Chapter 3

Fourier Series Representation



Introduction

Jean Baptiste Joseph Fourier

Born in Auxerre, France

Mathematician and physicist

Developed Fourier series, Fourier transforms
and their applications on heat and vibration
Life span: 21 March 1768 — 16 May 1830

Also known as an Egyptologist.




The response of LTI systems to complex exponentials

* For the study of LTI systems we represent signals as linear combinations of basic signals (unit impulse
5(t) , complex exponential est,...).

 The response of an LTI system to a complex exponential input is the same complex exponential with
only a change in amplitude.

" . 1) . st
Continuous time: e” — H (s )e H(s) and H(z) are the amplitude factor
Discrete time: =" — H (: )z n (complex function of complex variable).

« Asignal for which the system output is a (possibly complex) constant times the input is referred to as
an eigenfunction of the system, and the amplitude factor is referred to as the system's eigenvalue.

Y constant times the input

X(t) —  system b—— Hx(t)
The constant H is the Eigenvalue




Continuous time case

Complex exponentials are eigenfunctions of LTI systems

r LTI S
y(t)= j h(t)x(t—7)dr x(t) —— h\(/;em — y(t) = H x(t)

IF: x(t) = eSt (a complex exponential) ® y(t) = j h(t) e$EDdt - convolution

D y() = j h(7) eSte‘STdr=eStJ h(t) e S%dt
— 00  J—o0

l

/
= y(t) = H(s) et Where: H(s) = f_oooo h(t)e >'dr

}

The complex constant H(s) for a specific value of s is the ‘eigenvalue’ associated
with the eigenfunction est.



Discrete time case

Complex exponential sequences are eigenfunctions of discrete-time LTI systems.

=S W[k Jx[n—k] de) —— T —s i
k=—w
IF: x[n] = z™ (input the sequence) = YInl= Z hlk] x[n — k]
k=—o0
» y[n] = hk] z % = hlk] z" z7k = z" hlk] z ™%
k:z—oo k:z_oo k:z—oo

« The complex exponentials are ‘eigenfunctions’ of LTIl systems.

= H x[n]

» The constant H(z) for a specific value of z is the ‘eigenvalue’ associated with the

eigenfunction z™.



Fourier Series Representation of Continuous
Time Periodic Signals

1. Linear combination of harmonically related complex exponentials

A signal is periodic, if, for some positive value of T,  x(t)=x(t+T). forallr (1)

The fundamental period of x(t) is the minimum, positive, nonzero value of T for which
equation (1) is satisfied.

Sinusoidal: X(f) = cos(@,f) fundamental freauency:
Basic periodic signals: | e o 2%
Complex exponential: x(t) = e’ T

Harmonically related signals with = 10T
the complex exponential: = ¢ () =e =T p=0,+1.42,...

Fourier series representation of a periodic signal x(t) with period T

= _ = I The term for k = 0 is a constant.
I{_f) _ Z a EJ""&’D’ _ Z a EJ"‘{*'F"TJ" The terms for k = +1 are the ‘first harmonic components’ or fundamental
k k components’.
The terms for k = +2 are the ‘second harmonic components’.
The terms for k = +N are the ‘N harmonic components’.



Example

Consider a periodic signal x(t) with fundamental frequency 2,
expressed as:

Xty =1

3 a a 1/4 xi{t) = 3 cos 2wt
k2 =d_; =1
(=S ae" " where, o
g a,=da.,=1/2
k=—3 1 = U, =102
1

a.=a.=1/3 X,(t) = cos 4t
3 — W _3 — 44 .
With these values, the periodic signal x(t) can be re-written as: MWVQ\]‘\
x(f)=1+- (e +e ™ )+ : (e +e* )+ : (™ +e7*") 4 - & cos b

4 2 3 |

x(t) = xplt} + =4(t) + Xall) + ){3[1)

with, 2cos(et) =’ +e™ 7 ﬂ

We obtain,

\

ﬂ

W



Determination of the Fourier Series Representation
of a Continuous-time Periodic Signal

