King Saud University

College of Engineering

IE – 341: "Human Factors Engineering"

Spring – 2024 (2nd Sem. 1445H)

Human Capabilities Part – A. Vision (Chapter 4) Part 2 (a): Alphanumeric Displays Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview: Vision

Part 1:

- Process of Seeing (Vision)
- Visual Capabilities
 - Accommodation
 - Visual Acuity
 - Convergence
 - Color Discrimination
 - Adaptation
 - Perception

Factors Affecting Visual Discrimination

- Luminance Level
- Contrast
- o Exposure Time
- Target Motion
- o Age
- o Training

Cont. Lesson Overview: Vision

Part 2 (this part):

- <u>Alphanumeric Displays</u>
 - Characteristics
 - o Typography
 - Typography Features
 - <u>Hardcopy</u>
 - Visual Display Terminals (VDT)
- Graphic Representations
- <u>Symbols</u>
- <u>Codes</u>

Alphanumeric Displays

Alphanumeric Displays

Most important characteristics:

Visibility:

 quality of the character that makes it separately visible from its surroundings (i.e. detectability)

- Brinton charts 14 degrees of visibility [Brinton, 1939]
- most legible: black type on a yellow background
- least legible (most offensive): blue type on red

Alphanumeric Displays

Most important characteristics:

Legibility:

- attribute that makes a character identifiable from others (i.e. **discriminability**)
- depends on stroke width, form of characters, contrast, and illumination

Readability:

- ability to recognize information content of material when represented by alphanumeric characters, words, sentences (i.e. meaningfulness)
- depends more on spacing between lines and letters, margins, etc. than on specific features of characters
- watch this video about legibility and readability:

https://youtu.be/74sZJ4b0_Lc

Good legibility

Poor Readability. Less comfortable to read.

> Good readability. More comfortable to read.

Alphanumeric Displays: Typography Typography:

- various features of alphanumeric displays
- "art of arranging letters and text to make written language legible, readable, and appealing"
- Circumstances when it is important to use preferred (i.e. optimum) forms of typography:
 - viewing conditions are unfavorable (e.g. poor illumination, limited viewing time)
 - information is important/critical (e.g. emergency labels, important instructions)
 - viewing occurs at a distance

•

- o displays for **low vision** people
- note, above points must also still satisfy all conditions mentioned in <u>last 2 slides</u>
- when faced with ≥ 1 of these conditions, the following typography features must be considered (<u>next slide</u>):

• 7

A-N Displays: Typography Features

- A. Hardcopy
 - 1. Stroke Width
 - 2. Width-height Ratio
 - 3. Styles of Type
 - 4. <u>Size of Characters</u>
 - a) at Reading Distance
 - b) at a Distance
 - 5. Layout of Characters
- B. VDT Screens
 - 6. Illuminated Alphanumeric Characters
 - 7. Character Distance and Size

A-N Displays: 1. Stroke Width

- Stroke width-to-height ratio
 - Defⁿ: ratio of the thickness of the stroke (s) to the height (h) of the letter/number (we will call it "stroke ratio" for short)
- Example (right):
 - stroke width-to-height ratio: 1:5 = 0.2
 - o note, width-to-height ratio: 3:5 = 0.6
- Stroke width is affected by:
 - o background:
 - black on white or
 - white on black
 - o illumination

FIGURE 4-6

Dimensions used to compute stroke width-to-height and widthto-height ratios. Ratios can also be expressed as a proportion, e.g., 1:10 = 0.10. The letter shown has a stroke width-toheight ratio of 1:5 (0.20) and a width-to-height ratio of 3:5 (0.60).

A-N Displays: 1. Stroke Width (Cont.)

- causes white features on a black background to appear to 'spread' into adjacent dark areas (see below)
- o but reverse (**black on white**) isn't true (i.e. no spread)

• thus, black-on-white letters should be thicker, i.e. lower ratios than white-on-black letters

•

A-N Displays: 1. Stroke Width (Cont.) Some generalizations (good contrast) [Heglin, 1973]:

- with good illumination, use stroke ratios: 0
 - black on white: 1:6 to 1:8 •
 - white on black: 1:8 to 1:10
- with reduced illumination: 0
 - thick letters become more readable (both types above) ٠
 - letters should be: **boldface** with low stroke ratios (e.g. 1:5) ٠

- For highly luminous letters, ratios: 1:12 to 1:20 Ο
- For black letters on a Ο very highly luminous background, very thick strokes are needed
- Summary: <u>next slide</u> Ο

1:6

1:6

1:8 🛆

1:5

1:8

1:10

A-N Displays: 1. Stroke Width (Cont.)

Stroke width-toheight ratio

Black on white

White on black

FIGURE 4-7

Illustrations of stroke width-to-height ratios of letters and numerals. With reasonably good illumination, the following ratios are satisfactory for printed material: black on white, 1:6 to 1:8; and white on black, 1:8 to 1:10.

