Chapter 3

Fourier Series Representation

Introduction

Jean Baptiste Joseph Fourier

- Born in Auxerre, France
- Mathematician and physicist
- Developed Fourier series, Fourier transforms and their applications on heat and vibration
- Life span: 21 March 1768 - 16 May 1830
- Also known as an Egyptologist.

The response of LTI systems to complex exponentials

- For the study of LTI systems we represent signals as linear combinations of basic signals (unit impulse $\delta(t)$, complex exponential $\left.e^{s t}, \ldots\right)$.
- The response of an LTI system to a complex exponential input is the same complex exponential with only a change in amplitude.

$$
\begin{array}{ll}
\text { Continuous time: } e^{s t} \rightarrow H(s) e^{s t} & H(s) \text { and } H(z) \text { are the amplitude factor } \\
\text { Discrete time: } z^{n} \rightarrow H(z) z^{n} & \text { (complex function of complex variable). }
\end{array}
$$

- A signal for which the system output is a (possibly complex) constant times the input is referred to as an eigenfunction of the system, and the amplitude factor is referred to as the system's eigenvalue.

Continuous time case

Complex exponentials are eigenfunctions of LTI systems

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau
$$

IF: $x(t)=e^{s t}\left(\right.$ a complex exponential) $\Rightarrow \mathrm{y}(t)=\int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} \mathrm{d} \tau \quad \leftarrow$ convolution
$\Rightarrow \mathrm{y}(t)=\int_{-\infty}^{\infty} h(\tau) e^{s t} e^{-s \tau} \mathrm{~d} \tau=e^{s t} \int_{-\infty}^{\infty} h(\tau) e^{-s \tau} \mathrm{~d} \tau$
$\Rightarrow \mathrm{y}(t)=H(s) e^{s t}$
Where: $H(s)=\int_{-\infty}^{\infty} h(\tau) e^{-s \tau} d \tau$
The complex constant $\mathrm{H}(\mathrm{s})$ for a specific value of s is the 'eigenvalue' associated with the eigenfunction $e^{s t}$.

Discrete time case

Complex exponential sequences are eigenfunctions of discrete-time LTI systems.

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

IF: $x[n]=z^{n}$ (input the sequence) $\Rightarrow y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$
$\Rightarrow y[n]=\sum_{k=-\infty}^{\infty} h[k] z^{n-k}=\sum_{k=-\infty}^{\infty} h[k] z^{n} z^{-k}=z^{n} \sum_{k=-\infty}^{\infty} h[k] z^{-k}$
$\Rightarrow y[n]=H[z] z^{n} \quad$ With $\quad H[z]=\sum_{k=-\infty}^{\infty} h[k] z^{-k}$

- The complex exponentials are 'eigenfunctions' of LTI systems.
- The constant $\mathrm{H}(\mathrm{z})$ for a specific value of z is the 'eigenvalue' associated with the eigenfunction z^{n}.

Fourier Series Representation of Continuous Time Periodic Signals

1. Linear combination of harmonically related complex exponentials

A signal is periodic, if, for some positive value of $T, \quad x(t)=x(t+T)$, for all t (1) The fundamental period of $x(t)$ is the minimum, positive, nonzero value of T for which equation (1) is satisfied.

Basic periodic signals:

$$
\text { Sinusoidal: } x(t)=\cos \left(\omega_{0} t\right)
$$

fundamental freauency:

$$
\omega_{0}=\frac{2 \pi}{T}
$$

Harmonically related signals with the complex exponential:

$$
\phi_{k}(t)=e^{j k \omega_{0} t}=e^{j k(2 \pi / T) t}, \quad k=0, \pm 1, \pm 2, \ldots
$$

Fourier series representation of a periodic signal $x(t)$ with period T

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k a_{0} t}=\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t}
$$

The term for $k=0$ is a constant.
The terms for $k= \pm 1$ are the 'first harmonic components' or 'fundamental components'.
The terms for $k= \pm 2$ are the 'second harmonic components'.
The terms for $k= \pm N$ are the ' N th harmonic components'.

