t2
= 0. Moreover this function is dominated by

1

1 + t2
which is integrable. Then F is continuous for x ≥ 0

and lim
x→+∞

F (x) = 0.
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2 The function x 7−→ f (x , t) =
e−xt

1 + t2
is C1,

∂f (x , t)

∂x
=

−te−xt

1 + t2
is dominated by

te−at

1 + t2
for all x ≥ a > 0

which is integrable. Then F is C1 on [a,+∞[ for all a > 0,
then F is C1 on ]0,+∞[.
∂2f (x , t)

∂x2
=

t2e−xt

1 + t2
. Moreover this function is dominated by

t2e−at

1 + t2
for all x ≥ a > 0 which is integrable. Then F is C2 on

[a,+∞[ for all a > 0, the F is C2 on ]0,+∞[ and F
′′
(x) =∫ +∞

0

t2e−xt

1 + t2
dt = −F (x) +

∫ +∞

0
e−xtdt = −F (x) +

1

x
.
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Exercise

Let f be an integrable function on [0, 1]. Prove that

lim
n→+∞

∫ 1

0
xnf (x)dx = 0.
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Solution

|xn f (x)| ≤ |f (x)| which is integrable, and lim
n→+∞

xn f (x) = 0 a.e.

The result follows by the Dominate Convergence Theorem.
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Exercise

Prove that

lim
n→+∞

∫ 1

0

nx

1 + n4x4
dx = 0.

Solution
Let (fn)n be the sequence defined on [0, 1] by fn(x) =

nx

1 + n4x4
. It

is easy to prove that the sequence (fn)n is uniformly bounded on [0, 1]

by
3

3
4

4
and lim

n→+∞
fn(x) = 0. Then by the Dominate Convergence

Theorem

lim
n→+∞

∫ 1

0

nx

1 + n4x4
dx = 0.
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Exercise

Find lim
n→+∞

∫ 1

0

nx

1 + n2x4
dx .

Solution
Let (fn)n the sequence defined in [0, 1] by fn(x) =

nx

1 + n2x4
. lim
n→+∞

fn(x) =

0 but

∫ 1

0

nx

1 + n2x4
dx =

1

2

∫ n

0

dt

1 + t2
, then lim

n→+∞

∫ 1

0

nx

1 + n2x4
dx =

π

4
.
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Comparison of Riemann and Lebesgue integrals
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Riemann and Lebesgue Integrals

Let a and b two reals numbers, a < b. We consider the measure
space ([a, b],B∗, λ), where λ is the Lebesgue measure on R and
B∗ is the Lebesgue σ-algebra on [a, b]. For a bounded measurable

function f on [a, b], we denote

∫ b

a
f (x)dx the Riemann integral for

f on [a, b] and

∫
[a,b]

f (x)d λ(x) the Lebesgue integral, if they exist.
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Let f be a bounded function on [a, b]. Then from the definition
of the Riemann integral and the proprieties of the lower and upper
Darboux sum of f , there exists an increasing sequence of partitions
(σn)n of [a, b] such that if σn = {x0 = a, . . . , xpn = b} the sequence
(δn)n defined by δn = sup0≤k≤pn−1 |xk+1 − xk | converges to 0. (δn
is called the norm of the partition). We denote
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U(f ) = lim
n→+∞

S(σn, f )

L(f ) = lim
n→+∞

s(σn, f )

Let (gn)n and (hn)n be the sequences of simple functions defined by

gn(x) =

{
mk = inft∈[xk ,xk+1[ f (t) if xk ≤ x < xk+1

gn(b) = f (b)

hn(x) =

{
Mk = supt∈[xk ,xk+1[ f (t) if xk ≤ x < xk+1

hn(b) = f (b)
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The sequence (gn)n is increasing and the sequence (hn)n is decreas-
ing. For x ∈ [a, b], the sequence (gn)n converges to a function g
and the sequence (hn)n converges to a function h. We remark that

U(σn, f ) =

∫ b

a
hn(x)dx =

∫
[a,b]

hn(x)d λ(x).

L(σn, f ) =

∫ b

a
gn(x)dx =

∫
[a,b]

gn(x)d λ(x).

Mongi BLEL Lebesgue Integral



Measurable Functions
Simple Functions

Integration
Convergence Theorems

Integral Depending on Parameters
Riemann and Lebesgue Integrals

Since g and h are measurable, it follows from the Monotone Con-
vergence Theorem that

lim
n→+∞

∫ b

a
gn(x)dx = L(f ) =

∫
[a,b]

g(x)d λ(x) (5)

lim
n→+∞

∫ b

a
hn(x)dx = U(f ) =

∫
[a,b]

f (x)d λ(x). (6)
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In the other hand g(x) ≤ f (x) ≤ h(x) ∀x ∈ [a, b].

