King Saud University

College of Engineering

IE – 341: "Human Factors Engineering"

Spring – 2024 (2nd Sem. 1445H)

Human Capabilities Part – A. Vision (Chapter 4) Part 1: Visual Capabilities – Visual Discrimination Prepared by: Ahmed M. El-Sherbeeny, PhD

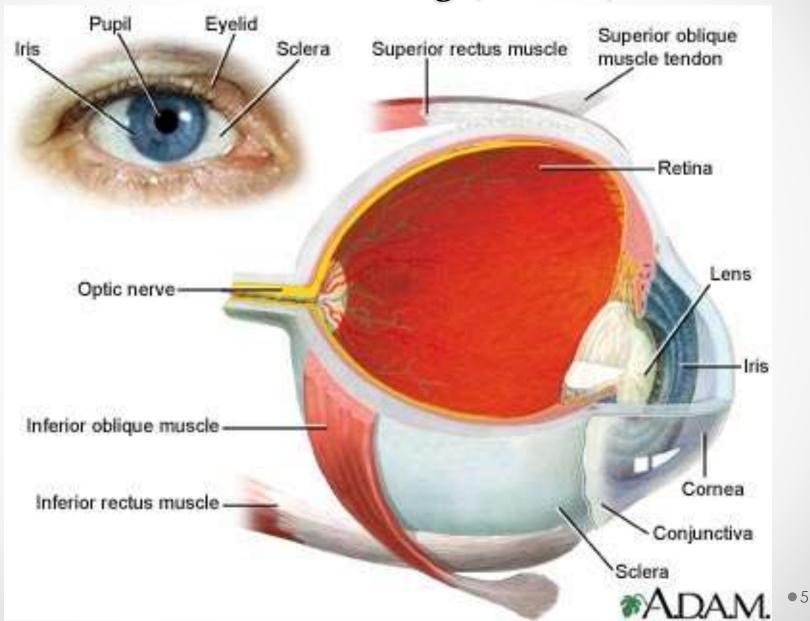
Lesson Overview: Vision

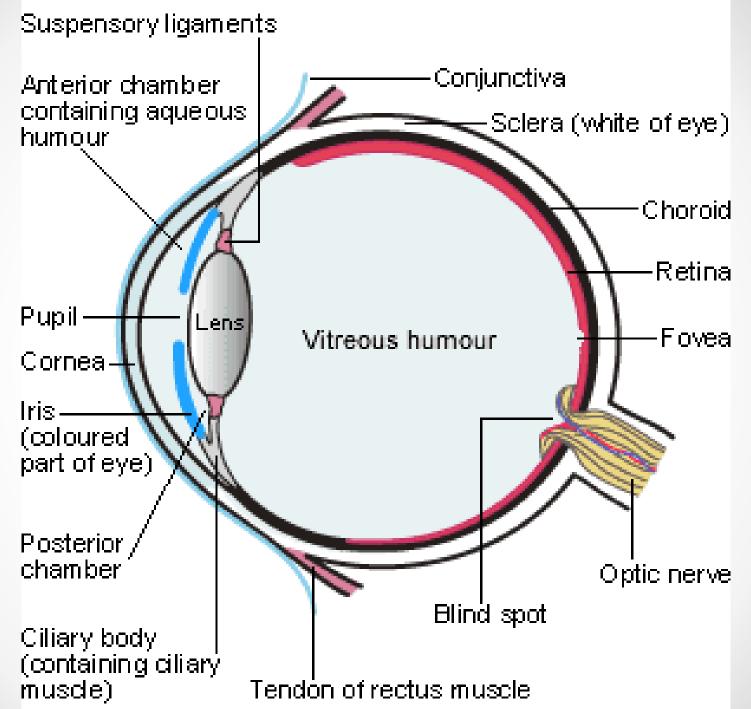
Part 1 (this part):

- Process of Seeing (Vision)
- <u>Visual Capabilities</u>
 - Accommodation
 - Visual Acuity
 - Convergence
 - Color Discrimination
 - Adaptation
 - Perception

Factors Affecting Visual Discrimination

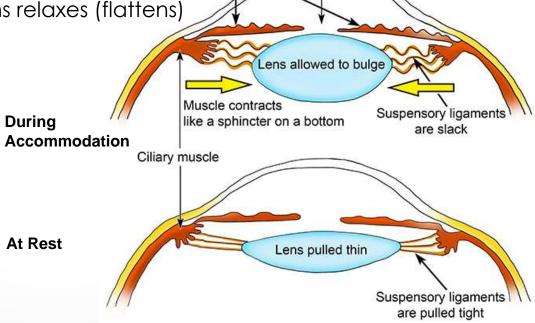
- Luminance Level
- o Contrast
- o Exposure Time
- Target Motion
- o Age
- o Training


Cont. Lesson Overview: Vision


- Alphanumeric Displays
 - Characteristics
 - o Typography
 - Typography Features
 - Hardcopy
 - Visual Display Terminals (VDT)
- Graphic Representations
- Symbols
- Codes

