King Saud University

College of Engineering

IE – 341: "Human Factors Engineering"

Spring – 2025 (2nd Sem. 1446H)

Human Capabilities

Part – A. Vision (Chapter 4)

Part 2 (a): Alphanumeric Displays

Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview: Vision

Part 1:

- Process of Seeing (Vision)
- Visual Capabilities
 - Accommodation
 - Visual Acuity
 - Convergence
 - Color Discrimination
 - Adaptation
 - Perception
- Factors Affecting Visual Discrimination
 - Luminance Level
 - Contrast
 - Exposure Time
 - Target Motion
 - Age
 - o Training

Cont. Lesson Overview: Vision Part 2 (this part):

- Alphanumeric Displays
 - Characteristics
 - Typography
 - Typography Features
 - Hardcopy
 - Visual Display Terminals (VDT)
- Graphic Representations
- Symbols
- Codes

• 3

Alphanumeric Displays

Alphanumeric Displays

Most important characteristics:

Visibility:

 quality of the character that makes it separately visible from its surroundings (i.e. detectability)

which are special and control of the first annuality,
which is make a few transland block the administration
Appropriate from the first block the administration
The risk plantage from the annual transland from

- Brinton charts 14 degrees of visibility [Brinton, 1939]
- most legible: black type on a yellow background
- least legible (most offensive): blue type on red

Alphanumeric Displays

Most important characteristics:

Legibility:

- attribute that makes a character identifiable from others (i.e. discriminability)
- depends on stroke width, form of characters, contrast, and illumination

Readability:

- ability to recognize information content of material when represented by alphanumeric characters, words, sentences (i.e. meaningfulness)
- depends more on spacing between lines and letters, margins, etc. than on specific features of characters
- watch this video about legibility
 and readability:
 https://youtu.be/74sZJ4b0 Lc

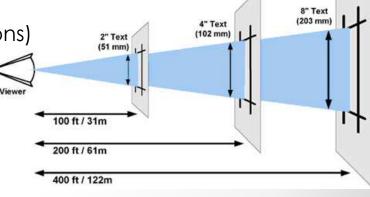
Good legibility

Poor Readability. Less comfortable to read.

> Good readability. More comfortable to read.

Alphanumeric Displays: Typography

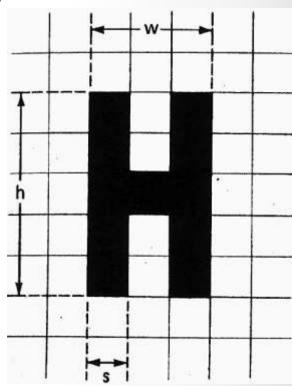
Typography:


- various features of alphanumeric displays
- "art of arranging letters and text to make written language legible, readable, and appealing"
- Circumstances when it is important to use preferred (i.e. optimum) forms of typography:

- information is important/critical
 (e.g. emergency labels, important instructions)
- o viewing occurs at a distance
- o displays for **low vision** people
- o note, above points must also still satisfy all conditions mentioned in last 2 slides
- when faced with ≥ 1 of these conditions, the following typography features must be considered (<u>next slide</u>):

A-N Displays: Typography Features

A. Hardcopy


- 1. Stroke Width
- 2. Width-height Ratio
- 3. Styles of Type
- 4. Size of Characters
 - a) at Reading Distance
 - b) at a Distance
- 5. Layout of Characters

B. VDT Screens

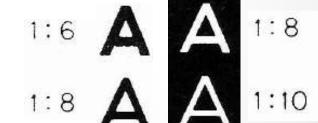
- 6. Illuminated Alphanumeric Characters
- 7. Character Distance and Size

A-N Displays: 1. Stroke Width

- Stroke width-to-height ratio
 - Defn: ratio of the thickness of the stroke (s) to the height (h) of the letter/number (we will call it "stroke ratio" for short)
- Example (right):
 - o stroke width-to-height ratio: 1:5 = 0.2
 - o note, width-to-height ratio: 3:5 = 0.6
- Stroke width is affected by:
 - o background:
 - black on white or
 - white on black
 - illumination

FIGURE 4-6

Dimensions used to compute stroke width-to-height and width-to-height ratios. Ratios can also be expressed as a proportion, e.g., 1:10 = 0.10. The letter shown has a stroke width-to-height ratio of 1:5 (0.20) and a width-to-height ratio of 3:5 (0.60).