We need to determine the coefficients ay, in order to express © _
a periodic continuous signal x(t) with a fundamental period T X (;) — z ﬂkejkﬁhf
and a fundamental frequency w, = 2?” as a Fourier series ke =—o0

Find A «x (T}E e Z H}Eﬁ%’f,{?_ﬁw «<——  Multiplying by e /"ot

fr=—a

o T

I 1 -
— jh L Jhagt _—jnayt . J(k—n)ayt
J.‘T (f )E (ff _,[ Z ap€ € (?Tf o Z Ay J.E dr «<— Integrating from O to T
0 k== f=—wo 0

0

T T T

_[ e’ FTIN g = J cos(k —n)aytdt + j _[ sin(k —n)e,dt 4/\
0 0 0

.
JI '|I

Using Euler’s Formula

cos(k —n)aydt =0. | sin(k —n)eytdt =0 «~— Fork=n \_/ Kronecker Delta:

] ) ) Area = 0 {ﬂ'k _ 1.. kK =n
e? ™ dt = [ cos(0)dr + j [sin(0)dr = [dt =T =T 5,,«— Fork=n - T10. k=n
0 0 0

| o U
0




Fourier Series Representation : Continued

T
T - T o 1 B
II (t)e™"¥dt = nkj'e*”:*“‘”*""fdr =Y aTs,=aTl @ @ = —Ir (t)e "™ dt
0 k=—m 0 F=—m T 0
1 y o .
» a, = _II (t)e jkext 14| ay are called Fo_uner series coefficients,
d or spectral coefficients

Synthesis equation:  x (t) = Z ae’ ™ = Z a,e’* T
k=

—

| .
Analysis equation: :ET'[I (H)e™¥dt =
I

T
%,[‘T (f)e—jk(h'.-’f )t 1t
0

aq: is the DC component



Fourier Series Representation : Example 1

A CT signal with fundamental frequency w,: x(t) = sin(wyt), determine its Fourier series

8 .
e’ =cosf+jsind _ 1 . »
Using Euler’s formula: | S | Dsinf=—|e’" —e “”9]
e/® =cos@—jsin@ 2j
- L jow 1 o
» X (f)=sm(of )=—=e’'™" ———e (1)
2] 2]
Comparing with Fourier synthesis equation(matching terms of (1) and (2)):
x(t) = z q, ekt = ... 4 q_ e J200t 4 g_ e=J®ot 4 g 4 q,el@0t 4 g, ei2@ot ... (2)
k=—o0
a,=0
. 1 g
= 1:"2 == ——
We get, 4 =012 27 g EJ and a, =0, for |k |>1



Fourier Series Representation : Example 2

Determine Fourier series of:  x () =1+sm(@yf ) +2cos(myf ) +cos(2af + 7/ 4)

x(r)=1 +L[E;w —e /W ] Jrg[éf"“i’”F —|—€_J.%E]—I—l[ﬂ‘f{jmﬂHﬁM} +e_“1m‘:"”’;4}]
27 2 2
1 - | _ | P Y A P R,
=1+|1+— [/ +|1—— |e /¥ 4| —e/™* |e/°W 1| _e /T |7/ W
2] 2] 2 2
Comparing with Fourier series expansion, =
. . S B 1 1 1 L
X (f}:ﬂu+ﬂ1EJ Lt'f—|—ﬁ_1€ J i _I_E?EEJ'-W _|_ﬁ_1€ J 2ant a, 2(14—2—1_]:1—5}; H_IZ[I_Z]:]-I_EJ
| a |
1 e (1 1 1 _
, == = — =——(1
13y » “ EE z(ﬁ—l_ﬁj] 2@("'})
1 _jm-4_1(1 1 _J_ 1
- ! 2= =2\ =—F=J |==0-J)
. . *—5255|lr " AR