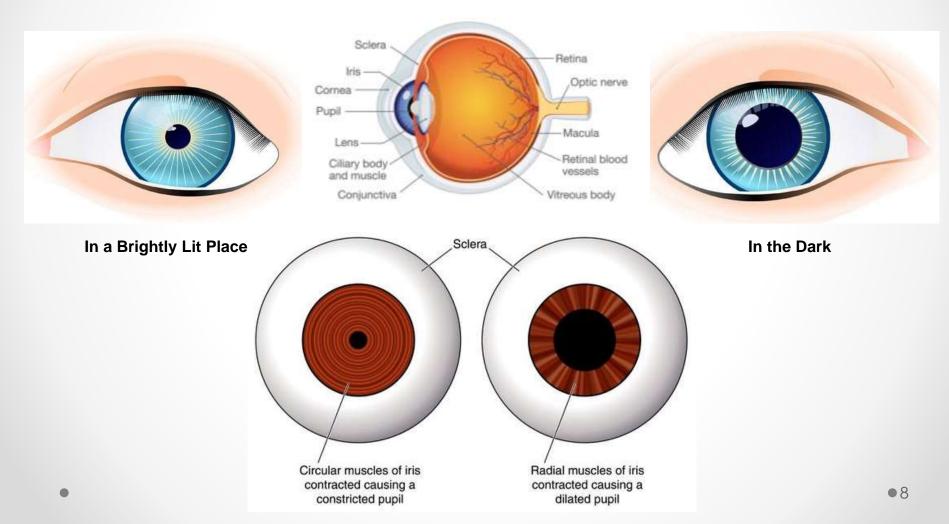
Process of Seeing (Vision)

Process of Seeing (Vision)

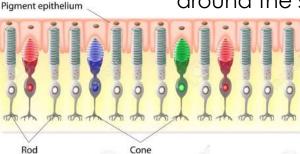


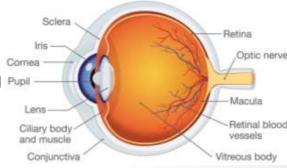

Process of Seeing (Vision)

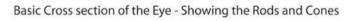
- The human eye works like a camera.
- Light rays reflected from object
 - o enter the transparent cornea
 - pass through:
 - clear fluid (aqueous humor) that fills the space between the cornea
 - and the **pupil** (a circular variable aperture)
 - and adjustable lens behind the cornea (light rays are transmitted and focused)
 - o close objects: lens bulges
 - o distant objects: lens relaxes (flattens)

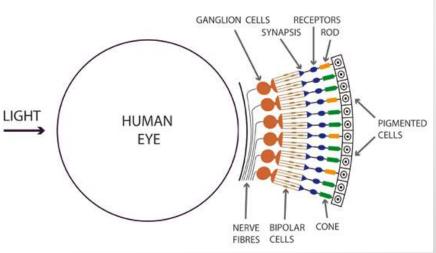

 The eye adjusts the amount of light entering it like the aperture of a camera

Cont. Process of Seeing (Vision) Muscles of the iris change size of pupil:

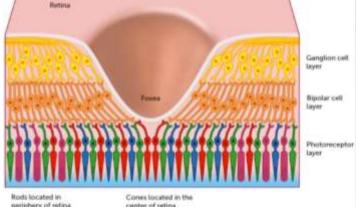

- o larger in the dark (about 8 mm diameter; dilation),
- smaller in bright conditions (2 mm; constriction)


Cont. Process of Seeing (Vision)


- Light rays transmitted through pupil to lens •
 - o refracted by adjustable lens
 - then transverse the **vitreous humor** (a clear jellylike fluid filling the eyeball, behind the lens)
- In normal or corrected vision persons ullet
 - light rays are focused exactly on the sensitive retina Pure
- The retina consists of
 - about 6 to 7 million cones
 - receive daytime, color vision
 - concentrated near center of retina (fovea)
 - and about 130 million rods
 - rods important in dim light, night
 - distributed in the outer reting. around the sides of the eyeball

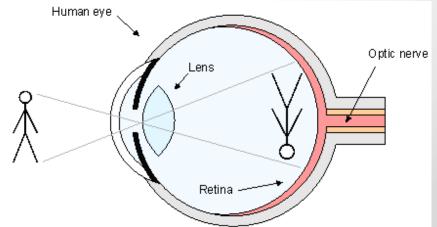


Structure of the Retina

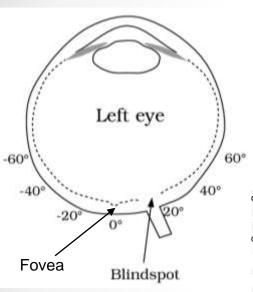


• 9

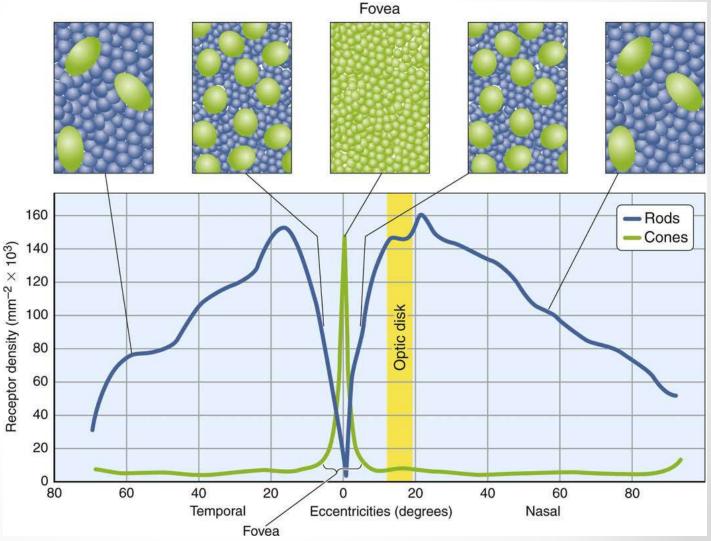
Cont. Process of Seeing (Vision)