Example

Consider a periodic signal $x(t)$ with fundamental frequency 2π, expressed as:

$$
a_{0}=1
$$

$$
x(t)=\sum_{k=-3}^{3} a_{k} e^{j k 2 \pi t} \quad \text { where, } \quad \begin{aligned}
& a_{1}=a_{-1}=1 / 4 \\
& a_{2}=a_{-2}=1 / 2 \\
& a_{3}=a_{-3}=1 / 3
\end{aligned}
$$

With these values, the periodic signal $x(t)$ can be re-written as:
$x(t)=1+\frac{1}{4}\left(e^{j 2 \pi t}+e^{-j 2 \pi t}\right)+\frac{1}{2}\left(e^{j 4 \pi t}+e^{-j 4 \pi t}\right)+\frac{1}{3}\left(e^{j 6 \pi t}+e^{-j 6 \pi t}\right)$
$x_{1}(t)=\frac{1}{2} \cos 2 \pi t$

$x_{2}(t)=\cos 4 \pi t$

$x_{3}(t)=\frac{2}{3} \cos 6 \pi t$
AMMMA
with, $2 \cos (\omega t)=e^{j \omega t}+e^{-j \omega t}$

We obtain,

$$
x(t)=1+\frac{1}{2} \cos (2 \pi t)+\cos (4 \pi t)+\frac{2}{3} \cos (6 \pi t)
$$

Determination of the Fourier Series Representation of a Continuous-time Periodic Signal

We need to determine the coefficients a_{k}, in order to express a periodic continuous signal $x(t)$ with a fundamental period T and a fundamental frequency $\omega_{0}=\frac{2 \pi}{T}$ as a Fourier series

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}
$$

Find $a_{k}: \quad x(t) e^{-j n \omega_{0} t}=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \cdot e^{-j n \omega_{0} t}$
$\int_{0}^{T} x(t) e^{-j n \omega_{0} t} d t=\int_{0}^{1} \sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \cdot e^{-j n \omega_{0} t} d t=\sum_{k=-\infty}^{\infty} a_{k} \int_{0}^{T} e^{j(k-n) \omega_{0} t} d t$

$$
\int_{0}^{T} e^{j(k-n) \omega_{0} t} d t=\int_{0}^{T} \cos (k-n) \omega_{0} t d t+j \int_{0}^{T} \sin (k-n) \omega_{0} t d t
$$

$$
\int_{0}^{T} \cos (k-n) \omega_{0} t d t=0, \int_{0}^{T} \sin (k-n) \omega_{0} t d t=0 \longleftarrow \text { For } k \neq n
$$

$$
\int_{0}^{T} e^{j(k-n) \cos t} d t=\int_{0}^{T} \cos (0) d t+j \int_{0}^{T} \sin (0) d t=\int_{0}^{T} d t=T=T \delta_{k n} \longleftarrow \text { For } k=n
$$

Area $=0$

$$
\delta_{k n}= \begin{cases}1, & k=n \\ 0, & k \neq n\end{cases}
$$

$$
\begin{gathered}
\int_{0}^{T} x(t) e^{-j n \omega_{0} t} d t=\sum_{k=-\infty}^{\infty} a_{k} \int_{0}^{T} e^{j(k-n) \omega_{0} t} d t=\sum_{k=-\infty}^{\infty} a_{k} T \delta_{k n}=a_{n} T \Rightarrow a_{n}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j n \omega_{0} t} d t \\
\Rightarrow a_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \quad \begin{array}{l}
a_{k} \text { are called Fourier series coefficients } \\
\text { or spectral coefficients }
\end{array}
\end{gathered}
$$

Synthesis equation: $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}=\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t}$
Analysis equation: $\quad a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k(2 \pi / T) t} d t$
a_{0} : is the DC component

Fourier Series Representation : Example 1

A CT signal with fundamental frequency $\omega_{0}: x(t)=\sin \left(\omega_{0} t\right)$, determine its Fourier series
Using Euler's formula: $\left.\begin{aligned} & e^{j \theta}=\cos \theta+j \sin \theta \\ & e^{-j \theta}=\cos \theta-j \sin \theta\end{aligned} \right\rvert\, \Rightarrow \sin \theta=\frac{1}{2 j}\left[e^{j \theta}-e^{-j \theta}\right]$

$$
\begin{equation*}
x(t)=\sin \left(\omega_{0} t\right)=\frac{1}{2 j} e^{j \omega_{0} t}-\frac{1}{2 j} e^{-j \omega_{0} t} \tag{1}
\end{equation*}
$$

