King Saud University

College of Engineering

IE - 341: "Human Factors Engineering"

$$
\text { Spring - } 2024\left(2^{\text {nd }} \text { Sem. } 1445 \mathrm{H}\right)
$$

Human Capabilities
Part - A. Vision (Chapter 4)
Part 2 (a): Alphanumeric Displays
Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview: Vision

Part 1:

- Process of Seeing (Vision)
- Visual Capabilities
- Accommodation
- Visual Acuity
- Convergence
- Color Discrimination
- Adaptation
- Perception
- Factors Affecting Visual Discrimination
- Luminance Level
- Contrast
- Exposure Time
- Target Motion
- Age
- Training

Cont. Lesson Overview: Vision

Part 2 (this part):

- Alphanumeric Displays
- Characteristics
- Typography
- Typography Features
- Hardcopy
- Visual Display Terminals (VDT)
- Graphic Representations
- Symbols
- Codes

Alphanumeric Displays

Alphanumeric Displays

Most important characteristics:

- Visibility:

O
quality of the character that makes it separately visible from its surroundings (i.e. detectability)

McDonald's
A. To the Color Blind.

VISIBILITY	1	VISIBILITY
VISIBILITY	2	VISIBILITY
VISIBILITY	3	VISIBILITY
VISIBILITY	4	VISIBILITY
VISIBILITY	5	VISIBILITY
VISIBILITY	6	VISIBILITY
VISIBILITY	7	VISIBILITY
VISIBILITY	8	VISIBILITY
VISIBILITY	9	VISIBILITY
VISIBILITY	10	VISIBILITY
VISIBILITY	11	VISIBILITY
	12	VISIBILITY
	13	VISIBILITY

- Brinton charts 14 degrees of visibility [Brinton, 1939]
- most legible: black type on a yellow background
- least legible (most offensive): blue type on red - 5

Alphanumeric Displays

Most important characteristics:

- Legibility:
- attribute that makes a character identifiable from others (i.e. discriminability)
- depends on stroke width, form of characters, contrast, and illumination

P00\% LEGIETH:TY

Good legibility

- Readability:

- ability to recognize information content of material when represented by alphanumeric characters, words, sentences (i.e. meaningfulness)
- depends more on spacing between lines and letters, margins, etc. than on specific features of characters
- watch this video about legibility and readability:
https://youtu.be/74sZJ4b0 Lc

Poor Readability. Less comfortable to read.

Good readability.
More comfortable
to read.

Alphanumeric Displays: Typography
 - Typography:

- various features of alphanumeric displays
- "art of arranging letters and text to make written language legible, readable, and appealing"

- viewing conditions are unfavorable (e.g. poor illumination, limited viewing time)

- information is important/critical

 (e.g. emergency labels, important instructions)- viewing occurs at a distance
- displays for low vision people
- note, above points must also still satisfy all conditions mentioned in last 2 slides

- when faced with ≥ 1 of these conditions, the following typography features must be considered (next slide):

A-N Displays: Typography Features

A. Hardcopy

1. Stroke Width
2. Width-height Ratio
3. Styles of Type
4. Size of Characters
a) at Reading Distance
b) at a Distance
5. Layout of Characters
B. VDT Screens
6. Illuminated Alphanumeric Characters
7. Character Distance and Size

A-N Displays: 1. Stroke Width

- Stroke width-to-height ratio
- Defn: ratio of the thickness of the stroke (s) to the height (h) of the letter/number (we will call it "stroke ratio" for short)
- Example (right):
- stroke width-to-height ratio: 1:5 $=0.2$
- note, width-to-height ratio: 3:5 $=0.6$
- Stroke width is affected by:
- background:
- black on white or
- white on black
- illumination

FIGURE 4-6
Dimensions used to compute stroke width-to-height and width-to-height ratios. Ratios can also be expressed as a proportion, e.g., $1: 10=0.10$. The letter shown has a stroke width-toheight ratio of $1: 5(0.20)$ and a width-to-height ratio of $3: 5$ (0.60).

A-N Displays: 1. Stroke Width (Cont.)