3-2-1 0 1 2 3
Plots of the magnitude and phase of the Fourier coefficients

a. =0. for |k |>2



Fourier Series Representation : Example 3

Determine Fourier series of periodic

square wave, defined over one period as:

Analysis equation:
1 (2
a, :—jx(.f)e QT gy
T

— ik (2x/T Wt ‘ 1
11

T kQr/T)

1 { —? ][E—ﬁf(zzfﬂﬂ _Ejkliim’f}?l]

kral2;j

wit)

L tl<T i
x(t)= |
0. Tl ‘i:|f |‘{T /2 -, -Ta T, TAh

xifl

CHR A p e

T 2T

I
2
1 E_,;'E., (2x/T }Tll —_}k(zm’]‘” )4}
(kﬂ]

5111(;1 TJ
=a, = 4 25111( QOTI), fork #0
kr kT

Tay

Plots of the scaled Fourier
series coefficients for T = 4T;




Fourier series representation of the square wave

Fourier series can be used to represent (approximating) an extremely large class of periodic signals,
including the square wave, by a linear combination of a finite number of harmonically related complex
exponentials

L)
xnit) = l iy ed F
k=—N

T

N=3 N=7

the approximation error _~ Gibbs phenomenon

i [
| h=18 h
en(t) = x(r) — xn(t) m 0 | ’

|

| |

| I

| I

| __J____L,. |
va_n 0 T, R

Convergence of the Fourier series representation of a square wave




Fourier Series Representation : Example 4

A continuous-time periodic signal x(t) is real valued and has a fundamental period T = 8
. The non-zero Fourier series coefficients for x(t) are a; = a_, = 2, a3 = a3 = 4j.
Express x(t) in the form:  x(t) = Yp—o Axcos(wit + @i)  Find Ay, wy, and @y,

= ¥ ot 3 2 &
X(@)= D ae” = geiton A =4 o=0,=""="1 ¢ =0
kF =—m k=-3 E 4
_ Jat —J eyt J Iext —J 3t D
=a.e +a e +d.e +d € 2x 3w T
" - 3 = A;=-8 o, =30, =3—="—"1¢ ="
=20’ +2e7Y + 4o’ — 4o 54 -
_Ejm,:; _|_E—jmnf_ _Eﬁw _E—jaf@_ All other 4, .o, ., =0
=4 +8(—1)
] 2 ] i 27 ]

= 4 cos(@yt ) —8sm(3am,t)

= 4cos(at +0)—8cos(3at +7/2)




Fourier Series Representation : Example 5

3

Determine the fundamental frequency w, and the X () = i a. 0¥
Fourier series coefficients a; such that: N

27T [ 57w
For the continuous-time periodic signal, x{tj=2+ms[ 3 I]+4sm[ tj

I.J_..I'_

_Irr _ “Er _EHr EHr
:r(f):2+(1.-"2){ej3 +e ° }+(4.ﬁ’2j][€i3 —e }

2x, _ . Ix X _i %,
=2+(1/ e’ 3 +(1/2e 3 +(=2)) 3 +(2))e 3 T
x(t)=a, +ae’™ +a_e” ™ @ = E'ﬂﬂ =°
j 2ant —J layt
+a,e’ ™™ +a_e a,=1/2, a,=1/2

rael g eI as=—2]. d5=2]
for all other k.a, =0

. s
+ae! ™ +a_e™ 7 4+



Properties of Continuous-Time Fourier Series

Fourier series representations possess a number of important properties that are useful for reducing the
complexity of the evaluation of the Fourier series of many signals.