Comparing with Fourier synthesis equation(matching terms of (1) and (2)):

$$
\begin{align*}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} & =\cdots+a_{-2} e^{-j 2 \omega_{0} t}+a_{-1} e^{-j \omega_{0} t}+a_{0}+a_{1} e^{j \omega_{0} t}+a_{2} e^{j 2 \omega_{0} t}+\cdots \tag{2}\\
a_{0} & =0 ; \\
& \text { We get, } \quad \begin{array}{l}
a_{1}
\end{array}=(1 / 2 j)=\frac{1}{2 j} \times \frac{j}{j}=-\frac{1}{2} j \quad \text { and } a_{k}=0, \text { for }|k|>1 \\
a_{-1} & =(-1 / 2 j)=\frac{-1}{2 j} \times \frac{j}{j}=\frac{1}{2} j
\end{align*}
$$

Fourier Series Representation : Example 2

Determine Fourier series of: $\quad x(t)=1+\sin \left(\omega_{0} t\right)+2 \cos \left(\omega_{0} t\right)+\cos \left(2 \omega_{0} t+\pi / 4\right)$

$$
\begin{aligned}
x(t) & =1+\frac{1}{2 j}\left[e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right]+\frac{2}{2}\left[e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right]+\frac{1}{2}\left[e^{j\left(2 \omega_{0} t+\pi / 4\right)}+e^{-j\left(2 \omega_{0} t+\pi / 4\right)}\right] \\
& =1+\left(1+\frac{1}{2 j}\right) e^{j \omega_{0} t}+\left(1-\frac{1}{2 j}\right) e^{-j \omega_{0} t}+\left(\frac{1}{2} e^{j \pi / 4}\right) e^{j 2 \omega_{0} t}+\left(\frac{1}{2} e^{-j \pi / 4}\right) e^{-j 2 \omega_{0} t}
\end{aligned}
$$

Comparing with Fourier series expansion, $x(t)=a_{0}+a_{1} e^{j \omega_{0} t}+a_{-1} e^{-j \omega_{0} t}+a_{2} e^{j 2 \omega_{0} t}+a_{-2} e^{-j 2 \omega_{0} t}$

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=\left(1+\frac{1}{2 j}\right)=1-\frac{1}{2} j ; a_{-1}=\left(1-\frac{1}{2 j}\right)=1+\frac{1}{2} j \\
& a_{2}=\frac{1}{2} e^{j \pi / 4}=\frac{1}{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} j\right)=\frac{1}{2 \sqrt{2}}(1+j) \\
& a_{-2}=\frac{1}{2} e^{-j \pi / 4}=\frac{1}{2}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} j\right)=\frac{1}{2 \sqrt{2}}(1-j) \\
& a_{k}=0, \text { for }|k|>2
\end{aligned}
$$

Plots of the magnitude and phase of the Fourier coefficients

Fourier Series Representation : Example 3

Determine Fourier series of periodic square wave, defined over one period as:

$$
x(t)=\left\{\begin{array}{lc}
1, & |t|<T_{1} \\
0, & T_{1}<|t|<T / 2
\end{array}\right.
$$

Analysis equation:

$$
\begin{aligned}
& a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \\
& a_{0}=\frac{1}{T} \int_{T}^{T} x(t) d t=\frac{1}{T} \int_{-T_{1}}^{T_{1}} d t=\frac{2 T_{1}}{T} \longleftarrow k=0 \\
& a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j k(2 \pi / T) t} d t=\frac{1}{T} \int_{-T_{1}}^{T_{1}} e^{-j k(2 \pi / T) t} d t \\
& =\left.\frac{1}{T} \cdot \frac{-1}{j k(2 \pi / T)} e^{-j k(2 \pi / T) t}\right|_{-T_{1}} ^{T_{1}} \\
& =\frac{1}{k \pi}\left(\frac{-1}{2 j}\right)\left[e^{-j k(2 \pi / T) T_{1}}-e^{j k(2 \pi / T) T_{1}}\right]
\end{aligned}
$$

$$
=\left(\frac{1}{k \pi}\right)\left[\frac{e^{j k(2 \pi / T) T_{1}}-e^{-j k(2 \pi / T) I_{1}}}{2 j}\right]
$$

$$
\Rightarrow a_{k}=\frac{\sin \left(k \frac{2 \pi}{T} T_{1}\right)}{k \pi}=\frac{\sin \left(k \omega_{0} T_{1}\right)}{k \pi}, \text { for } k \neq 0
$$