- Irradiation:
causes white features on a black background to appear to 'spread' into adjacent dark areas (see below)
- but reverse (black on white) isn't true (i.e. no spread)

置ustadion

- thus, black-on-white letters should be thicker,
i.e. lower ratios than white-on-black letters

A-N Displays: 1. Stroke Width (Cont.)

- Some generalizations (good contrast) [Heglin, 1973]:
- with good illumination, use stroke ratios:
- black on white: 1:6 to 1:8
- white on black: 1:8 to 1:10
- with reduced illumination:

- thick letters become more readable (both types above)
- letters should be: boldface with low stroke ratios (e.g. 1:5)

$$
1: 6 \Delta \Delta \Delta 1: 5
$$

- For highly luminous letters, ratios: 1:12 to 1:20

- For black letters on a very highly luminous background, very thick strokes are needed

A-N Displays: 1. Stroke Width (Cont.)

Stroke width-toheight ratio

Black on white

White on black

FIGURE 4-7

Illustrations of stroke width-to-height ratios of letters and numerals. With reasonably good illumination, the following ratios are satisfactory for printed material: black on white, 1:6 to 1:8; and white on black, 1:8 to 1:10.

A-N Displays: 2. Width-height ratio
 - Width-to-height (aka width-height) ratio:

- 3 vertical strokes (or layers/elements)
- 5 horizontal strokes
- most letters can be expressed with ratio 3:5
- Heglin [1973]:
- disagrees with fixed ratio for all letters
relationship between width (w) and height (h) of alphanumeric character expressed as ratio (e.g. 3:5 $=0.6$)
e.g. B: width-height ratio $=3: 5$
instead, adjust width to basic geometric forms
- e.g. for \bigcirc : perfect circle ("Century Gothic" font), i.e. stroke ratio = 1:1
- e.g. for A and V : equilateral triangles
- wider letters: appropriate certain circumstances e.g. engraved legends
- such cases: 1:1 ratios are more appropriate (next slide)

A-N Displays: 2. Width-height (Cont.)

- Cont. width-height ratio:

FIGURE 4-8
Letter and numeral font of United States Military Specification no. MIL-M-18012B (July 20, 1964); also referred to as NAMEL (Navy Aeronautical Medical Equipment Laboratory) or AMEL. The letters as shown have a width-height ratio of $1: 1$ (except for I, J, L, and W). The numerals have a width-height ratio of $3: 5$ (except 1 and 4).

A-N Displays: 3. Styles of Type

- Styles of type (aka typefaces, fonts):
- > 30,000 exist!
- 4 major classes (each including many types):
I. Roman: most common class; letters have serifs (little flourishes, embellishments) e.g. Times, Garamond
II. Sans serif (aka Gothic): uniform stroke width; e.g. Calibri, Arial);

JJJ. Script: simulate madern handuriting, (eg wedding cards);

90. Block Letter: resembles German manuscrip \dagger handwriting used in the $15^{\text {th }}$ century - watch following video on origins of typeface: http://youtu.be/GUCcObwlsOs

A-N Displays: 3. Styles of Type (Cont.)

- Roman:
- most used styles for conventional text (e.g. Times New Roman since 1931)
- Italics:
- emphasis, titles, names, special words, etc

4 New Face

issioned The Times of London debuted the new typeMorison face, \& after one year the design was released Morison for commercial sale. The Linotype version, imes for called simply "Times," was optimized for phically line-casting technology, though the differs super- ences in the basic design are subtle. The typey Victor face was very successful for the Times of depart- London, which used a higher grade of newsin older print than most newspapers. The better, whiter design, paper enhanced the new typeface's high degree conomy of contrast and sharp serifs, and created a or news- sparkling, modern look. In 1972, Walter Tracy wspaper designed Times Europa for The Times of

- Boldface:
- headings, labels, special emphasis
- to aid legibility in poor reading conditions

bold, lower-case " a "
n

Normal
Bold
Italic
Bold italic

- Type style shown:
- consists of uppercase letters, numbers
- used words and abbreviations in labels
- it is a non-standard font