A-N Displays: 2. Width-height ratio Width-to-height (aka width-height) ratio:

- relationship between width (w) and height (h) of alphanumeric character
- \circ expressed as ratio (e.g. 3:5 = 0.6)
- e.g. **B**: width-height ratio = 3:5
 - 3 vertical strokes (or layers/elements)
 - 5 horizontal strokes
- most letters can be expressed with ratio 3:5
- Heglin [1973]:

•

- disagrees with fixed ratio for all letters
- instead, adjust width to basic geometric forms
- e.g. for O: perfect circle ("Century Gothic" font),
 i.e. stroke ratio = 1:1
- e.g. for A and V: equilateral triangles
- wider letters: appropriate certain circumstances e.g. engraved legends
- such cases: 1:1 ratios are more appropriate (next slide)

A-N Displays: 2. Width-height (Cont.) Cont. width-height ratio:

FIGURE 4-8

•

Letter and numeral font of United States Military Specification no. MIL-M-18012B (July 20, 1964); also referred to as NAMEL (Navy Aeronautical Medical Equipment Laboratory) or AMEL. The letters as shown have a width-height ratio of 1:1 (except for I, J, L, and W). The numerals have a width-height ratio of 3:5 (except 1 and 4).

A-N Displays: 3. Styles of Type Styles of type (aka typefaces, fonts): SERIF > 30,000 exist! 4 major classes (each including many types): **Roman**: most common class; letters have serifs (little flourishes, embellishments) SANS SERIF e.g. Times, Garamond 11. **Sans serif** (aka Gothic): uniform stroke width; e.g. Calibri, Arial); III. Script: simulate berminte Und die Cron des lebes burch bich emphabe Amer. modern handwriting, (eg wedding cards); cichfet mib print perstelien 5566 Block Letter: resembles German manuscript SV. bem binunel aro Chreef licha Choe handwriting used in the 15th century " bir beimblircheit ber fethat an ben & inbern has britte und pier bie ghiebt jund watch following video on origins of typeface:

that Barmber Biakit annet

0

http://youtu.be/GUCcObwlsOs

0

0

I.

A-N Displays: 3. Styles of Type (Cont.)

Roman: •

most used styles for 0 conventional text (e.g. Times New Roman since 1931)

Italics: •

emphasis, titles, names, Ο special words, etc

Boldface:

- headings, labels, special emphasis Ο
- to aid legibility in poor reading conditions 0

Type style shown:

- consists of uppercase letters, numbers Ο
- used words and abbreviations in labels Ο
- it is a non-standard font Ο

The Times of London debuted the new typeissioned Morison face, & after one year the design was released Morison for commercial sale. The Linotype version, imes for called simply "Times," was optimized for line-casting technology, though the differphically s superences in the basic design are subtle. The typey Victor face was very successful for the Times of London, which used a higher grade of newsdepartan older print than most newspapers. The better, whiter paper enhanced the new typeface's high degree design, of contrast and sharp serifs, and created a conomy sparkling, modern look. In 1972, Walter Tracy or newsdesigned TIMES EUROPA for The Times of wspaper

Monday, Octobe.

bold, lower-case "a"

Normal Bold Italic **Bold italic**

A-N Displays: 4. Character Size

• Size

- important to measure size of typeface in printing business
- o measured in points
- 1 point (pt.) = 1/72 in. = 0.0139 in. (0.35 mm)
- note, point size refers to the height/size of the font (not the height of the letter)
- it is also called "slug", or "em" size
- em size: defined as the width of the capital 'M'

Width of a capital 'M' is less than an 'em' wide

- each box is one em square
- M on the left is in Perpetua (relatively narrow characters)
- M the one on the right is in Calisto (relatively wide characters)

Source: <u>The point of point sizes</u> Philip Rothman (2022)

A-N Displays: 4. Character Size

Size (cont.) lacksquare

- height of the "slug" on Ο which the type is set includes:
 - tail of the letter, e.g. "q" (called descender)
 - top of letter, e.g. "h"
 - (called ascender) space between lines of text of
 - capital letters
- so pt. size is not a good 0 approximation of letter size
- authors (Sanders/McCormick) 0 suggest to unify pt. size by using height of capital letters as alternative approximation to letter size:
 - 1 pt = 1/100 in. = 0.01 in. (0.25 mm)

A-N Displays: 4. Character Size Size (cont.)

o e.g. letter size, with slug size, heights of cap. letters (in.):

٠

- This line is set in 6-pt type (slug = 0.084; letters = 0.06).
- This line is set in 8-pt type (slug = 0.111; letters = 0.08).
- This line is set in 9-pt type (slug = 0.125; letters = 0.09).
- This line is set in 10-pt type (slug = 0.139; letters = 0.10).
- This line is set in 11-pt type (slug = 0.153; letters = 0.11).
- This line is set in 12-pt type (slug = 0.167; letters = 0.12).
- This line is set in 14-pt type (slug = 0.194; letters = 0.14).
- This line is set in 16-pt type (slug = 0.222; letters = 0.16).
- This line is set in 18-pt type (slug = 0.25; letters = 0.18).
- This line is set in 22-pt type (slug = 0.306; letters = 0.22).
- This line is set in 30-pt type (slug = 0.417; letters = 0.30).
- This line is set in 40-pt type (slug = 0.555; letters = 0.40).