Greatest sensitivity is in the fovea

- the "dead center" of the retina
- for clear vision, the eye must be directed so that the image of the object is focused on the fovea
- see more details about the fovea, rods, and cones on the <u>following slide</u>


- The image on the retina is inverted
- Cones and rods connected to optic nerve
 - transmits neural impulses to the brain which integrates impulses, giving visual impression of object
 - process also corrects inverted image on the retina
 - more information about vision and human eye:

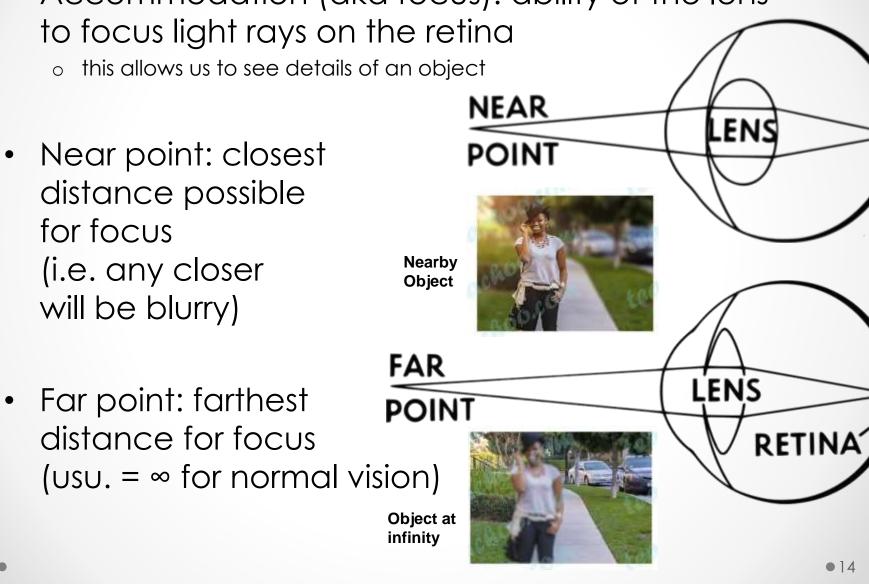
https://youtu.be/nbwPPcwknPU



Images are inverted on their way to the retina at the back of the eye

Cont. Process of Seeing (Vision)

- Distribution of photoreceptors in the eye relative to the fovea
- Rods outnumber cones by a ratio of ~20:1.
- However, in the fovea, the cone density is the highest and is correlated with visual acuity

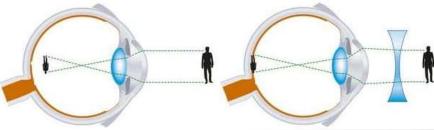


Visual Capabilities

Visual Capabilities

- Visual Capabilities
 - visual capabilities exist as a result of the visual system
 - these capabilities have important implications for the design of visual displays:
- 1. Accommodation
- 2. Visual Acuity
- 3. Convergence
- 4. Color Discrimination
- 5. Adaptation
- 6. Perception

• 14


 Accommodation (aka focus): ability of the lens to focus light rays on the retina

o this allows us to see details of an object

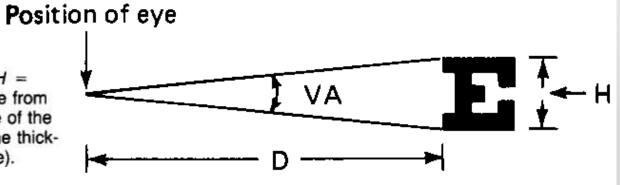
 Near point: closest distance possible for focus (i.e. any closer will be blurry)

Visual Capabilities: 1. Accommodation

- Diopter: measure of focus (for eye, camera)
 - Diopter [D] = 1 / target distance [m]
 - o e.g. 1D = 1 m; 2D = 0.5 m; 3D = 0.33 m; 0D = ∞
 - More powerful lens \Rightarrow higher diopters
- Dark focus: eye accommodation in dark
 - = 1D (for normal vision)
- Nearsightedness (myopia):
 - o far point = too close
 - i.e. lens remains bulged with far objects

- Farsightedness (hyperopia):
 - near point = too far
 - i.e. can't see close objects;
 - o lens: flat for close objects
 - both conditions can be corrected using corrective lenses (as shown)

• Visual Acuity:


- ability of eye to discriminate fine details
- depends largely on accommodation
- Minimum separable acuity:
 - most common measure of visual acuity (<u>see figure 4-2</u>)
 - Defn: smallest feature or space between the parts of a target (e.g. letter 'E' below) that eye can detect
- Visual angle (< ~10°):
 - \circ H = stimulus height
 - \circ D = dist. from eye
 - H,D: same units (e.g. ft., mm)
 - Normal VA = 1.0 min.