A-N Displays: 4. Character Size

- \quad Size

- important to measure size of typeface in printing business
- measured in points
- 1 point (pt.) $=1 / 72 \mathrm{in} .=0.0139 \mathrm{in}$. (0.35 mm)
- note, point size refers to the height/size of the font (not the height of the letter)

Width of a capital ' M ' is less than an 'em' wide

- each box is one em square
- \quad m on the left is in Perpetua (relatively narrow characters)
- M the one on the right is in Calisto (relatively wide characters)
Source: The point of point sizes Philip Rothman (2022)

Academico
Century Schoolbook Helvetica
Palatino
Times New Roman Minion Pro
Cailbri (all have the same point size)

A-N Displays: 4. Character Size

- Size (cont.)
- height of the "slug" on which the type is set includes:
- tail of the letter, e.g. "q" (called descender)
- top of letter, e.g. "h" (called ascender)
- space between lines of text
- capital letters

- so pt. size is not a good approximation of letter size
authors (Sanders/McCormick) suggest to unify pt. size
by using height of capital letters

as alternative approximation
to letter size:
- $\quad \mathbf{1} \mathbf{~ p t}=\mathbf{1} / 100 \mathrm{in} .=0.01 \mathrm{in}$. $(0.25 \mathrm{~mm})$

A-N Displays: 4. Character Size

- Size (cont.)
- e.g. letter size, with slug size, heights of cap. letters (in.):

This line is set in 4 -pt type (slug $=0.055$; letters $=0.04$).
This line is set in 6 -pt type (slug $=0.084$; letters $=0.06$).

- This line is set in 8-pt type (slug $=0.111$; letters $=0.08$).
- \quad This line is set in 9 -pt type (slug $=0.125$; letters $=0.09$).
- \quad This line is set in 10 -pt type (slug $=0.139$; letters $=0.10$).
- \quad This line is set in 11-pt type (slug $=0.153$; letters $=0.11$).
- This line is set in 12-pt type (slug $=0.167$; letters $=0.12$).
- \quad This line is set in 14-pt type (slug $=0.194$; letters $=0.14$).
- \quad This line is set in 16 -pt type (slug $=0.222$; letters $=0.16$).
- \quad This line is set in 18 -pt type (slug $=0.25$; letters $=0.18$).
- \quad This line is set in 22-pt type (slug $=0.306$; letters $=0.22$).
- This line is set in 30-pt type (slug = 0.417; letters = 0.30).
- This line is set in 40-pt type
$($ slug $=0.555$; letters $=0.40)$.

A-N Displays: 4. Character Size (Cont.)
 a) For Close-Up Reading:

- normal reading distance (e.g. book)
- $\quad 12$ - 16 in. (30.5-40.6 cm)
- $\quad 14 \mathrm{in}$. $(35.5 \mathrm{~cm})$: nominal reading distance
- type size in most printed material

$$
\mathrm{VA}(\text { minutes })=\frac{3438 \cdot H}{D}
$$

- from 7 to 14 pt.
- most common (e.g. newspapers): 9 to 11 pt.
- i.e. letters $=\mathbf{0 . 0 9} \mathbf{- 0 . 1 1} \mathrm{in}$.

$$
\begin{aligned}
& (2.3-2.8 \mathrm{~mm} ; \\
& \text { VA }=\mathbf{2 2} \mathbf{- 2 7} \mathbf{~ m i n})
\end{aligned}
$$

TABLE 4-2
ONE SET OF RECOMMENDED HEIGHTS OF ALPHANUMERIC CHARACTERS FOR
CRITICAL AND NONCRITICAL USES UNDER LOW AND HIGH ILLUMINATION AT 28 IN VIEWING DISTANCE

- character heights should be increased:
- poorillumination
- critical use
- characters can change (see table)

Height of numerals and letters*

	Low luminance (down to 0.03 fL$)$	High luminance $(1.0 \mathrm{fL}$ and above)
Critical use, position variable	$0.20-0.30 \mathrm{in}$	$0.12-0.20 \mathrm{in}$
	$(5.1-7.6 \mathrm{~mm})$	$(3.0-5.1 \mathrm{~mm})$
Critical use, position fixed	$0.15-0.30 \mathrm{in}$	$0.10-0.20 \mathrm{in}$
	$(3.8-7.5 \mathrm{~mm})$	$(2.5-5.1 \mathrm{~mm})$
Noncritical use	$0.05-0.20$	$0.05-0.20$
	$(1.27-5.1 \mathrm{~mm})$	$(1.27-5.1 \mathrm{~mm})$

* For other viewing distances (D), in inches, multiply tabled values by D/28.