A-N Displays: 1. Stroke Width (Cont.)

Irradiation:

- causes white features on a black background to appear to 'spread' into adjacent dark areas (see below)
- o but reverse (**black on white**) isn't true (i.e. no spread)

thus, black-on-white letters should be thicker,
 i.e. lower ratios than white-on-black letters

• 10

A-N Displays: 1. Stroke Width (Cont.)

- Some generalizations (good contrast) [Heglin, 1973]:
 - o with good illumination, use stroke ratios:
 - black on white: 1:6 to 1:8
 - white on black: 1:8 to 1:10

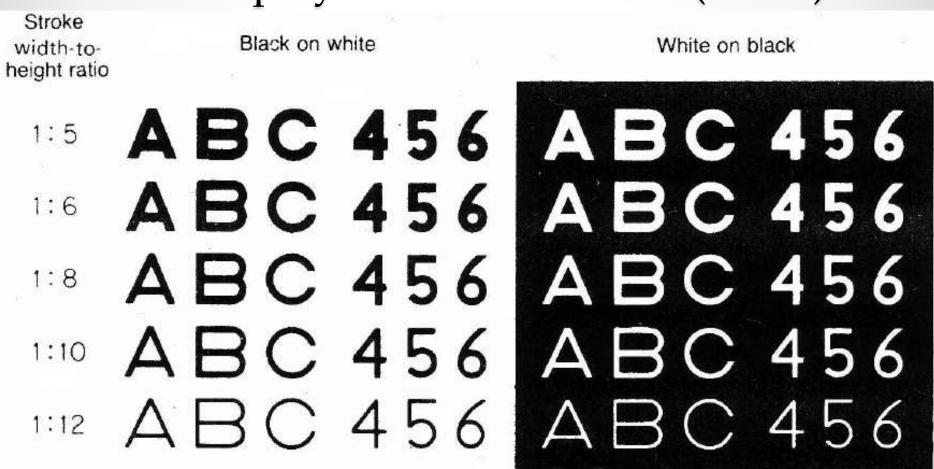
1:6

1:8

- o with reduced illumination:
 - thick letters become more readable (both types above)
 - letters should be: boldface with low stroke ratios (e.g. 1:5)

1:6

1:5


For highly luminous letters, ratios: 1:12 to 1:20

- For black letters on a very highly luminous background, very thick strokes are needed
- o Summary: <u>next slide</u>

A-N Displays: 1. Stroke Width (Cont.)

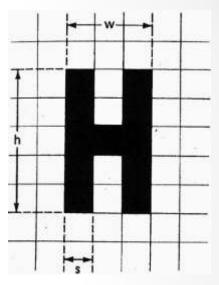


FIGURE 4-7

Illustrations of stroke width-to-height ratios of letters and numerals. With reasonably good illumination, the following ratios are satisfactory for printed material: black on white, 1:6 to 1:8; and white on black, 1:8 to 1:10.

A-N Displays: 2. Width-height ratio Width-to-height (aka width-height) ratio:

- - relationship between width (w) and height (h) of alphanumeric character 0
 - expressed as ratio (e.g. 3:5 = 0.6) 0
 - e.g. **B**: width-height ratio = 3:5
 - 3 vertical strokes (or layers/elements)
 - 5 horizontal strokes
 - most letters can be expressed with ratio 3:5 0
 - Heglin [1973]: 0
 - disagrees with fixed ratio for all letters
 - instead, adjust width to basic geometric forms
 - e.g. for O: perfect circle ("Century Gothic" font), i.e. stroke ratio = 1:1
 - e.g. for A and V: equilateral triangles
 - wider letters: appropriate certain circumstances e.g. engraved legends
 - such cases: 1:1 ratios are more appropriate next slide

A-N Displays: 2. Width-height (Cont.) Cont. width-height ratio:

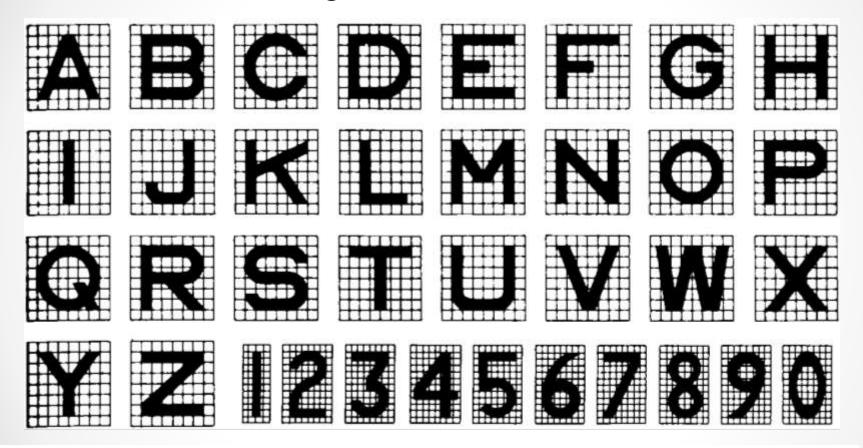


FIGURE 4-8

Letter and numeral font of United States Military Specification no. MIL-M-18012B (July 20, 1964); also referred to as NAMEL (Navy Aeronautical Medical Equipment Laboratory) or AMEL. The letters as shown have a width-height ratio of 1:1 (except for I, J, L, and W). The numerals have a width-height ratio of 3:5 (except 1 and 4).

A-N Displays: 3. Styles of Type

Styles of type (aka typefaces, fonts):

- > 30,000 exist!
- 4 major classes (each including many types):
 - I. Roman: most common class; letters have serifs (little flourishes, embellishments) e.g. Times, Garamond
 - II. Sans serif (aka Gothic): uniform stroke width; e.g. Calibri, Arial);
 - III. Script: simulate modern handwriting, (eg wedding cards);

- 90. Block Letter: resembles German manuscript handwriting used in the 15th century watch following video on origins of typeface:
 - http://youtu.be/GUCcObwlsOs

SERIF

A-N Displays: 3. Styles of Type (Cont.)

Roman:

 most used styles for conventional text (e.g. Times New Roman since 1931)

Italics:

 emphasis, titles, names, special words, etc

4 NEW FACE

Morison Morison imes for phically s supery Victor departan older design, conomy or newswspaper The Times of London debuted the new typeface, & after one year the design was released for commercial sale. The *Linotype* version, called simply "Times," was optimized for line-casting technology, though the differences in the basic design are subtle. The typeface was *very* successful for the Times of London, which used a *higher grade of newsprint than most newspapers*. The better, whiter paper enhanced the new typeface's high degree of **contrast** and sharp serifs, and created a sparkling, modern look. In 1972, Walter Tracy designed TIMES EUROPA for The Times of

bold, lower-case "a"

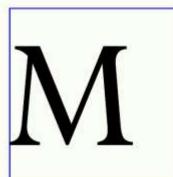
Boldface:

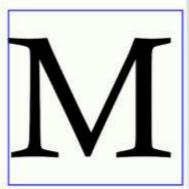
- headings, labels, special emphasis
- to aid legibility in <u>poor reading conditions</u>

Normal **Bold** *Italic* **Bold italic**

• <u>Type style</u> shown:

- o consists of uppercase letters, numbers
- used words and abbreviations in labels
- it is a non-standard font





A-N Displays: 4. Character Size

Size

- important to measure size of typeface 0 in printing business
- measured in points 0
- 1 point (pt.) = 1/72 in. = 0.0139 in. (0.35 mm) \bigcirc
- note, point size refers to the height/size 0 of the font (not the height of the letter)
- it is also called "slug", or "em" size 0
- em size: defined as the width 0 of the capital 'M'

Width of a capital 'M' is less than an 'em' wide

- each box is one em square
- M on the left is in Perpetua (relatively narrow characters)
- M the one on the right is in Calisto (relatively wide characters)

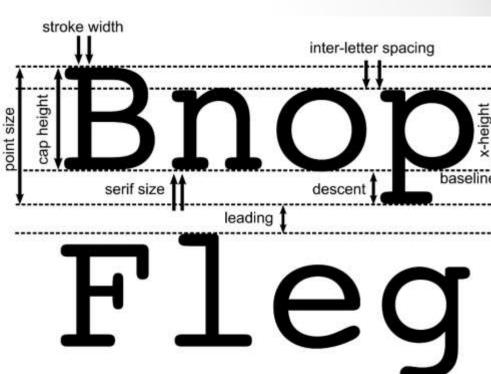
Source: The point of point sizes Philip Rothman (2022)