This line is set in 4-pt type (slug = 0.055; letters = 0.04).

A-N Displays: 4. Character Size (Cont.) a) For Close-Up Reading:

- normal reading distance (e.g. book) 0
 - 12 16 in. (30.5 40.6 cm)٠
 - 14 in. (35.5 cm): nominal reading distance •
- type size in most printed material Ο
 - from 7 to 14 pt. ٠
 - most common (e.g. newspapers): 9 to 11 pt. ٠
 - i.e. letters = 0.09 0.11 in. ٠

TABLE 4-2

VA = 22 - 27 min

(2.3 - 2.8 mm);

ONE SET OF RECOMMENDED HEIGHTS OF ALPHANUMERIC CHARACTERS FOR CRITICAL AND NONCRITICAL USES UNDER LOW AND HIGH ILLUMINATION AT 28 IN VIEWING DISTANCE

VA (minutes) = $\frac{3438 \cdot H}{D}$

- character heights Ο should be increased:
 - poor illumination
 - critical use ٠
 - characters can • change (see table)

	Height of numerals and letters*		
	Low luminance (down to 0.03 fL)	High luminance (1.0 fL and above)	
Critical use, position variable	0.20-0.30 in (5.1-7.6 mm)	0.12-0.20 in (3.0-5.1 mm)	
Critical use, position fixed	0.15-0.30 in (3.8-7.5 mm)	0.10-0.20 in (2.5-5.1 mm)	
Noncritical use	0.05-0.20 (1.27-5.1 mm)	0.05-0.20 (1.27-5.1 mm)	

* For other viewing distances (D), in inches, multiply tabled values by D/28. Source: Adapted from Heglin (1973) and Woodson (1963).

A-N Displays: 4. Character Size (Cont.) b) For Distance Reading:

- readability and legibility of alphanumeric characters are equal at various distances, provided that:
 - as viewing distance increases ⇒
 - characters size increases (and vice versa), and
 - VA subtended at the eye stays the same

Recommended reading distances (different studies):

- For reading displays: *Diffrient* et al. [1981] suggest: 33 71.1 cm (with absolute max. of 76.2 cm)
- Van Cott and Kincade [1972] also suggest 71 cm (as this is a reachable arm length)
- Leibowitz and Owens [1975]: a good reading distance is about 59 cm as the resting state of the eyes

Source: Normark, Gärling (2015)

VA (minutes) = $\frac{3438 \cdot H}{P}$

A-N Displays: 4. Character Size (Cont.) b) For Distance Reading (cont.):

 formula [Howett, 1983]: for finding stroke width/height of letters as function of distance and Snellen visual acuity:

 $W_s = 1.45 * 10^{-5} * S * d$ $H_L = W_s/R$

- W_{s} , d, H_{L} must be in same units (mm, in.)
- \circ $W_{\rm s}$: stroke width
- S: denom. of Snellen visual acuity (e.g. acuity = $20/40 \Rightarrow S = 40$)
- o d: reading distance
- H_L : letter height
- R: stroke width-to-height ratio
 of font (e.g. R = 0.20 for ratio: 1:5)

A-N Displays: 4. Character Size (Cont.) b) For Distance Reading (cont.):

- o for low illumination, low contrast \Rightarrow use large letters
- design signs for people with Snellen acuity at best: 20/40 (see below)
- o table below shows how to use this formula
 - to find recommended letter height, H_L
 - for various stroke width-to-height ratios, R
 - at various distances, d (in., ft.)
 - using a Snellen acuity score, S of 20/40

$$W_s = 1.45 * 10^{-5} * S * d$$

 $H_L = W_s / R$

TABLE 4-3

RECOMMENDED LETTER HEIGHTS (IN INCHES) FOR VARIOUS STROKE WIDTH-TO-HEIGHT RATIOS AT VARIOUS DISTANCES*

			Distance		
Stroke width- to-height ratio	28 in	10 ft	20 ft	100 ft	1000 ft
1:6 🗛	0.097	0.418	0.835	4.175	41.75
1:8 🗛	0.130	0.557	1.114	5.570	55.70
1:10 A	0.162	0.696	1.392	6.960	69.60
24 BBM					

* Letter heights computed using formulas presented in the text and assuming a Snellen acuity score of 20/40.