Source: Adapted from Heglin (1973) and Woodson (1963).

A-N Displays: 4. Character Size (Cont.)
 b) For Distance Reading:

- readability and legibility of alphanumeric characters are equal at various distances, provided that:
- as viewing distance increases \Rightarrow
- characters size increases (and vice versa), and
- VA subtended at the eye stays the same

$$
\mathrm{VA}(\text { minutes })=\frac{3438 \cdot H}{D}
$$

33 cm \qquad 71.1, 76.2 (max) Diffrient et al. (1981).

Recommended reading distances (different studies):

- For reading displays: Diffrient et al. [1981] suggest: $33-71.1 \mathrm{~cm}$ (with absolute max. of 76.2 cm)
- Van Cott and Kincade [1972] also suggest 71 cm (as this is a reachable arm length)
- Leibowitz and Owens [1975]: a good reading distance is about 59 cm as the resting state of the eyes
Source: Normark, Gärling (2015)

A-N Displays: 4. Character Size (Cont.)

b) For Distance Reading (cont.):

- formula [Howett, 1983]: for finding stroke width/height of letters as function of distance and Snellen visual acuity:
$W_{s}=1.45 * 10^{-5} * S * d$
$H_{L}=W_{s} / R$
- $\quad W_{s}, d, H_{L}$ must be in same units (mm, in.)
- W_{s} : stroke width
- \quad : denom. of Snellen visual acuity (e.g. acuity $=20 / 40 \Rightarrow S=40$)
- d: reading distance
- H_{L} : letter height
- $\quad R$: stroke width-to-height ratio of font (e.g. $R=0.20$ for ratio: 1:5)

A-N Displays: 4. Character Size (Cont.)
 b) For Distance Reading (cont.):

- for low illumination, low contrast \Rightarrow use large letters
- design signs for people with Snellen acuity at best: 20/40 (see below)
- table below shows how to use this formula
- to find recommended letter height, $H_{L} \quad W_{s}=1.45 * 10^{-5} * S^{*} d$
- for various stroke width-to-height ratios, R

$$
H_{L}=W_{S} / R
$$

- at various distances, d (in., ft.)

TABLE $\quad 4-\dot{3} \quad$ using a Snellen acuity score, S of 20/40
RECOMMENDED LETTER HEIGHTS (IN INCHES) FOR VARIOUS STROKE WIDTH-TO-HEIGHT RATIOS AT VARIOUS DISTANCES*

Distance

Stroke to-height width- ratio	28 in	10 ft	20 ft	100 ft	1000 ft
$1: 6$	\mathbf{A}	0.097	0.418	0.835	4.175
$1: 8$	A	0.130	0.557	1.114	5.570
$1: 10 \mathrm{~A}$	0.162	0.696	1.392	6.960	41.75

[^0]
A-N Displays: 5. Layout of Characters
 - Previous discussion: design of characters
 - Layout of characters can influence reading:

Interletter Spacing:

- i.e. how "tight" are letters packed (i.e. density)
- study by Moriarty [1984] : high-density (close-set) letters were read faster than regular-spaced letters (see figure below)
- reason: more characters viewable in quality visual field (i.e. fovea) at

FIGURE 4-9

 each fixationPortions of an advertising brochure used in a study of reading speed of regularly spaced types and of close-set (high-density) type. The close-set type was read more rapidly.