Academico

Century Schoolbook Helvetica

Palatino

Times New Roman (all have the same point size)


Minion Pro

Cailbri

A-N Displays: 4. Character Size

- Size (cont.)
 - height of the "slug" on 0 which the type is set includes:
 - tail of the letter, e.g. "a" (called descender)
 - top of letter, e.g. "h" (called ascender) space between lines of text

 - capital letters
 - so pt. size is not a good 0 approximation of letter size
 - authors (Sanders/McCormick) 0 suggest to unify pt. size by using height of capital letters as alternative approximation to letter size:
 - 1 pt = 1/100 in. = 0.01 in. (0.25 mm)

A-N Displays: 4. Character Size

- Size (cont.)
 - e.g. letter size, with slug size, heights of cap. letters (in.):

```
    This line is set in 4-pt type (slug = 0.055; letters = 0.04).
    This line is set in 6-pt type (slug = 0.084; letters = 0.06).
```

- This line is set in 8-pt type (slug = 0.111; letters = 0.08).
- This line is set in 9-pt type (slug = 0.125; letters = 0.09).
- This line is set in 10-pt type (slug = 0.139; letters = 0.10).
- This line is set in 11-pt type (slug = 0.153; letters = 0.11).
- This line is set in 12-pt type (slug = 0.167; letters = 0.12).
- This line is set in 14-pt type (slug = 0.194; letters = 0.14).
- This line is set in 16-pt type (slug = 0.222; letters = 0.16).
- This line is set in 18-pt type (slug = 0.25; letters = 0.18).
- This line is set in 22-pt type (slug = 0.306; letters = 0.22).
- This line is set in 30-pt type (slug = 0.417; letters = 0.30).
- This line is set in 40-pt type (slug = 0.555; letters = 0.40).

A-N Displays: 4. Character Size (Cont.) a) For Close-Up Reading:

- normal reading distance (e.g. book)
 - 12 16 in. (30.5 40.6 cm)
 - 14 in. (35.5 cm): nominal reading distance

$$VA \text{ (minutes)} = \frac{3438 \cdot H}{D}$$

- type size in most printed material
 - from 7 to 14 pt.
 - most common (e.g. newspapers): 9 to 11 pt.
 - i.e. letters = 0.09 0.11 in.

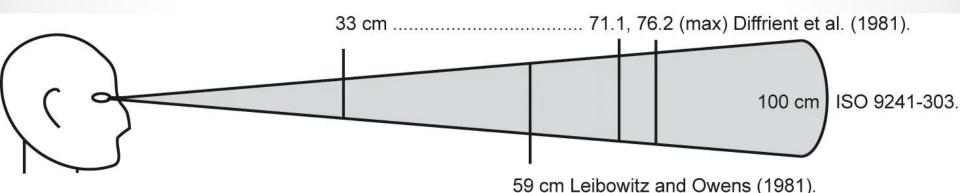
(2.3 - 2.8 mm)

VA = 22 - 27 min

TABLE 4-2

ONE SET OF RECOMMENDED HEIGHTS OF ALPHANUMERIC CHARACTERS FOR CRITICAL AND NONCRITICAL USES UNDER LOW AND HIGH ILLUMINATION AT 28 IN VIEWING DISTANCE

- character heights should be increased:
 - poor illumination
 - critical use
 - characters can change (see table)


	Height of numerals and letters*			
	Low luminance (down to 0.03 fL)	High luminance (1.0 fL and above)		
Critical use, position variable	0.20-0.30 in (5.1-7.6 mm)	0.12-0.20 in (3.0-5.1 mm)		
Critical use, position fixed	0.15-0.30 in	0.10-0.20 in		
	(3.8–7.5 mm)	(2.5–5.1 mm)		
Noncritical use	0.05-0.20	0.05-0.20		
	(1.27-5.1 mm)	(1.27-5.1 mm)		

For other viewing distances (D), in inches, multiply tabled values by D/28.
 Source: Adapted from Heglin (1973) and Woodson (1963).