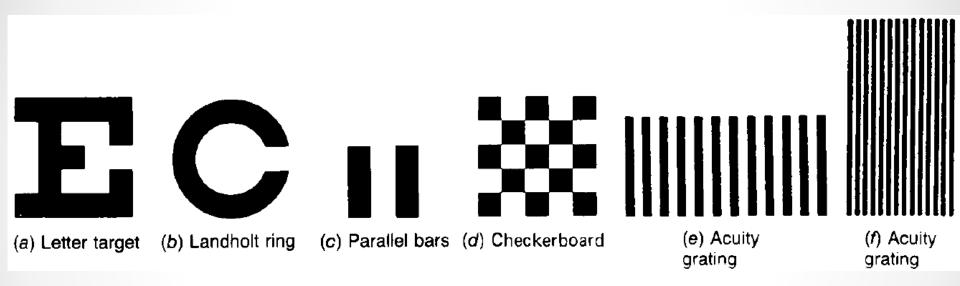

• Note, $1^{\circ} = 60 \text{ min.}$

FIGURE 4-3

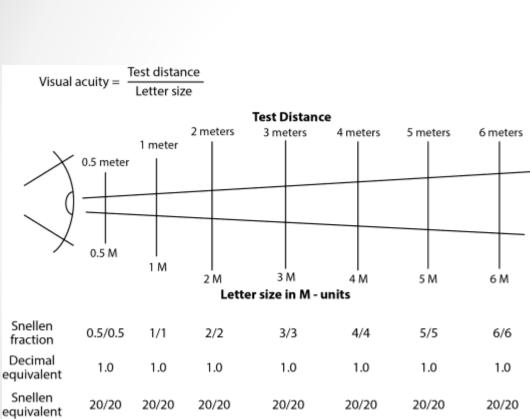
Illustration of the concept of visual angle; H = height of visual stimulus, and D = distance from the eye. In this illustration, the visual angle of the specific elements of *E* could be derived (the thickness of the elements would be the *H* value).

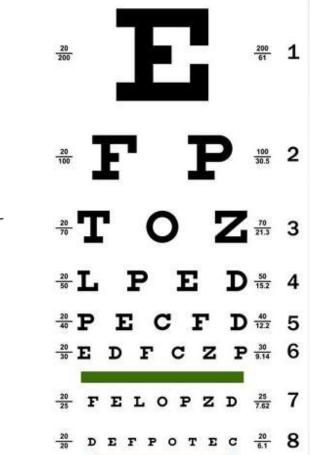
VA (minutes) = $\frac{3438 \cdot H}{D}$

FIGURE 4-2

Illustrations of various types of targets used in visual acuity tests and experiments. The features to be differentiated in targets a, b, c, and d are all the same size and would, therefore, subtend the same visual angle at the eye. With target a the subject is to identify each letter; with c, e, and f the subject is to identify the orientation (such as vertical or horizontal); and with b the subject is to identify any of four orientations. With target d the subject is to identify one checkerboard target from three others with smaller squares.

- Cont. Visual angle (VA):
 - o reciprocal of VA (for smallest detail that eye can see) is used as measure for visual acuity
 - i.e. Visual Acuity = [1 / VA]
 - e.g. VA = 1.5 min. \Rightarrow acuity = 0.67
 - e.g. VA = 0.8 min. \Rightarrow acuity = 1.25
 - Note, as acuity $\uparrow \Rightarrow$ detail that can be resolved is \downarrow




Test distance Visual acuity = Letter size

Dutch

- Clinical testing: D = 20 ft (i.e. 6 m) from chart (next 2 slides) 0
 - e.g. Snellen acuity: 20/30 (6/9) ⇒ person barely reads @ 20 ft. what normal (20/20) person reads @ 30 ft.
 - e.g. 20/15 (6/4.5) ⇒ person reads @ 20 ft what normal person must bring to 15 ft. to read (far- or near-sightedness?*)
 - e.g. 20/20 (6/6) \Rightarrow resolving 1 min. arc of detail @ 20 ft. (normal vision)
 - e.g. Given VA = 1.75 min. \Rightarrow Snellen acuity = 1 / VA = 20 / x i.e. $x = (20) (1.75) = 35 \Rightarrow$ Snellen acuity = 20 / 35