Fourier series representation of the square wave

Fourier series can be used to represent (approximating) an extremely large class of periodic signals, including the square wave, by a linear combination of a finite number of harmonically related complex exponentials

$$
x_{N}(t)=\sum_{k=-N}^{N} a_{k} e^{j k \omega_{k} I}
$$

Convergence of the Fourier series representation of a square wave

Fourier Series Representation : Example 4

A continuous-time periodic signal $x(t)$ is real valued and has a fundamental period $T=8$ The non-zero Fourier series coefficients for $x(t)$ are $a_{1}=a_{-1}=2, a_{3}=a_{-3}^{*}=4 j$. Express $x(\mathrm{t})$ in the form: $\quad x(t)=\sum_{k=0}^{\infty} A_{k} \cos \left(\omega_{k} t+\varphi_{k}\right) \quad$ Find A_{k}, ω_{k}, and φ_{k}

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}=\sum_{k=-3}^{3} a_{k} e^{j k \omega_{0} t} \\
= & a_{1} e^{j \omega_{0} t}+a_{-1} e^{-j \omega_{0} t}+a_{3} e^{j 3 \omega_{0} t}+a_{-3} e^{-j 3 \omega_{0} t} \\
= & 2 e^{j \omega_{0} t}+2 e^{-j \omega_{0} t}+4 j e^{j 3 \omega_{0} t}-4 j e^{-j 3 \omega_{0} t} \\
= & 4\left[\frac{e^{j \omega_{0} t}+e^{-j \omega_{0} t}}{2}\right]+8(-1)\left[\frac{e^{j 3 \omega_{0} t}-e^{-j 3 \omega_{0} t}}{2 j}\right] \\
= & 4 \cos \left(\omega_{0} t\right)-8 \sin \left(3 \omega_{0} t\right) \\
= & 4 \cos \left(\omega_{0} t+0\right)-8 \cos \left(3 \omega_{0} t+\pi / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=4 ; \omega_{1}=\omega_{0}=\frac{2 \pi}{8}=\frac{\pi}{4} ; \varphi_{1}=0 \\
& A_{3}=-8 ; \omega_{3}=3 \omega_{0}=3 \frac{2 \pi}{8}=\frac{3 \pi}{4} ; \varphi_{1}=\frac{\pi}{2}
\end{aligned}
$$

All other $A_{k}, \omega_{k}, \varphi_{k}=0$

Fourier Series Representation : Example 5

For the continuous-time periodic signal, $\quad x(t)=2+\cos \left(\frac{2 \pi}{3} t\right)+4 \sin \left(\frac{5 \pi}{3} t\right)$
Determine the fundamental frequency ω_{0} and the Fourier series coefficients a_{k} such that:

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{k} t}
$$

$$
+a_{5} e^{j 5 \omega_{0} t}+a_{-5} e^{-j 5 \omega_{0} t}+\cdots
$$

for all other $k, a_{k}=0$

$$
\begin{aligned}
& x(t)=2+(1 / 2)\left[e^{j \frac{2 \pi}{3} t}+e^{-j \frac{2 \pi}{3} t}\right]+(4 / 2 j)\left[e^{j \frac{5 \pi_{t}}{3}}-e^{-j \frac{5 \pi_{t} t}{3}}\right] \\
& =2+(1 / 2) e^{j \frac{2 \pi}{3} t}+(1 / 2) e^{-j \frac{2 \pi}{3} t}+(-2 j) e^{j \frac{5 \pi}{3} t}+(2 j) e^{-j \frac{5 \pi \pi_{t}}{3}} \\
& x(t)=a_{0}+a_{1} e^{j \omega_{0} t}+a_{-1} e^{-j \omega_{0} t} \\
& +a_{2} e^{j 2 a_{0} t}+a_{-2} e^{-j 2 a_{0} t} \\
& +a_{3} e^{j 3 a_{0} t}+a_{-3} e^{-j 3 a_{0} t} \\
& +a_{4} e^{j 4 \omega_{0} t}+a_{-4} e^{-j 4 \omega_{0} t} \\
& \omega_{0}=\frac{\pi}{3}, a_{0}=2 \\
& a_{2}=1 / 2, \quad a_{-2}=1 / 2 \\
& a_{5}=-2 j, a_{-5}=2 j
\end{aligned}
$$