Regular spacing of text type (regular density)

The ESS Performance Series is both a choice and a statement. The choice is to continue ESS's long tradition of excellence by trimming costs without

Close-set text type (high density)

The ESS Performance Senes is both a choice and a statement. The choice is to continue ESS's long tradition of excellence by trimming costs without sacrificing performance and by omitting

Letterspacing

Uncomfortably narrow

Letter spacing

Comfortable (Safe zone)

Letterspacing
 wide

A-N Displays: 5. Layout of Characters

- Layout of characters influences reading (cont.):

Interline Spacing:

- more spacing \Rightarrow increased text clarity
- less spacing \Rightarrow eye strain, headache
- see examples below

The interline spaces are too small between some of the lines. Why so? This is the continuation of the text.

A-N Displays: 6. Illuminated AN Characters

- Characters also presented on
- VDT (visual display terminal), aka:
- VDU (visual display unit, i.e. computer screen)
- Characters on VDT
- readable: 20-30\% slower than on hardcopy (several studies)
- reason:
- dot-matrix VDT: composed of 1000's of pixels "picture elements" (1960's)
- horizontal line of pixels form "raster scan" or scan lines
- pixels are lit (i.e. turned "on" and "off") to form images
- e.g. 640 * 480 VDT screen: 480 lines by 640 pixels
- higher "resolution" (e.g. 1920 *1080) \Rightarrow more pixels per image \Rightarrow less difference between reading from VDT vs. hardcopy
- lower resolution (or old VDT): poor accommodation

A-N Displays: 6. Illuminated AN Characters

Dot-Matrix displays:

- characters made up of a matrix of pixels
- individual character: matrix 5 * 7 (i.e. 5 columns * 7 rows) to 15 * 24
- see e.g. below: 7 * 9 dot matrix letter 'B'
- note, ALL letters/numbers can be created on this formation of dots
- \quad smaller matrices (e.g. 5 * 7):
- individual matrix pixels are visible
- $\quad \Rightarrow$ reading is affected
- larger matrices:
- individual pixels: not distinct
- $\quad \Rightarrow$ performance improves

FIGURE 4-10

7 X 9 dot matrix

Example of a dot-matrix letter. All letters and numerals can be formed from combinations of the dots.

A-N Displays: 7. Distance \& Size (VDT)

Distance

\bigcirc
VDT viewed normally farther than hardcopy text
eye-to-screen distances (studies in 1980's):

- $\quad 24-36 \mathrm{in}$. (61 to 93 cm)
- mean: 30 in . 76 cm)
- ANSI standard (1988):
viewing monitor in an upright position,

- screen should be placed at about distance: 18 - 20 in . (45 to 50 cm)
- and since people don't usually sit in an upright posture, we will take nominal VDT reading distance: 20 in . 50 cm):
- compare this with nominal reading distance for hardcopy

A-N Displays: 7. Distance \& Size (VDT)

Size

O
at 20 in. nominal reading distance (several studies):

- recommended minimum subtended $V A=11-12 \mathrm{~min}$. of arc
- $\quad \Rightarrow$ character height $=0.06-0.07$ in. (1.5 to 1.8 mm)
- this is smaller than for hardcopy (0.09-0.11 in.)

- ANSI (1988): size for high legibility reading for capital letter (@ 20 in.) :
- minimum VA: $16 \mathrm{~min} . \Rightarrow$ height $=0.09 \mathrm{in} .(2.3 \mathrm{~mm})$
- preferred VA: 20-22 min. \Rightarrow
$0.116-0.128 \mathrm{in} .(2.9-3.3 \mathrm{~mm})$

$$
\mathrm{VA}(\text { minutes })=\frac{3438 \cdot H}{D}
$$

note, these are closer to hardcopy reading heights

- maximum VA: $24 \mathrm{~min} . \Rightarrow 0.14 \mathrm{in}$. 3.6 mm)
- this is threshold height for comfortable reading
- reason: when character size increases
\Rightarrow more foveal fixation is required
\Rightarrow more fixations are required to read a sentence

References

Human Capabilities - Vision

- Human Factors in Engineering and Design. Mark S. Sanders, Ernest J. McCormick. $7^{\text {th }}$ Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3.

[^0]: * Letter heights computed using formulas presented in the text and assuming a Snellen acuity score of 20/40.