For a periodic signal x(t) with period T and fundamental frequency wy = 2n/T

C o FS
Periodic signal x(t) © a; Fourier series coefficients
+co + 00
x(t) = Z a,elkwot = Z g T T Synthesis Equation
=— D =—CD

1 .
a, = —f x(t)e TkWotqt
T
T Analysis Equation

T T



Properties of Continuous-Time Fourier Series

FS
: : e x(t) & ay
: FS
1 Linearity: two periodic signals x(t) and y(t) - =) Ax(t) +By(t) <& Aa,+Bb,
With same period T, y(t) & by
2 Time-Shifting: kS FS  —jkwot (2T
9 ()G a, = x(t—t)) o ekotoay (KT gy bl = laul.
t—tyg=1
by = J x(t _ to)e—jkwot dt = j x(T)e_jka(T"'tO)dT — e—jkwotoj x(T)e_jkaTdT — g~ Jkwoto a, Same magnitudes
T T T
-Shiftina: FS : FS
3 Frequency-Shifting: , )°3 a, =P eMooto x(£)'S ay_y

x(—t) =x(t) = a_, =ay a; are real even

: FS
4 Time-Reversal: x(t)If_S) a, ™= x(=t) e ay .
x(—t) = —x(t) m) a_, = —a; % areimaginary and odd

5 Time-Scaling: x(t) Period T and frequency wg FS FS
g . x(t) & ag = x(at) o ag
= x(at) Period T/aand frequency aw,

6 MUITip“CGTion: FS . z(t)y(t) = Z a et Z b, edlent
two periodic signals (1) < a = x(t) y(t) ks b proof el
X y A Ck — z al k—1 — a by el
x(¢) and y(¢) FS £ A D DD D
y(t) © by =—

+00 +00
- Z LZ ﬂ-m_gb;] ejmt

m = —00 = —x0



6 Parseval's Relation for Periodic Signals:
J Tf lx(t)|? dt = Z laxl®* < power of x(t)
The average power of x(t) T =
d ( ) 7 proof
7 Differentiation: x( B ik =k dx(t) d [ N ]
] a)Oa’k - ] ak S a.elkwot jkwy a eJkwot
dt T dt ~ dt RZOO . R_Z: &
: t
8 Integration: FS j Fs (1 _(_T
. . o . ai — a
9 Conjugate and conjugate Symmetry for real signals: (0 is real - | |k | k |
FS .\ FS _ ag| = la_g
x()S a, = O8 a, x(t) = x*(t)
. 1 FS
proof ay =Ti x(t)e—jkwot ‘ a;; _ i x* (t)e+jka)0t kﬁk a‘, = To x* (t)e~ Jkﬂ{ ‘ x*(t) & a’,
0 TO Conjugate of x(t)
T jkwoT
10 Periodic Convolution: proof f (X0 + YOl oot = f [ fo x(D)y(t = 7) drle ket dt f f x(@y(t =) jkw Fdre oot
FS FS
x(t) < ak and )’(t) « bk =%LT LTx(T)e_jkaTy(t—T)dTejkw"Te_jkw"tdt t_z::i)_;:t::_im
FS t=T->-m=T-1
- X(t) * y(t) > Takbk 1/ (T . T — T T—g
= ?<jo X(T)e—jkwo‘rdT> (jo y(t — T)e—kao( —T)dt> — <%f x(T)e_jkaTdT> <%Tf y(m)e—jkwo(m)dm> = Tayby




Problem 1

Consider three continuous-time periodic signals whose Fourier
series representations are as follows:

Use Fourier series properties to help answer the following questions:

(a) Which of the three signals is/are even?
(b) Which of the three signals is/are real valued?

100 A \F e
:rl(FJ=Z( J g/F0
o\ 2.

100
%)= > cos(km)e
E=-100
100 o
X (= > jsin(kz/2)e

k=-100

Fourier series representation: x(f)= % g™
e —

2T
For x4 (t = — ke
1(8) | oo 50
For x1(t) to be real: a*; = ay
N\ For x,(t) to be even: x,(t) = x,(—t)
Ak = (E) ,fOT' k == O, 1,2,"',100 100

ay=0,fork>100and k <0

k=0

1710
However, here a,y = (E)

G(-0=) (%)k e (55) = > (

a_10 =0,

*k
A9 + A_qg

x1(t) is not real.

x1(t) is not even.