Fourier series representations possess a number of important properties that are useful for reducing the complexity of the evaluation of the Fourier series of many signals.
For a periodic signal $x(t)$ with period T and fundamental frequency $\omega_{0}=2 \pi / T$
Periodic signal $\quad x(t) \stackrel{F S}{\leftrightarrow} a_{k} \quad$ Fourier series coefficients

$$
x(t)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k w_{0} t}=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k(2 \pi / T) t} \quad \text { Synthesis Equation }
$$

$$
\begin{aligned}
& a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k w_{0} t} d t \\
& =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t
\end{aligned}
$$

Analysis Equation

Properties of Continuous-Time Fourier Series

2 Time-Shifting: $x(t) \stackrel{F S}{\leftrightarrow} a_{k} \Rightarrow x\left(t-t_{0}\right) \stackrel{F S}{\leftrightarrow} e^{-j k \omega_{0} t_{0}} a_{k} \quad\left(=e^{-j k\left(\frac{2 \pi}{T}\right) t_{0}} a_{k}\right) \quad\left|b_{k}\right|=\left|a_{k}\right|$.

$$
b_{k}=\int_{T} x\left(t-t_{0}\right) e^{-j k \omega_{0} t} d t=\int_{T} x(\tau) e^{-j k \omega_{0}\left(\tau+t_{0}\right)} d \tau=e^{-j k \omega_{0} t_{0}} \int_{T} x(\tau) e^{-j k \omega_{0} \tau} d \tau=e^{-j k \omega_{0} t_{0}} a_{k} \quad \quad \text { Same magnitudes }
$$

3 Frequency-Shifting: $x(t) \stackrel{F S}{\leftrightarrow} a_{k} \Rightarrow e^{j M \omega_{0} t_{0}} x(t) \stackrel{F S}{\leftrightarrow} a_{k-M}$
4 Time-Reversal: $x(t) \stackrel{F S}{\leftrightarrow} a_{k} \longmapsto x(-t) \stackrel{F S}{\leftrightarrow} a_{-k} \Rightarrow \begin{aligned} & x(-t)=x(t) \Rightarrow a_{-k}=a_{k} \quad a_{k} \text { are real even } \\ & x(-t)=-x(t) \Rightarrow a_{-k}=-a_{k} a_{k} \text { are imaginary and odd }\end{aligned}$

5 Time-Scaling: | | $x(t)$ Period T and frequency ω_{0} |
| ---: | :--- |
| | $\Rightarrow x(\alpha t)$ Period T / α and frequency $\alpha \omega_{0}$ |$\quad x(t) \stackrel{F S}{\leftrightarrow} a_{k} \Rightarrow x(\alpha t) \stackrel{F S}{\leftrightarrow} a_{k}$

6 Parseval's Relation for Periodic Signals:
The average power of $x(t)$

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2} \longleftarrow \text { power of } x(t)
$$

7 Differentiation: $\quad \frac{d x(t)}{d t} \stackrel{F S}{\leftrightarrow} j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
proof

$$
\frac{d x(t)}{d t}=\frac{d}{d t}\left[\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}\right]=\sum_{k=-\infty}^{\infty} j k \omega_{0} a_{k} e^{j k \omega_{0} t}
$$

8 Integration: $x(t) \stackrel{F S}{\leftrightarrow} a_{k} \longmapsto \int_{-\infty}^{t} x(t) d t \stackrel{F S}{\leftrightarrow}\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{T}{j k 2 \pi}\right) a_{k} \quad k \neq 0$
9 Conjugate and conjugate Symmetry for real signals:

$$
x(t) \stackrel{F S}{\leftrightarrow} a_{k} \longmapsto x^{*}(t) \stackrel{F S}{\leftrightarrow} a_{-k}^{*}
$$

$$
x(t) \text { is real }
$$

$$
x(t)=x^{*}(t)
$$

$$
\begin{gathered}
a_{-k}^{*}=a_{k} \\
\left|a_{k}\right|=\left|a_{-k}\right|
\end{gathered}
$$

proof

$$
a_{k}=\frac{1}{T_{0}} \int x(t) e^{-j k \omega_{0} t} \longmapsto a_{k}^{*}=\frac{1}{T_{0}} \int x^{*}(t) e^{+j k \omega_{0} t} \stackrel{k=-k}{\square} a_{-k}^{*}=\frac{1}{T_{0}} \int x^{*}(t) e^{-j k \omega_{0} t} \underset{\text { Conjugate of } x(t)}{\square} x^{*}(t) \stackrel{F S}{\leftrightarrow} a_{-k}^{*}
$$