Theorem

Let f be a bounded function on [a, b].
a) If f is Riemann-integrable on [a, b], then f is Lebesgue
integrable on [a, b] and∫

[a,b]
f (x)d λ(x) =

∫ b

a
f (x)dx .

b) f is Riemann-integral on [a, b] if and only if, the set of
discontinuity of f is a null set.
c) If the set of discontinuity of f is a null set, then f is Lebesgue
integrable and ∫

[a,b]
f (x)d λ(x) =

∫ b

a
f (x)dx .Mongi BLEL Lebesgue Integral
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For the proof we need the following lemma

Lemma

Let f , g and h as above. For x ∈ [a, b] \

(
+∞⋃
n=1

σn

)
, g(x) = h(x) if

and only if f is continuous at x .

Mongi BLEL Lebesgue Integral



Measurable Functions
Simple Functions

Integration
Convergence Theorems

Integral Depending on Parameters
Riemann and Lebesgue Integrals

Proof of the lemma

Let x ∈ [a, b] \
(
∪+∞
n=1σn

)
and δn = ||σn||. The sequence (δn)n

converges to 0.
If f is continuous at x , then for ε > 0,∃η > 0 such that ∀t ∈ [a, b]
and |t − x | < η, then |f (x)− f (t)| < ε.
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Let n0 such that ∀n ≥ n0, δn0 < η.
For n > n0, σn is a partition of [a, b], then there exist k ∈ {0, . . . , pn−
1} such that xk < x < xk+1. Thus ∀t ∈]xk , xk+1[, |f (x)−f (t)| < ε,
then hn(x) = Mk ≤ f (x) + ε and gn(x) = mk ≥ f (x) − ε and
hn(x) − gn(x) ≤ ε. This is for all n ≥ n0. Then h(x) − g(x) ≤ ε
and this is for all ε > 0, which gives that g(x) = h(x).
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Conversely if g(x) = h(x) and x /∈ (
⋃∞

n=1 σn). Since g(x) ≤
f (x) ≤ h(x), then f (x) = g(x) = h(x), (gn(x))n and (hn(x))n
converges to f (x).
Let ε > 0, it follows from the above result that there exists n0 ∈ N
such that ∀n ≥ n0 0 ≤ f (x)−gn(x) < ε and 0 ≤ hn(x)− f (x) < ε.
σn0 is a partition of [a, b], then there exist k ∈ {0, . . . , pn0 −1} such
that x ∈ [xk , xk+1[= I . We have
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hn0(x)− ε < f (x) < gn0(x) + ε

Moreover hn0(x) = sup
t∈]xk ,xk+1[

f (t) and gn0(x) = inf
t∈]xk ,xk+1[

f (t).

Then ∀t ∈ I , f (t)− ε < f (x) < f (t) + ε this which yields that f is
continuous at x .
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Proof of the Theorem

a) If f is Riemann-integrable on [a, b], we have

L(f ) = U(f ) =

∫ b

a
f (x)dx
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and from (5) and (6) we have

∫
[a,b]

h(x)dλ(x) =

∫
[a,b]

g(x)dλ(x).

Thus

∫
[a,b]

(h(x) − g(x))dλ(x) = 0. Moreover h − g is a non-

negative integrable function, then h = g a.e. and f = g a.e. Thus

f is measurable and

∫ b

a
f (x)dx =

∫
[a,b]

f (x)d λ(x).

b) The function f Riemann-integrable if and only if U(f ) = L(f ).
This is equivalent to h = g a.e and the result is deduced from the
previous lemma; indeed
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The function f Riemann-integrable if and only if h = g a.e which
is equivalent to {x ; h(x) ̸= g(x)} ∪ (

⋃∞
n=1 σn) is a null set. This is

equivalent to f continuous a.e on [a, b].
c) If the set of discontinuity of f is a null set, then lim

n→+∞
gn(x) =

lim
n→+∞

hn(x) = f (x) at each point of continuity of f , then f is

measurable and the Dominate Convergence Theorem yields

lim
n→+∞

∫
[a,b]

gn(x)dλ(x) =

∫
[a,b]

f (x)dλ(x)

lim
n→+∞

∫
[a,b]

hn(x)dλ(x) =

∫
[a,b]

f (x)dλ(x).