A-N Displays: 4. Character Size (Cont.) b) For Distance Reading:

- readability and legibility of alphanumeric characters are equal at various distances, provided that:
 - as viewing distance increases ⇒
 - characters size increases (and vice versa), and
 - VA subtended at the eye stays the same

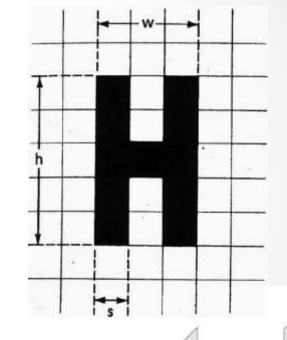
$$VA \text{ (minutes)} = \frac{3438 \cdot H}{D}$$

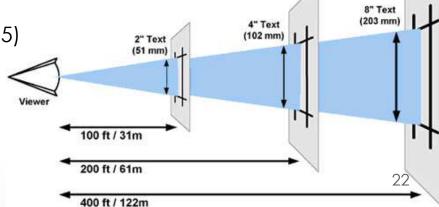
Recommended reading distances (different studies):

- For reading displays: Diffrient et al. [1981] suggest: 33 71.1 cm (with absolute max. of 76.2 cm)
- Van Cott and Kincade [1972] also suggest 71 cm (as this is a reachable arm length)
- Leibowitz and Owens [1975]: a good reading distance is about 59 cm as the resting state of the eyes

Source: Normark, Gärling (2015)

•21


A-N Displays: 4. Character Size (Cont.) b) For Distance Reading (cont.):


o formula [Howett, 1983]: for finding stroke width/height of letters as

function of distance and Snellen visual acuity:

$$W_s = 1.45 * 10^{-5} * S * d$$

 $H_L = W_s/R$

- \circ W_s , d, H_L must be in same units (mm, in.)
- o W_s: stroke width
- S: denom. of Snellen visual acuity (e.g. acuity = $20/40 \Rightarrow S = 40$)
- o d: reading distance
- \circ H_L : letter height
- o R: stroke width-to-height ratio of font (e.g. R = 0.20 for ratio: 1:5)

A-N Displays: 4. Character Size (Cont.) b) For Distance Reading (cont.):

- o for low illumination, low contrast ⇒ use large letters
- o design signs for people with Snellen acuity at best: 20/40 (see below)
- o table below shows how to use this formula
 - to find recommended letter height, H_L

 $W_{\rm S}$ = 1.45 * 10⁻⁵ * S* d

for various stroke width-to-height ratios, R

 $H_L = W_s/R$

- at various distances, d (in., ft.)
- using a Snellen acuity score, S of 20/40

TABLE 4-3

RECOMMENDED LETTER HEIGHTS (IN INCHES) FOR VARIOUS STROKE WIDTH-TO-HEIGHT RATIOS AT VARIOUS DISTANCES*

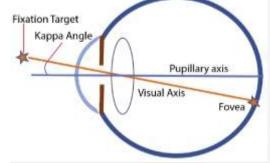
Stroke width- to-height ratio	28 in 10 ft		Distance 20 ft	100 ft	1000 ft
		10 ft			
1:6 A	0.097	0.418	0.835	4.175	41.75
1:8	0.130	0.557	1.114	5.570	55.70
1:10 △	0.162	0.696	1.392	6.960	69.60

^{*} Letter heights computed using formulas presented in the text and assuming a Snellen acuity score of 20/40.

A-N Displays: 5. Layout of Characters

- Previous discussion: design of characters
- Layout of characters can influence reading:
 - o Interletter Spacing:
 - i.e. how "tight" are letters packed (i.e. density)
 - study by Moriarty [1984]: high-density (close-set) letters were read faster than regular-spaced letters (see figure below)
 - reason: more characters viewable in quality visual field (i.e. fovea) at each fixation

FIGURE 4-9


Portions of an advertising brochure used in a study of reading speed of regularly spaced types and of close-set (high-density) type. The close-set type was read more rapidly.

