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Introduction



The response of LTI systems to complex exponentials

• For the study of LTI systems  we represent signals as linear combinations of basic signals (unit impulse 

𝛿(𝑡) , complex exponential 𝑒𝑠𝑡,…).

• The response of an LTI system to a complex exponential input is the same complex exponential with 

only a change in amplitude.

𝐻(𝑠) and 𝐻(𝑧) are the amplitude factor 
(complex function of complex variable). 

• A signal for which the system output is a (possibly complex) constant times the input is referred to as 

an eigenfunction of the system, and the amplitude factor is referred to as the system's eigenvalue.

System𝑥(𝑡) 𝐻 𝑥(𝑡)
constant times the input 

The constant H is the Eigenvalue



Continuous time case

LTI System
ℎ(𝑡)

𝑥(𝑡) 𝑦 𝑡 = 𝐻 𝑥(𝑡)

Complex exponentials are eigenfunctions of LTI systems

IF: 𝑥 𝑡 = 𝑒𝑠𝑡 (a complex exponential) y 𝑡 = න
−∞

∞

ℎ(𝜏) 𝑒𝑠(𝑡−𝜏)dτ

y 𝑡 = න
−∞

∞

ℎ(𝜏) 𝑒𝑠𝑡𝑒−𝑠𝜏dτ = 𝑒𝑠𝑡න
−∞

∞

ℎ(𝜏) 𝑒−𝑠𝜏dτ

y 𝑡 = 𝐻 𝑠 𝑒𝑠𝑡 Where: 𝐻 𝑠 = ∞−׬
∞
ℎ(𝜏) 𝑒−𝑠𝜏𝑑𝜏

The complex constant H(s) for a specific value of 𝑠 is the ‘eigenvalue’ associated 

with the eigenfunction 𝑒𝑠𝑡.

convolution



Discrete time case
Complex exponential sequences are eigenfunctions of discrete-time LTI systems.

LTI System
ℎ[𝑧]

𝑥[𝑧] 𝑦 𝑛 = 𝐻 𝑥[𝑛]

IF: 𝑥 𝑛 = 𝑧𝑛 (input the sequence) 𝑦 𝑛 = ෍

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘]

𝑦 𝑛 = ෍

𝑘=−∞

∞

ℎ 𝑘 𝑧𝑛−𝑘 = ෍

𝑘=−∞

∞

ℎ 𝑘 𝑧𝑛 𝑧−𝑘 = 𝑧𝑛 ෍

𝑘=−∞

∞

ℎ 𝑘 𝑧−𝑘

𝑦 𝑛 = 𝐻[𝑧] 𝑧𝑛 With    𝐻[𝑧] = σ𝑘=−∞
∞ ℎ 𝑘 𝑧−𝑘

• The complex exponentials are ‘eigenfunctions’ of LTI systems.

• The constant H(z) for a specific value of z is the ‘eigenvalue’ associated with the 

eigenfunction 𝑧𝑛.



Fourier Series Representation of Continuous
Time Periodic Signals

1. Linear combination of harmonically related complex exponentials

A signal is periodic, if, for some positive value of T,

The fundamental period of x(t) is the minimum, positive, nonzero value of T for which 

equation (1) is satisfied.

(1)

Basic periodic signals:
Sinusoidal:

Complex exponential:

Harmonically related signals with 

the complex exponential:

fundamental frequency:

Fourier series representation of a periodic signal 𝑥(𝑡) with period T
The term for k = 0 is a constant.
The terms for 𝑘 = ±1 are the ‘first harmonic components’ or ‘fundamental 
components’.
The terms for 𝑘 = ±2 are the ‘second harmonic components’.
The terms for 𝑘 = ±𝑁 are the ‘Nth harmonic components’.



Example
Consider a periodic signal 𝑥(𝑡) with fundamental frequency 2𝜋, 

expressed as:

where,

With these values, the periodic signal 𝑥(𝑡) can be re-written as: 

with,

We obtain,



Determination of the Fourier Series Representation
of a Continuous-time Periodic Signal

We need to determine the coefficients 𝑎𝑘, in order to express 

a periodic continuous signal 𝑥(𝑡) with a fundamental period 𝑇

and a fundamental frequency 𝜔0 =
2𝜋

𝑇
as a Fourier series 

Find 𝑎𝑘: Multiplying by 𝑒−𝑗𝑛𝜔0𝑡

Integrating from 0 to T

For 𝑘 ≠ 𝑛

For 𝑘 = 𝑛

Kronecker Delta:

Using Euler’s Formula



Fourier Series Representation : Continued

𝑎𝑘 are called Fourier series coefficients, 

or spectral coefficients 

Synthesis equation:

Analysis equation:

𝑎0: is the DC component



Fourier Series Representation : Example 1

A CT signal with fundamental frequency 𝜔0: 𝑥 𝑡 = 𝑠𝑖𝑛 𝜔0𝑡 , determine its Fourier series 

Using Euler’s formula:

Comparing with Fourier synthesis equation(matching terms of (1) and (2)):

𝑥 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 = ⋯+ 𝑎−2𝑒

−𝑗2𝜔0𝑡 + 𝑎−1𝑒
−𝑗𝜔0𝑡 + 𝑎0 + 𝑎1𝑒

𝑗𝜔0𝑡 + 𝑎2𝑒
𝑗2𝜔0𝑡 +⋯

We get,

(1)

(2)

and 



Fourier Series Representation : Example 2

Determine Fourier series of: 

Comparing with Fourier series expansion,

Plots of the magnitude and phase of the Fourier coefficients



Fourier Series Representation : Example 3

Determine Fourier series of periodic 

square wave, defined over one period as:

Analysis equation:

Plots of the scaled Fourier 

series coefficients for 𝑇 = 4𝑇1

𝜋𝑎𝑘

𝑘 = 0



Fourier series representation of the square wave
Fourier series can be used to represent (approximating) an extremely large class of periodic signals, 

including the square wave, by a linear combination of a finite number of harmonically related complex 

exponentials

Convergence of the Fourier series representation of a square wave

Gibbs phenomenonthe approximation error

𝑥(𝑡)
𝑥𝑁(𝑡)

𝑁 = 1 𝑁 = 3 𝑁 = 7

𝑁 = 19 𝑁 = 79

𝑁 → ∞
0



Fourier Series Representation : Example 4
A continuous-time periodic signal 𝑥(𝑡) is real valued and has a fundamental period 𝑇 = 8
. The non-zero Fourier series coefficients for 𝑥(𝑡) are 𝑎1 = 𝑎−1 = 2, 𝑎3 = 𝑎−3

∗ = 4𝑗. 
Express x(t) in the form: 𝑥 𝑡 = σ𝑘=0

∞ 𝐴𝑘𝑐𝑜𝑠 𝜔𝑘𝑡 + 𝜑𝑘

= ෍

𝑘=−3

3

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

Find 𝐴𝑘 , 𝜔𝑘 , 𝑎𝑛𝑑 𝜑𝑘



Fourier Series Representation : Example 5

For the continuous-time periodic signal,

Determine the fundamental frequency 𝜔0 and the 

Fourier series coefficients 𝑎𝑘 such that:

+⋯



Properties of Continuous-Time Fourier Series
Fourier series representations possess a number of important properties that are useful for reducing the 

complexity of the evaluation of the Fourier series of many signals.

For a periodic signal 𝑥(𝑡) with period 𝑇 and fundamental frequency 𝜔0 = 2𝜋/𝑇

𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

Fourier series coefficientsPeriodic signal



Properties of Continuous-Time Fourier Series

1 Linearity: two periodic signals 𝑥 𝑡 and 𝑦 𝑡

𝑦 𝑡 ↔ 𝑏𝑘
𝐹𝑆

𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

𝐴𝑥 𝑡 + 𝐵𝑦(𝑡)
𝐹𝑆
↔ 𝐴 𝑎𝑘 + 𝐵 𝑏𝑘

2 Time-Shifting: 𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

𝑥 𝑡 − 𝑡0 ↔ 𝑒−𝑗𝑘𝜔0𝑡0 𝑎𝑘
𝐹𝑆

(= 𝑒
−𝑗𝑘

2𝜋
𝑇 𝑡0 𝑎𝑘)

Same magnitudes𝑏𝑘 = න
𝑇

𝑥 𝑡 − 𝑡0 𝑒−𝑗𝑘𝜔0𝑡 𝑑𝑡 = න
𝑇

𝑥 𝜏 𝑒−𝑗𝑘𝜔0(𝜏+𝑡0)𝑑𝜏 = 𝑒−𝑗𝑘𝜔0𝑡0න
𝑇

𝑥 𝜏 𝑒−𝑗𝑘𝜔0𝜏𝑑𝜏 = 𝑒−𝑗𝑘𝜔0𝑡0 𝑎𝑘

𝑡 − 𝑡0 = 𝜏

3 Frequency-Shifting: 𝑒𝑗𝑀𝜔0𝑡0 𝑥 𝑡 ↔ 𝑎𝑘−𝑀
𝐹𝑆

𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

6 Multiplication:

𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

𝑥 −𝑡 ↔ 𝑎−𝑘
𝐹𝑆

4 Time-Reversal: 𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

𝑥 𝛼 𝑡 ↔ 𝑎𝑘
𝐹𝑆𝑥 𝑡 Period 𝑇 and frequency 𝜔0

𝑥 𝛼𝑡 Period 𝑇/𝛼and frequency 𝛼𝜔0

5 Time-Scaling:

𝑥 𝑡 𝑦 𝑡 ↔ 𝑐𝑘 = ෍

𝑙=−∞

∞

𝑎𝑙 𝑏𝑘−𝑙
𝐹𝑆

𝑦 𝑡 ↔ 𝑏𝑘
𝐹𝑆

two periodic signals 

𝑥 𝑡 and 𝑦 𝑡

𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

𝑥 −𝑡 = 𝑥(𝑡)