A-N Displays: 5. Layout of Characters

- Previous discussion: design of characters
- Layout of characters can influence reading:
 - Interletter Spacing:
 - i.e. how "<u>tight</u>" are letters packed (i.e. density)
 - study by Moriarty [1984] : high-density (close-set) letters were read faster than regular-spaced letters (see figure below)
 - reason: more characters viewable in quality visual field (i.e. fovea) at each fixation

FIGURE 4-9

Portions of an advertising brochure used in a study of reading speed of regularly spaced types and of close-set (high-density) type. The close-set type was read more rapidly.

Regular spacing of text type (regular density)

The ESS Performance Series is both a choice and a statement. The choice is to continue ESS's long tradition of excellence by trimming costs without

Close-set text type (high density)

The ESS Performance Series is both a choice and a statement. The choice is to continue ESS's long tradition of excellence by trimming costs without sacrificing performance and by omitting

A-N Displays: 5. Layout of Characters Layout of characters influences reading (cont.):

- - Interline Spacing: 0
 - more spacing \Rightarrow increased text clarity ٠
 - less spacing \Rightarrow eye strain, headache
 - see examples below

The interline spaces are too small between some of the lines. Why so? This is the contin-uation of the text.

Lorem ipsum sit amet elit

Lorem ipsum a

A-N Displays: 6. Illuminated AN Characters

- Characters also presented on
 - VDT (visual display terminal), aka:
 - VDU (visual display unit, i.e. computer screen)
- Characters on VDT
 - readable: 20-30% slower than on hardcopy (several studies)
 - o reason:
 - dot-matrix VDT: composed of 1000's of pixels "picture elements" (1960's)
 - horizontal line of pixels form "raster scan" or scan lines
 - pixels are lit (i.e. turned "on" and "off") to form images
 - e.g. 640 * 480 VDT screen: 480 lines by 640 pixels
 - higher "resolution" (e.g. 1920 *1080) ⇒ more pixels per image ⇒ less difference between reading from VDT vs. hardcopy
 - lower resolution (or old VDT): poor accommodation

A-N Displays: 6. Illuminated AN Characters

- Dot-Mafrix displays:
 - o characters made up of a matrix of pixels
 - individual character: matrix 5 * 7 (i.e. 5 columns * 7 rows) to 15 * 24
 - see e.g. below: 7 * 9 dot matrix letter 'B'
 - o note, ALL letters/numbers can be created on this formation of dots
 - 7 * 9: minimum size for reading continuous text
 - smaller matrices (e.g. 5 * 7):
 - individual matrix pixels are visible
 - \Rightarrow reading is affected
 - larger matrices:
 - individual pixels: not distinct
 - ⇒ performance improves

FIGURE 4-10

Example of a dot-matrix letter. All letters and numerals can be formed from combinations of the dots.

7 X 9 dot matrix

A-N Displays: 7. Distance & Size (VDT)

- VDT viewed normally farther than hardcopy text
- eye-to-screen distances (studies in 1980's):
 - 24 36 in. (61 to 93 cm)
 - mean: 30 in. (76 cm)
- ANSI standard (1988): viewing monitor in an upright position,
 - screen should be placed at about distance: 18 – 20 in. (45 to 50 cm)
 - and since people don't usually sit in an upright posture, we will take nominal VDT reading distance: 20 in. (50 cm):
 - compare this with
 <u>nominal reading distance for hardcopy</u>

A-N Displays: 7. Distance & Size (VDT) Size

- at 20 in. nominal reading distance (several studies):
 - recommended minimum subtended VA = 11 – 12 min. of arc
 - \Rightarrow character height = 0.06 0.07 in. (1.5 to 1.8 mm)
 - this is smaller than for <u>hardcopy</u> (0.09 0.11 in.)

- ANSI (1988): size for high legibility reading for capital letter (@ 20 in.) :
 - minimum VA: 16 min. \Rightarrow height = 0.09 in. (2.3 mm)
 - preferred VA: 20 22 min. \Rightarrow VA (minutes) = $\frac{3438 \cdot H}{D}$ 0.116 – 0.128 in. (2.9 – 3.3 mm) note, these are closer to hardcopy reading heights
 - maximum VA: 24 min. ⇒ 0.14 in. (3.6 mm)
 - this is threshold height for comfortable reading
 - o reason: when character size increases
 ⇒ more foveal fixation is required
 ⇒ more fixations are required to read a sent
 - \Rightarrow more fixations are required to read a sentence

References Human Capabilities - Vision

 Human Factors in Engineering and Design. Mark S. Sanders, Ernest J. McCormick. 7th Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3.