Regular spacing of text type (regular density)

The ESS Performance Series is both a choice and a statement. The choice is to continue ESS's long tradition of excellence by trimming costs without

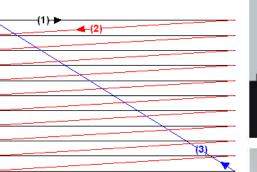
Close-set text type (high density)

The ESS Performance Senes is both a choice and a statement. The choice is to continue ESS's long tradition of excellence by trimming costs without sacrificing performance and by omitting

A-N Displays: 5. Layout of Characters Layout of characters influences reading (cont.):

- - Interline Spacing:
 - more spacing ⇒ increased text clarity
 - less spacing ⇒ eye strain, headache
 - see examples below

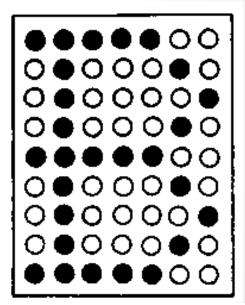
The interline spaces are too small between some of the lines. Why so? This is the continuation of the text.


A-N Displays: 6. Illuminated AN Characters

- Characfers also presented on
 - VDT (visual display terminal), aka:
 - VDU (visual display unit, i.e. computer screen)

Characters on VDT

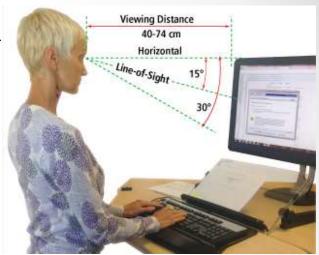
- o readable: 20-30% slower than on hardcopy (several studies)
- o reason:
 - dot-matrix VDT: composed of 1000's of pixels "picture elements" (1960's)
 - horizontal line of pixels form "raster scan" or scan lines
 - pixels are lit (i.e. turned "on" and "off") to form images
 - e.g. 640 * 480 VDT screen: 480 lines by 640 pixels
 - higher "resolution" (e.g. 1920 *1080) ⇒
 more pixels per image ⇒
 less difference between reading from VDT vs. hardcopy
 - lower resolution (or old VDT): poor accommodation



A-N Displays: 6. Illuminated AN Characters

- Dot-Mafrix displays:
 - o characters made up of a matrix of pixels
 - o individual character: matrix 5 * 7 (i.e. 5 columns * 7 rows) to 15 * 24
 - o see e.g. below: 7 * 9 dot matrix letter 'B'
 - o note, ALL letters/numbers can be created on this formation of dots
 - 7 * 9: minimum size for reading continuous text
 - o smaller matrices (e.g. 5 * 7):
 - individual matrix pixels are visible
 - ⇒ reading is affected
 - larger matrices:
 - individual pixels: not distinct
 - ⇒ performance improves

7 X 9 dot matrix

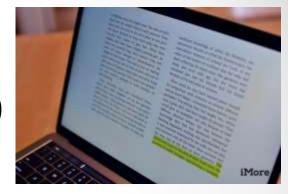

FIGURE 4-10

Example of a dot-matrix letter. All letters and numerals can be formed from combinations of the dots.

A-N Displays: 7. Distance & Size (VDT)

Distance

- VDT viewed normally farther than hardcopy text
- eye-to-screen distances (studies in 1980's):
 - 24 36 in. (61 to 93 cm)
 - mean: 30 in. (76 cm)
- ANSI standard (1988):
 viewing monitor in an upright position,
 - screen should be placed at about distance:
 18 20 in. (45 to 50 cm)
 - and since people don't usually sit in an upright posture,
 we will take nominal VDT reading distance:
 20 in. (50 cm):
 - compare this with nominal reading distance for hardcopy



28

A-N Displays: 7. Distance & Size (VDT)

Size

- o at 20 in. nominal reading distance (several studies):
 - recommended minimum
 subtended VA = 11 12 min. of arc
 - \Rightarrow character height = 0.06 0.07 in. (1.5 to 1.8 mm)
 - this is smaller than for hardcopy (0.09 0.11 in.)

- ANSI (1988): size for high legibility reading for capital letter (@ 20 in.):
 - minimum VA: 16 min. ⇒ height = 0.09 in. (2.3 mm)
 - preferred VA: **20 22 min.** \Rightarrow VA (minutes) = $\frac{3438 \cdot H}{D}$ note, these are closer to <u>hardcopy</u> reading heights
 - maximum VA: 24 min. ⇒ 0.14 in. (3.6 mm)
 - o this is threshold height for comfortable reading
 - o reason: when character size increases

 ⇒ more <u>foveal fixation</u> is required
 - ⇒ more fixations are required to read a sentence

References

- Human Capabilities Vision
 - Human Factors in Engineering and Design. Mark
 S. Sanders, Ernest J. McCormick. 7th Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3.