20

20

20

Ε

FD

FODFC

PEZOLCFTD

PLTCEO

Sample Snellen "Letter" Chart

• Watch more about visual acuity: <u>https://youtu.be/ovuyPrffiqg</u>

Visual Capabilities: 2. Visual Acuity

15 4.57

13

9

10

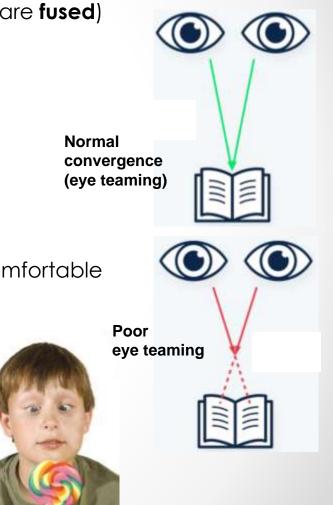
10 11

т

										ACTUAL ACUITY LOGARITHMIC VISUAL ACUITY CHART LANDOLT "C" EQUIVALENT VALUES
50,0			ł			1		0,1	1	
25,0					5			0,2	2	
16,6	E			L				0,3	3	$c \circ \circ \circ \circ$
12,5	Ξ	l	Ц		Π	I	Ε	0,4	4	
10,0	Е		Ξ	Γ	I	Ш	Э	0,5	5	00000
8,33	Ш		Ш	Е	0	Ш	Ш	0,6	6	
7,14	Ш	П	1	Ε	М	Э	Ш	0,7	7	
6,25	Э	Ц	I I	Π	Э	Е	Ш	0,8	8	
5,55	Е	Ш	Е	Ш	п	Э	Е	0,9	9	·····································
5,0	П	Э	П	E	Э	Е	Ш	1,0	10	
3,33	Е	т	Э	ш	E	ш m	Э	1,5	11	***** こうつう こうこう ************************
2.5	ш	ω	з	m	ш	ω э	м	2.0	12	m 手品 OUCOO COC 1.8 5 建 41 25m 5 習
•		Sne	ellen L	etter	E' Cha	art				m : 표 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이

Snellen Landolt 'C' Chart

- Other types of visual acuity measures:
 - Vernier acuity: smallest lateral displacement (i.e. offset) of one line that can be detected from another line
 - Minimum perceptible acuity: ability to detect a spot from its background; test: find the smallest target, such as a dot, that the eye can detect
 - Stereoscopic acuity: ability to differentiate different images received by the retinas of the two eyes of a single object with depth (i.e. converting $2D \rightarrow 3D$).
 - Most difference is when the object is near the eyes.
 - Try the following game to see if you have Stereo vision
 - Center your nose over the brown eye and focus on the eye
 - Put a free thumb in front of your nose
 - Continue to focus on the eye
 - If both eyes are on, you see two thumbs framing one eye
 - Now, switch your focus to your thumb
 - You should see two eyes framing one thumb
 - Source: <u>http://www.vision3d.com/frame.html</u>

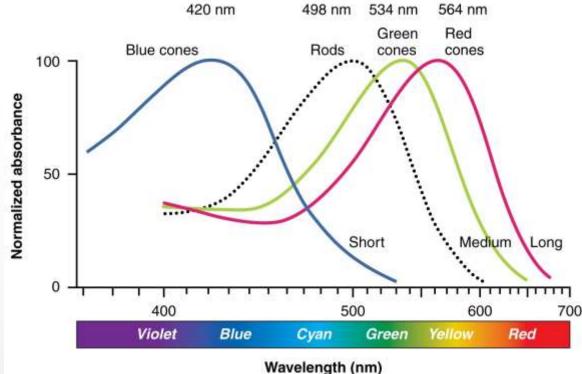


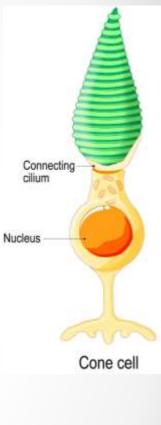
Visual Capabilities: 3. Convergence

- Two eyes must converge on an object ⇒
 - images of the object on the two retinas are in corresponding positions to get the impression of a single object (the images are **fused**) aka "binocular vision"
- Convergence is controlled by <u>muscles</u> surrounding the eyeball.
 - o some individuals converge too much
 - others tend not to converge enough
 - these two conditions are called **phorias**
 - this cause double images which are visually uncomfortable and may cause muscular stresses and strains

• Orthoptics:

 aims to strengthen eye muscles to correct common eye problems (e.g. convergence insufficiency)




• 22

Visual Capabilities: 4. Color Discrimination

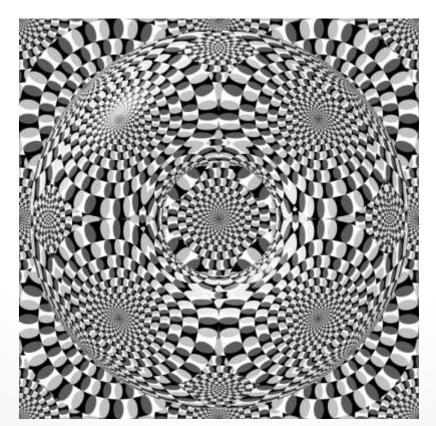
Cones

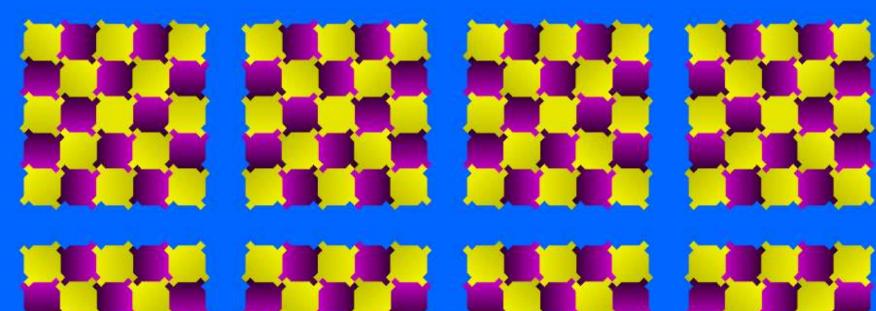
- located in <u>fovea</u> (center of retina) Ο
- basis for color discrimination 0 (i.e. responsible for color perception)
- 3 types of cones, each sensitive to light wavelengths 0 corresponding to primary colors (as shown below): **Red, Green, Blue** (reaching up to 10 million hues!)
- In dark: cones not activated \Rightarrow no color is visible \cap