10 Periodic Convolution:

$$
\begin{aligned}
& \text { proof } \frac{1}{T} \int[x(t) * y(t)] e^{-j k \omega_{0} t} d t=\frac{1}{T} \int\left[\int_{0}^{T} x(\tau) y(t-\tau) d \tau\right] e^{-j k \omega_{0} t} d t \quad=\frac{1}{T} \int_{0}^{T} \int_{0}^{T} x(\tau) y(t-\tau) \frac{e^{j k \omega_{0} \tau}}{e^{j k \omega_{0} \tau} d \tau e^{-j k \omega_{0} t} d t} \\
& =\frac{1}{T} \int_{0}^{T} \int_{0}^{T} x(\tau) e^{-j k \omega_{0} \tau} y(t-\tau) d \tau e^{j k \omega_{0} \tau} e^{-j k \omega_{0} t} d t \quad \begin{array}{r}
t-\tau=m \rightarrow d t=d m \\
t=0 \rightarrow m=-\tau \\
t=T \rightarrow m=T-\tau
\end{array} \\
& =\frac{1}{T}\left(\int_{0}^{T} x(\tau) e^{-j k \omega_{0} \tau} d \tau\right)\left(\int_{0}^{T} y(t-\tau) e^{-j k \omega_{0}(t-\tau)} d t\right) \quad=\left(\frac{1}{T} \int_{0}^{T} x(\tau) e^{-j k \omega_{0} \tau} d \tau\right)\left(\frac{1}{T} T \int_{-\tau}^{T-\tau} y(m) e^{-j k \omega_{0}(m)} d m\right)=T a_{k} b_{k}
\end{aligned}
$$

Problem 1

Consider three continuous-time periodic signals whose Fourier

$$
x_{1}(t)=\sum_{k=0}^{100}\left(\frac{1}{2}\right)^{k} e^{j k(2 \pi / 5) t}
$$ series representations are as follows:

Use Fourier series properties to help answer the following questions:

$$
x_{2}(t)=\sum_{k=-100}^{100} \cos (k \pi) e^{j k(2 \pi / 50) t}
$$

(a) Which of the three signals is/are even?
(b) Which of the three signals is/are real valued?

$$
x_{3}(t)=\sum_{k=-100}^{100} j \sin (k \pi / 2) e^{j k(2 \pi / 50) t}
$$

Fourier series representation:

$$
\text { For } x_{1}(t) \quad \omega_{0}=\frac{2 \pi}{50}
$$

For $x_{1}(t)$ to be real: $a_{-k}^{*}=a_{k}$
$a_{\mathrm{k}}=\left(\frac{1}{2}\right)^{k}$, for $k=0,1,2, \cdots, 100$
$a_{\mathrm{k}}=0$, for $k>100$ and $k<0$

$$
x(t)=\sum_{k-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}
$$

However, here $a_{10}=\left(\frac{1}{2}\right)^{10}$

$$
\begin{aligned}
& \text { For } x_{1}(t) \text { to be even: } x_{1}(t)=x_{1}(-t) \\
& x_{1}(-t)=\sum_{k=0}^{100}\left(\frac{1}{2}\right)^{k} e^{-j k\left(\frac{2 \pi}{50}\right) t}=\sum_{k=-100}^{0}\left(\frac{1}{2}\right)^{-k} e^{j k\left(\frac{2 \pi}{50}\right) t} \neq \sum_{k=0}^{100}\left(\frac{1}{2}\right)^{k} e^{j k\left(\frac{2 \pi}{50}\right) t}=x_{1}(t)
\end{aligned}
$$

$$
a_{-10}=0, \quad a_{10} \neq a_{-10}^{*}
$$

$$
x_{1}(t) \text { is not even. }
$$

For $x_{2}(t) \quad x_{2}(t)=\sum_{k=-100}^{100} \cos (k \pi) e^{j k(2 \pi / 50) t}$

$$
\begin{array}{l|l}
\omega_{0}=\frac{2 \pi}{50} & \begin{array}{l}
a_{\mathrm{k}}=\cos (k \pi), \text { for }-100 \leq k \leq 100 \\
a_{\mathrm{k}}=0, \quad \text { otherwise }
\end{array}
\end{array}
$$

