BCH 312
Experiment (3)

Titration of a
weak acid with strong base

Objectives

1) To study titration curves.
2) To determine the pKa value of a weak acid.
3) To reinforce the understanding of buffers.

Weak Acid

- Weak acids or bases do not dissociate completely, therefore an equilibrium expression with Ka must be used.
- The Ka is a quantitative measure of the strength of an acid in solution.
- Ka is usually expressed as pKa.
- pKa = -log Ka
- As an acid gets weaker, its Ka gets smaller and pka gets larger and vise versa, for example:
- HCl is a strong acid, it has a large value of Ka (low pKa)
- CH3COOH is a weak acid, it has low value of Ka (high pKa)
- pKa values of weak acids can be determined mathematically or practically by the use of titration curves.

Titration curves

- There are many uses of titration, one of them is to indicate the pKa value of the weak acid by using the titration curve.
- Titration Curves are produced by monitoring the pH of a given volume of a sample solution after successive addition of acid or alkali.
- The curves are usually plots of pH against the volume of titrant added.

+ How to calculate the pH at each point of the titration curve

- [1] Before any addition of strong base the (starting point):
- The weak acid is in the full protonation form [CH3COOH] (electron donor).
- In this point pH of weak acid < pKa
- We can calculate the pH from:
- $\mathrm{pH}=(p K a+P[H A]) / 2$
- [2] When certain amount of strong base added (any point before the middle of titration):
- The weak acid is starting to dissociate , [CH3COOH]>[CH3COO-] (Donor > Acceptor).
- In this point the pH of weak acid $<\mathrm{pKa}$

- We can calculate the pH from:
- $\mathrm{pH}=\mathrm{pKa}+\log [\mathrm{A}-] /[\mathrm{HA}]$

+ Continue

- [3] At middle of titration:
- [CH3COOH]=[CH3COO-] (Donor=Acceptor),
- PH=Pka.
- The component of weak acid work as a Buffer (A solution that can resistant the change of PH).
- Buffer capacity= pKa ± 1

Note: pKa is defined as the pH value at middle of titration at which they will be [donor]=[acceptor].

- [4] any point after mid of titration:
- [CH 3 COOH]< [CH3COO-] , (Donor< Acceptor).
- In this point the $\mathrm{pH}>\mathrm{pKa}$
- We can calculate the pH from:
- $\mathrm{pH}=\mathrm{pKa}+\log [\mathrm{A}-] /[\mathrm{HA}]$
- [5] At the end point
- The weak acid is fully dissociated [CH3COO-] (electron acceptor).
- pH of weak acid >pka
- Approximatly, all the solution contains CH3COONa so we first must calculate pOH , then the pH :
- pOH= (pKb+p[A-]) /2
- $\mathrm{pH}=\mathrm{pKw}-\mathrm{pOH}$

Notes:

The pH calculated by different way:

- [1] At starting point $\quad \mathrm{pH}=(\mathrm{pKa}+\mathrm{p}[\mathrm{HA}]) / 2$
- [2] At any point within the curve (after, in or after middle titration)

$$
\mathrm{pH}=\mathrm{pKa}+\log [\mathrm{A}-] /[\mathrm{HA}] \quad \text { (Henderson-Hasselbalch equation) }
$$

- [3] At end point

$$
\begin{gathered}
\mathrm{pOH}=(\mathrm{pKb}+\mathrm{p}[\mathrm{~A}-]) / 2 \\
\mathrm{pH}=\mathrm{pKw}-\mathrm{pOH}
\end{gathered}
$$

Henderson-Hasselbalch equation is an equation that is often used to :

- To calculate the pH of the buffer
- Used in buffer preparation.
- To calculate the pH in any point within the titration curve (Except starting and ending point)

Example

- Determine the pH value of 500 ml weak acid (0.1 M) , titrated with 0.1M KOH (Pka=5)?

After addition $100 \mathrm{ml}, 250 \mathrm{ml}, 375$ and 500 ml of KOH ??

[1] pH after the addition of 100 ml of KOH ?