100

For x,(t) X, (1) = Z cos(kr)e kx50
k=-100
21 ay = cos(km), for — 100 < k < 100
Wy = —
° 50 ax = 0, otherwise

For x1(t) to be real: a*,; = ay
al, = (cos(—kn))* = cos(km) = ay

Re{ay} = cos(km), Ref{a_y} = cos(—km) = cos(km)

» Re{ay} = Re{a_y}
Im{ay} =0 = Im{a_y}

lax| = la_gl, Aay =0 =4a_yg

X, (t) is real.

For x,(t) to be even: x,(t) = x;(—t),and ay = a_y
ay = cos(km)

a_y = cos(—km) = cos(km)

» ag = Ak

X, (t) is even.



100

For x;(t) : (1) =

k=—100

For x1(t) to be real: a”;, = a;

ay = j sin(km/2)

. o km  [(kn
a_, = —jsin -y = j sin - = ay

» Re{ay} = 0 = Re{a_y}

» Im{ay} = —Im{a_y}
lax| = |j sin(kr/2)| = |sin(kr/2)|
la_i| = |j sin(—km/2)| = |sin(km/2)|

» |ak| = |a—k|

Aaqy = tan~1 (sin(lgn/Z)) = tan~1(w0) = /2

_ _, [sin(—km/2)
Aa_y = tan < 0

» i1ay = —3a_y

> = tan~1(—ow0) = —1/2

x3(t) is real.

Z __f Sllll{fi'ﬂ' z}e_fﬂlﬁ'.’ﬁﬂjf

Wy = —=<
50 ay = 0, otherwise

For x1(t) to be even: ay = a_y

o < kn) o <kn>
ay =jsin|——)=—jsin|— | = —a
» a_j == (08 %

x3(t) is not even.

2 ay = j sin(km/2), for —100 < k <100



Problem 2

Suppose we are given the following information about a signal x(t):
(1) x(¢t) is real and odd.
(2) x(t) is periodic with period T = 2, and has Fourier coefficients a:
(3) a;, = 0 for |k| > 1.

1 (2
4) 5 J, lx(@©I* dt = 1. Specify a signal that satisfies these conditions.

Fourier series representation: x(t) = Zloco:—oo akefkwot
2w 21

CL)O—T—T—T[

From (3): x(t) = a,e/®ot + q_ e~ Jwot

From (2):

From (1): ag = 0, because x(t) is odd.
x(t)isodd ™ a; = —a_q

x(t) = a e/ @0t + a_ e/ @ot

—a (ejwot . e—jwot) | |
1 2 * * t - t
) |x(®)|? = |x(@®) x* ()| = lay aj||1 — /@0t — e7I@ot 4 1]

— —]J t ] t
= X*(t) — a;(e J@ot — g/ %0 ) = |la; ail|2 — 2cos(Rwyt)| = 2|a; aill1l — cos(Rwyt)]




: 1 2 *
From (4): %f02|x(t)|2 dt = 1. » Efo 2|lay ail|ll — cosQwyt)|dt = 1.

» la; aj f02|1 — coswyt)|dt = 1.

2

1
=1 B ladl[2-0-0+01=18 |aajl =

sin(2wy t)]

*k
la, ail [t 2o

0

1
As a, is complex: {Re(a,)}* + {Im(a,)}* = >
1

As a, is purely imaginary: {0}% + {Im(a,)}* = > » Im(a,) = i\/f

1
a, = i]_ 1 g 1 . i -
5(t)=—=je'™ ——= je'™ =—/2sm(xt
V2 _ 1 Therefore, the signals are 1) ﬂ“'r JE”I (1)
a4 =—a; =+j—= 1 . 1 | |
V2 W) == 3¢ + 5 je " =2 sin()