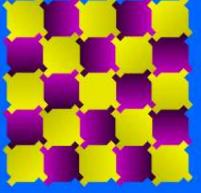
Visual Capabilities: 4. Color Discrimination

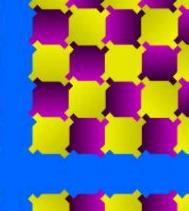
- Color vision:
 - Trichromats: people distinguishing different colors
 - Color vision deficiency (CVD); aka color blindness:
 - Monochromats: non-color vision (v. v. rare!)
 - Dichromats: deficiency in red or green cones (aka anomalous trichromats)
 - o inherited or acquired (e.g. accident or disease)
 - $_{\odot}\,$ existent in ~ 8% males and 0.5% females
 - poorer performance in practical tasks vs. trichromats
 (e.g. traffic signals, color-coded components)
 - o Click here to test your color vision strength, and learn more about CVD

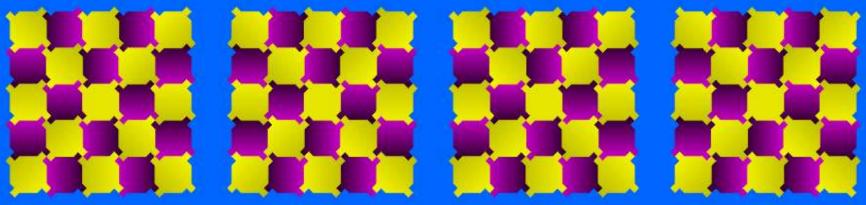
The way a mammalian trichromat (three cones) would see a scene

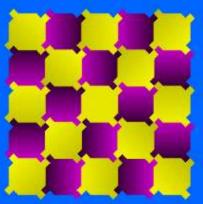

The way a mammalian dichromat (two cones) would see the same scene

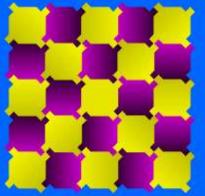

Visual Capabilities: 4. Color Discrimination

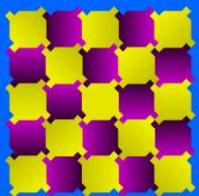

Cont. Color vision:

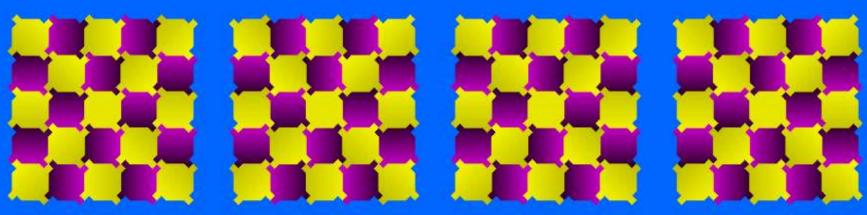

Just for fun, consider the next 2 slides:

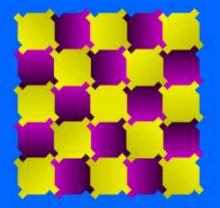

- o "<u>rotating turtles</u>"
- o "<u>doughnut of rotating snakes</u>"
- o are these "optical illusions" static or dynamic?
- and <u>how/why does this work</u> even with grayscale images (as shown below)?