For $x_{1}(t)$ to be real: $a_{-k}^{*}=a_{k}$

$$
\begin{aligned}
& a_{-k}^{*}=(\cos (-k \pi))^{*}=\cos (k \pi)=a_{\mathrm{k}} \\
& \operatorname{Re}\left\{a_{\mathrm{k}}\right\}=\cos (k \pi), \quad \operatorname{Re}\left\{a_{-\mathrm{k}}\right\}=\cos (-k \pi)=\cos (k \pi)
\end{aligned}
$$

$$
\Rightarrow \operatorname{Re}\left\{a_{\mathrm{k}}\right\}=\operatorname{Re}\left\{a_{-\mathrm{k}}\right\}
$$

$$
\operatorname{Im}\left\{a_{\mathrm{k}}\right\}=0=\operatorname{Im}\left\{a_{-\mathrm{k}}\right\}
$$

$$
\left|a_{\mathrm{k}}\right|=\left|a_{-\mathrm{k}}\right|, \quad \Varangle a_{\mathrm{k}}=0=\Varangle a_{-\mathrm{k}}
$$

$x_{2}(t)$ is real.

$$
\begin{aligned}
& \text { For } x_{1}(t) \text { to be even: } x_{1}(t)=x_{1}(-t) \text {, and } a_{\mathrm{k}}=a_{-\mathrm{k}} \\
& a_{\mathrm{k}}=\cos (k \pi) \\
& a_{-\mathrm{k}}=\cos (-k \pi)=\cos (k \pi) \\
& \Rightarrow a_{\mathrm{k}}=a_{-\mathrm{k}}
\end{aligned}
$$

$x_{2}(t)$ is even.

For $x_{3}(t)$

$$
x_{3}(t)=\sum_{k=-100}^{100} j \sin (k \pi / 2) e^{j k(2 \pi / 50) t}
$$

$$
\omega_{0}=\frac{2 \pi}{50}
$$

$$
a_{\mathrm{k}}=j \sin (k \pi / 2), \text { for }-100 \leq k \leq 100
$$

$$
a_{\mathrm{k}}=0, \quad \text { otherwise }
$$

For $x_{1}(t)$ to be real: $a_{-k}^{*}=a_{k}$

$$
\begin{aligned}
& a_{\mathrm{k}}=j \sin (k \pi / 2) \\
& a_{-k}^{*}=-j \sin \left(-\frac{k \pi}{2}\right)=j \sin \left(\frac{k \pi}{2}\right)=a_{k}
\end{aligned}
$$

$$
\operatorname{Re}\left\{a_{\mathrm{k}}\right\}=0=\operatorname{Re}\left\{a_{-\mathrm{k}}\right\}
$$

$$
\operatorname{Im}\left\{a_{\mathrm{k}}\right\}=-\operatorname{Im}\left\{a_{-\mathrm{k}}\right\}
$$

$$
\left|a_{k}\right|=|j \sin (k \pi / 2)|=|\sin (k \pi / 2)|
$$

$$
\left|a_{-k}\right|=|j \sin (-k \pi / 2)|=|\sin (k \pi / 2)|
$$

$$
\Rightarrow\left|a_{k}\right|=\left|a_{-k}\right|
$$

$\Varangle a_{\mathrm{k}}=\tan ^{-1}\left(\frac{\sin (k \pi / 2)}{0}\right)=\tan ^{-1}(\infty)=\pi / 2$
$\Varangle a_{-\mathrm{k}}=\tan ^{-1}\left(\frac{\sin (-k \pi / 2)}{0}\right)=\tan ^{-1}(-\infty)=-\pi / 2$
$\Rightarrow \Varangle a_{\mathrm{k}}=-\Varangle a_{-\mathrm{k}}$
$x_{3}(t)$ is real.