- $\mathrm{pH}=\mathrm{pKa}+\log \mathrm{A}^{-} / \mathrm{HA}$
$\mathrm{HA}+\mathrm{KOH} \rightarrow \mathrm{KA}+\mathrm{H} 2 \mathrm{O}$
- No. of moles of HA remaining $=$ No. of moles of HA originally -No. of moles of KOH
- No. of moles of $\mathrm{KOH}=\mathrm{M} \times \mathrm{V}$ (in L$)=0.1 \times 0.1=\underline{\mathbf{0 . 0 1} \text { moles }=\text { No. of }, ~}$ moles of A^{-}
- No. of moles of HA originally $=M \times V($ in $L)=0.1 \times 0.5=0.05$ moles
- No. of moles of HA remaining $=0.05-0.01=\underline{\mathbf{0 . 0 4}}$ moles
- pH = $5+\log 0.01 / 0.04$
- $\mathrm{pH}=4.4$

[2] pH after the addition of 250 ml of $\mathrm{KOH} ? ?$

■ No. of moles of HA remaining $=$ No. of moles of HA originally No. of moles of KOH

■ No. of moles of $\mathrm{KOH}=0.1 \times 0.25=\mathbf{0 . 0 2 5}$ moles $=$ No. of moles of A^{-}

- No. of moles of HA originally $=0.1 \times 0.5=0.05$ moles

■ No. of moles of HA remaining $=0.05-0.025=\underline{\mathbf{0 . 0 2 5} \text { mole }}$

- $\mathrm{pH}=5+\log 0.025 / 0.025$
- pH=5 = Pka (at mid point, The component of weak acid work as a Buffer, has a buffering capacity 5 ± 1)

[3] pH after the addition of 375 ml of KOH ??

■ No. of moles of HA remaining $=$ No. of moles of HA originally No. of moles of KOH

- No. of moles of $\mathrm{KOH}=0.1 \times 0.375=\mathbf{0 . 0 3 7 5}$ moles $=$ No. of moles of A^{-}

■ No. of moles of HA originally $==0.1 \times 0.5=0.05$ moles
■ No. of moles of HA remaining $=0.05-0.0375=\underline{\mathbf{0 . 0 1 2 5}} \mathbf{~ m o l e}$

- $\mathrm{pH}=5+\log 0.0375 / 0.0125$
- $\mathrm{pH}=5.48$

* [4] pH after the addition of 500 ml of $\mathrm{KOH} ?$?

Note: 500 ml the same volume of weak acid that mean the all weak acid as [CH3COO]

- $\mathrm{pOH}=(\mathrm{pKb}+\mathrm{p}[\mathrm{A}-]) / 2$ $\mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa} \rightarrow \mathrm{pKb}=14-5=9$
- $p[A-]=-\log \left[A^{-}\right] \rightarrow\left[A^{-}\right]=? ?$
- No of moles of $\mathrm{KOH}=0.1 \times 0.5=0.05$ moles $=$ No. of moles of \mathbf{A}^{-}
- Total volume $=500+500=1000=1 \mathrm{~L}$
- $\left[A^{-}\right]=0.05 / 1=0.05 \mathrm{M}$
- $\mathrm{p}[\mathrm{A}-]=-\log 0.05=1.3$
- $\mathrm{pOH}=(9+1.3) / 2=5.15$
- $\mathrm{pH}=\mathrm{pKw}-\mathrm{pOH}$
- $\mathrm{PH}=14-5.15=8.85$ (at end point)

Method

■ You are provided with 10 ml of a $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ weak acid solution, titrate it with 0.1 m NaOH adding the base drop wise mixing, and recording the pH after each 0.5 ml NaOH added until you reach a $\mathrm{pH}=10$.

Volume of $0.1 \mathrm{NaOH}(\mathrm{ml})$	pH
0	
0.5	
1	
1.5	

Discussion:

1- Plot a Curve of pH versus ml of NaOH added, determine the pKa value from the curve.

2- Calculate the pH of the weak acid HA solution after the addition of $3 \mathrm{ml}, 5 \mathrm{ml}$, and 10 ml of NaOH .

3- Compare your calculated pH values with those obtained from Curve.

4- At what pH -range did the acid show buffering behavior? What are the chemical species at that region, what are their proportions?