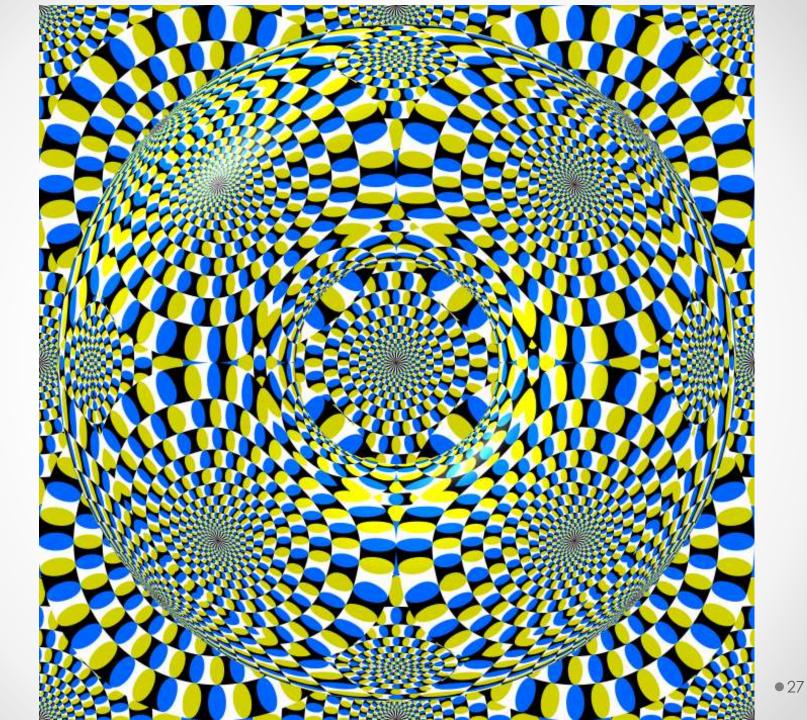




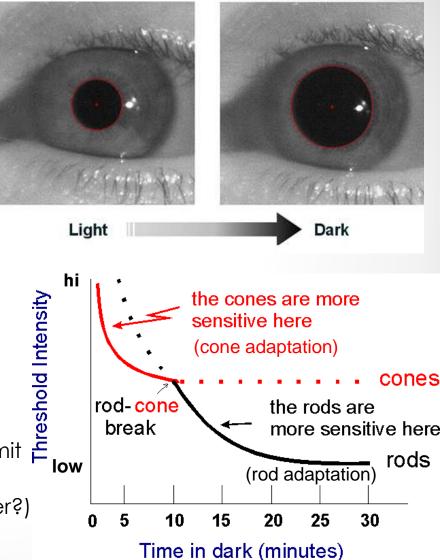






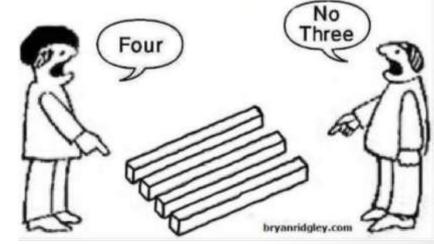


Visual Capabilities: 5. Adaptation


Adaptation: changes in sensitivity to light

Entering dark room:

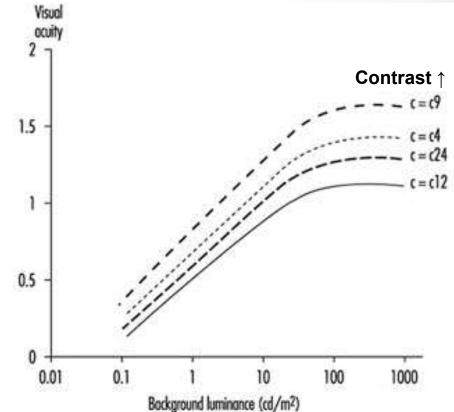
- o this is dark adaptation
- o pupil increases in size
 ⇒ more light enters eyes
- sensitivity of eye ↑ gradually
- this occurs in two phases (as shown)
- requires up to 30-35 min.
 - cones lose most sensitivity in dark (mostly rods)
- Exiting dark room to light
 - o this is light adaptation


Rod cell

- pupil contracts (aka constriction) to limit light entering eyes
- adaptation requires ~1 min. (why faster?)
- more light \Rightarrow cones are activated

Visual Capabilities: 6. Perception

- When viewing visual displays
 - viewing/seeing features on visual displays (e.g. on traffic sign; scale) may not be enough to make appropriate decisions
 - meaning of displayed information must also be understood
- Perception*: interpreting sensed information
- The interpretation process
 - sometimes straightforward



- most displays: depends on previous learning (experience or training);
 e.g. with road signs, color codes; abbreviations
- Visual displays design must meet 2 objectives:
 - o display must be seen clearly (and without distortion, as shown above)
 - o design must help viewer to
 - correctly perceive/understand meaning of display

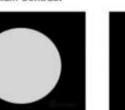
- 1. Luminance Level
- 2. Contrast
- 3. Exposure Time
- 4. Target Motion
- 5. Age
- 6. Training

- Visual discrimination depends mostly on visual acuity
- Some factors external to the individual that affect visual discrimination:
 - 1. Luminance Level:
 - as light or background light levels ↑
 - $\circ \Rightarrow$ cones are activated
 - → visual acuity ↑
 - then levels off (as shown here)
 - best efficiency: large light background and dark object
 - this is required for complex, intricate tasks

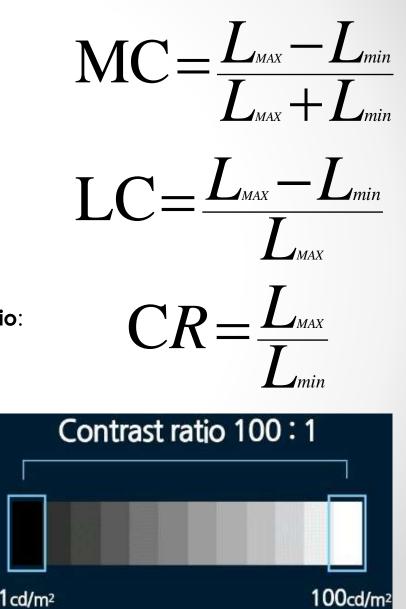
Relationship between acuity of a dark object perceived on a background receiving increasing illumination for four contrast values (Adrian, 1993)

Factors Affecting Visual Discrimination2. Contrast (AKA brightness contrast):