Thus f is Riemann integrable and∫ b

a
f (x)d λ(x) =

∫ b

a
f (x)dx .
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We give now a new proof of the theorem (94)

Proposition

Let f : [a, b] → R be a bounded function. f is Riemann integrable
if and only if it is continuous almost everywhere on [a, b].
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Proof

a) Suppose that f is Riemann integrable. For x ∈ [a, b], we define

g(x) = sup
δ>0

inf
y∈[a,b],|y−x |≤δ

f (y) = lim inf
y→x

f (y),

h(x) = inf
δ>0

sup
y∈[a,b],|y−x |≤δ

f (y) = lim sup
y→x

f (y).

f is continuous at x if and only if g(x) = h(x). We have g ≤ f ≤ h.
If σ is a partition of [a, b], then U(σ, g) ≤ U(σ, f ) ≤ U(σ, h) and
L(σ, g) ≤ s(σ, f ) ≤ s(σ, h). But U(σ, f ) = U(σ, h) and L(σ, g) =
s(σ, f ), because on any open interval ]c , d [⊂ [a, b] we have
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inf
x∈]c,d [

g(x) = inf
x∈]c,d [

f (x), sup
x∈]c,d [

f (x) = sup
x∈]c,d [

h(x).

It follows that

L(f ) = L(g) ≤ U(g) ≤ U(f ), L(f ) ≤ L(h) ≤ U(h) = U(f ).

Since f is Riemann integrable, both g and h must be Riemann

integrable, with integrals equal to

∫ b

a
f (x)dx . Then, they are both

Lebesgue integrable, with the same integral. But g ≤ h, so g = h
a.e. Now f is continuous at any point where g and h are equal, so
f is continuous a.e.
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b) Now suppose that f is continuous a.e. For n ∈ N, let σn be the
uniform partition of [a, b] into 2n intervals. Set

hn(x) = sup
y∈]c,d [

f (y), gn(x) = inf
y∈]c,d [

f (y)

if ]c , d [ is an open interval of σn containing x and hn(x) = gn(x) =
f (x) if x ∈ σn. Then (gn)n, (hn)n are respectively increasing

and decreasing sequences of functions and L(σn, f ) =
∫ b
a gn(x)dx ,

U(σn, f ) =
∫ b
a hn(x)dx .

limn→∞ gn(x) = limn→∞ hn(x) = f (x) at any point x at which f
is continuous, so f = lim

n→∞
gn = lim

n→∞
hn a.e. By Dominated Conver-

gence Theorem, lim
n→∞

∫ b

a
gn(x)dx =

∫ b

a
f (x)dx = lim

n→∞

∫
hn(x)dx .

This means that L(f ) ≥
∫ b
a f (x)dx ≥ U(f ) and f is Riemann inte-

grable.
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Case of Generalized Riemann Integral

Theorem

Let f be a locally Lebesgue-integrable function defined on an
interval ]a, b[. f is Lebesgue-integrable on ]a, b[ if and only if the

improper integral

∫ b

a
f (x)dx is absolutely convergent and in this

case the generalized Riemann integral and the Lebesgue integral

coincide (i.e.

∫ b

a
f (x)dx =

∫ b

a
f (x)d λ(x).)
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Proof

We assume that

∫ b

a
f (x)dx is absolutely convergent. We con-

sider two sequences (an)n and (bn)n of ]a, b[ such that the sequence
(an)n decreases to a and the sequence (bn)n increases to b. Let
φn(x) = |f (x)|χ[an,bn]. The sequence (φn)n increases to |f |χ]a,b[.
The functions φn are measurable then f is measurable. It follows
from Monotone Convergence Theorem that

lim
n→+∞

∫
R
φn(x)d λ(x) =

∫ b

a
|f (x)|d λ(x).

Moreover from the previous Theorem

∫
R
φn(x)d λ(x) =

∫ bn

an

|f (x)|dx

and from the previous definition lim
n→+∞

∫
R
φn(x)d λ(x) =

∫ b

a
|f (x)|dx .

It follows that f is Lebesgue integrable. To show that the two in-
tegrals coincide, we set gn = f χ[an,bn]. Then (gn)n converges to
f χ]a,b[. The functions gn are integrable and |gn| ≤ |f |χ]a,b[. By the
Dominate Convergence Theorem

lim
n→+∞

∫ b

a
gn(x)d λ(x) =

∫ b

a
f (x) d λ(x).
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Conversely If f is Lebesgue-integrable on ]a, b[, then |f | is Lebesgue-
integrable on ]a, b[. Let (an)n and (bn)n be two sequences in ]a, b[
such that the sequence (an)n decreases to a and (bn)n increases to
b. By the Monotone Convergence Theorem

lim
n→+∞

∫ b

a
φn(x)d λ(x) =

∫ b

a
|f (x)|d λ(x) < +∞.

Moreover

∫ b

a
φn(x)d λ(x) =

∫ bn

an

|f (x)|dx , then

lim
n→+∞

∫ bn

an

|f (x)|dx exists in R and

∫ b

a
|f (x)|dx < +∞.
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