For $x_{1}(t)$ to be even: $a_{\mathrm{k}}=a_{-\mathrm{k}}$

$$
a_{-k}=j \sin \left(-\frac{k \pi}{2}\right)=-j \sin \left(\frac{k \pi}{2}\right)=-a_{k}
$$

$\Rightarrow a_{-k} \neq a_{k}$
$x_{3}(t)$ is not even.

Problem 2

Suppose we are given the following information about a signal $x(t)$:
(1) $x(t)$ is real and odd.
(2) $x(t)$ is periodic with period $\mathrm{T}=2$, and has Fourier coefficients a_{k} :
(3) $a_{k}=0$ for $|k|>1$.
(4) $\frac{1}{2} \int_{0}^{2}|x(t)|^{2} d t=1$.

Specify a signal that satisfies these conditions.

From (2): Fourier series representation: $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$

$$
\omega_{0}=\frac{2 \pi}{T}=\frac{2 \pi}{2}=\pi
$$

From (3): $x(t)=a_{1} e^{j \omega_{0} t}+a_{-1} e^{-j \omega_{0} t}$
From (1): $a_{0}=0$, because $x(t)$ is odd.

$$
\begin{aligned}
& x(t) \text { is odd } \Rightarrow a_{1}=-a_{-1} \\
& x(t)=a_{1} e^{j \omega_{0} t}+a_{-1} e^{-j \omega_{0} t} \\
& \quad=a_{1}\left(e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right) \\
& x^{*}(t)=a_{1}^{*}\left(e^{-j \omega_{0} t}-e^{j \omega_{0} t}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow|x(t)|^{2} & =\left|x(t) x^{*}(t)\right|=\left|a_{1} a_{1}^{*}\right|\left|1-e^{j \omega_{0} t}-e^{-j \omega_{0} t}+1\right| \\
& =\left|a_{1} a_{1}^{*}\right|\left|2-2 \cos \left(2 \omega_{0} t\right)\right|=2\left|a_{1} a_{1}^{*}\right|\left|1-\cos \left(2 \omega_{0} t\right)\right|
\end{aligned}
$$

From (4): $\quad \frac{1}{2} \int_{0}^{2}|x(t)|^{2} d t=1 . \quad \Rightarrow \quad \frac{1}{2} \int_{0}^{2} 2\left|a_{1} a_{1}^{*}\right|\left|1-\cos \left(2 \omega_{0} t\right)\right| d t=1$.
$\Rightarrow\left|a_{1} a_{1}^{*}\right| \int_{0}^{2}\left|1-\cos \left(2 \omega_{0} t\right)\right| d t=1$.

$$
\left|a_{1} a_{1}^{*}\right|\left[t-\frac{\sin \left(2 \omega_{0} t\right)}{2 \omega_{0}}\right]_{0}^{2}=1 . \quad \Rightarrow \quad\left|a_{1} a_{1}^{*}\right|[2-0-0+0]=1 \Rightarrow\left|a_{1} a_{1}^{*}\right|=\frac{1}{2}
$$

As a_{1} is complex: $\left\{\operatorname{Re}\left(a_{1}\right)\right\}^{2}+\left\{\operatorname{Im}\left(a_{1}\right)\right\}^{2}=\frac{1}{2}$
As a_{1} is purely imaginary: $\{0\}^{2}+\left\{\operatorname{Im}\left(a_{1}\right)\right\}^{2}=\frac{1}{2} \Rightarrow \operatorname{Im}\left(a_{1}\right)= \pm \frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& a_{1}= \pm j \frac{1}{\sqrt{2}} \\
& a_{-1}=-a_{1}=\mp j \frac{1}{\sqrt{2}} \quad \begin{array}{l}
\text { Therefore, the signals are } \\
x_{1}(t)=\frac{1}{\sqrt{2}} j e^{j \pi t}-\frac{1}{\sqrt{2}} j e^{-j \pi t}=-\sqrt{2} \sin (\pi t) \\
x_{2}(t)=-\frac{1}{\sqrt{2}} j e^{j \pi t}+\frac{1}{\sqrt{2}} j e^{-j \pi t}=\sqrt{2} \sin (\pi t)
\end{array}, l
\end{aligned}
$$