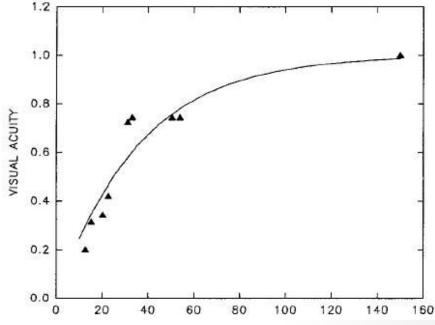
- refers to difference in luminance 0 of viewed objects
- most important consideration: 0 difference in luminance between object (target) and background
- threshold contrast: contrast level at which you can barely see the target
- when contrast is low, target must be larger to be equally discriminable to target with greater contrast (see example below)



Low Contrast



Low Contrast


2. Cont. Contrast:

- Measure # 1: Michelson Contrast: measures deviation above and below a mean luminance
 - L_{MAX}: max. luminance in pattern
 - L_{min}: min. luminance in pattern
 - Note, MC varies bet. 0 and 1
- Measure # 2: Luminous Contrast:
- Measure # 3: Contrast (or luminance) Ratio:
 - it's recommended to have CR:
 - 3:1 for target: adjacent surrounding
 - 10:1 for target: remote darker area
 - 1:10 for target: remote lighter area
- Note, Can you show the mathematical relation between each of these 3 formulae?

3. Exposure Time:

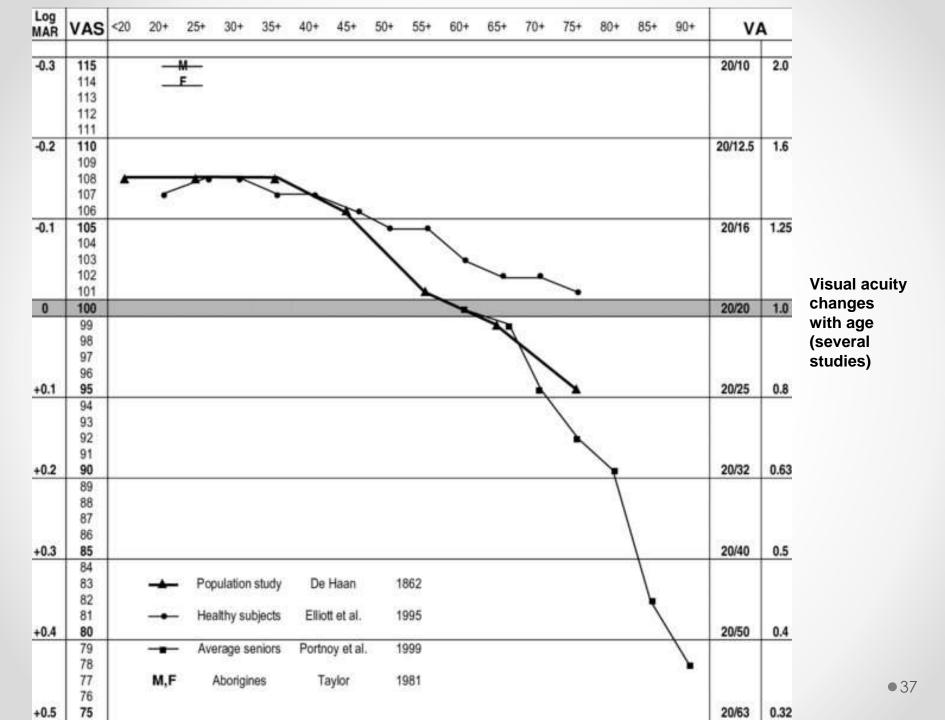
- Under high illumination:
 - As exposure time ↑ ⇒ Acuity ↑ for first 100-200 ms.
 - After that acuity levels off
- 4. Target Motion:
 - Acuity \downarrow with motion of:
 - Target
 - Observer
 - or Both
 - Dynamic visual acuity:
 - Ability to make visual discriminations under such conditions (e.g. driver looking at objects on sidewalk)
 - This acuity rapidly \downarrow as rate of motion \uparrow

Exposure Time [ms]

•36

Factors Affecting Visual Discrimination

5. Age:


- visual acuity, **contrast sensitivity** (ability to see details at low contrast 0 levels) \downarrow with age (note, the higher the threshold contrast, the lower the contrast sensitivity)
- decline starts at age 40 (see next slide) 0
- at age 75: acuity = 20/300
- \Rightarrow visual displays for old people must provide: 0
 - large targets
 - adequate illumination

6. Training:

- Besides contacts, glasses, eye surgery, vision can be improved by: 0
- Training to improve focus: 0
 - Improves Snellen acuity by 14%
 - Improves contrast sensitivity by 32%
- Dynamic visual acuity can be improved with practice

References Human Capabilities - Vision

- Human Factors in Engineering and Design. Mark
 S. Sanders, Ernest J. McCormick. 7th Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3.
- More Optical Illusions Sites
 - <u>http://upload.wikimedia.org/wikipedia/commo</u>
 <u>ns/6/60/Grey_square_optical_illusion.PNG</u>
 - <u>http://www.illusion-optical.com/Optical-</u> <u>Illusions/Circles.php</u>

 \bullet