𝑥 −𝑡 = −𝑥(𝑡)

𝑎−𝑘 = 𝑎𝑘

𝑎𝑘 are imaginary and odd

𝑎𝑘 are real even

𝑎−𝑘 = −𝑎𝑘

proof

With same period 𝑇0



8 Integration:

𝑦 𝑡 ↔ 𝑏𝑘
𝐹𝑆

𝑥 𝑡 ↔ 𝑎𝑘 and
𝐹𝑆

10 Periodic Convolution:

න
−∞

𝑡

𝑥 𝑡 𝑑𝑡 ↔
1

𝑗𝑘𝜔0
𝑎𝑘 =

𝑇

𝑗𝑘2𝜋
𝑎𝑘

𝐹𝑆

7 Differentiation: 𝑑𝑥(𝑡)

𝑑𝑡
↔
𝐹𝑆

𝑗𝑘𝜔0𝑎𝑘 = 𝑗𝑘
2𝜋

𝑇
𝑎𝑘

6 Parseval’s Relation for Periodic Signals:

𝑥∗ 𝑡 ↔ 𝑎−𝑘
∗𝐹𝑆

𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

𝑎−𝑘
∗ = 𝑎𝑘

𝑥 𝑡 is real

𝑥 𝑡 = 𝑥∗(𝑡)
𝑎𝑘 = 𝑎−𝑘

9 Conjugate and conjugate Symmetry for real signals:

1

𝑇
න
𝑇

𝑥(𝑡) 2 𝑑𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘
2

The average power of 𝑥 𝑡

𝑑𝑥(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 = ෍

𝑘=−∞

∞

𝑗𝑘𝜔0 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

proof

𝑎−𝑘
∗ =

1

𝑇0
න𝑥∗ (𝑡)𝑒−𝑗𝑘𝜔0𝑡

𝑎𝑘 =
1

𝑇0
න𝑥(𝑡)𝑒−𝑗𝑘𝜔0𝑡proof

𝑘 = −𝑘

𝑎𝑘
∗ =

1

𝑇0
න𝑥∗ (𝑡)𝑒+𝑗𝑘𝜔0𝑡 𝑥∗ 𝑡 ↔ 𝑎−𝑘

∗
𝐹𝑆

Conjugate of 𝑥 𝑡

𝑥 𝑡 ∗ 𝑦(𝑡) ↔
𝐹𝑆

𝑇𝑎𝑘𝑏𝑘

1

𝑇
න[𝑥 𝑡 ∗ 𝑦(𝑡)]𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 =

1

𝑇
න[න

0

𝑇

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏]𝑒−𝑗𝑘𝜔0𝑡 𝑑𝑡 =
1

𝑇
න
0

𝑇

න
0

𝑇

𝑥 𝜏 𝑦 𝑡 − 𝜏
𝑒𝑗𝑘𝜔0𝜏

𝑒𝑗𝑘𝜔0𝜏
𝑑𝜏 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

=
1

𝑇
න
0

𝑇

𝑥 𝜏 𝑒−𝑗𝑘𝜔0𝜏𝑑𝜏 න
0

𝑇

𝑦 𝑡 − 𝜏 𝑒−𝑗𝑘𝜔0(𝑡−𝜏)𝑑𝑡

𝑡 − 𝜏 = 𝑚 → 𝑑𝑡 = 𝑑𝑚
=
1

𝑇
න
0

𝑇

න
0

𝑇

𝑥 𝜏 𝑒−𝑗𝑘𝜔0𝜏𝑦 𝑡 − 𝜏 𝑑𝜏 𝑒𝑗𝑘𝜔0𝜏 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

𝑡 = 𝑇 → 𝑚 = 𝑇 − 𝜏

𝑡 = 0 → 𝑚 = −𝜏

=
1

𝑇
න
0

𝑇

𝑥 𝜏 𝑒−𝑗𝑘𝜔0𝜏𝑑𝜏
1

𝑇
𝑇න

−𝜏

𝑇−𝜏

𝑦 𝑚 𝑒−𝑗𝑘𝜔0(𝑚)𝑑𝑚 = 𝑇𝑎𝑘𝑏𝑘

proof

𝑥 𝑡 ↔ 𝑎𝑘
𝐹𝑆

𝑘 ≠ 0

power of 𝑥 𝑡



Problem 1 
Consider three continuous-time periodic signals whose Fourier 

series representations are as follows:

(a) Which of the three signals is/are even?

(b) Which of the three signals is/are real valued?

Use Fourier series properties to help answer the following questions:

Fourier series representation:

For 𝑥1(𝑡) ω0 =
2𝜋

50

𝑎k =
1

2

𝑘

, 𝑓𝑜𝑟 𝑘 = 0, 1, 2,⋯ , 100

𝑎k = 0, 𝑓𝑜𝑟 𝑘 > 100 𝑎𝑛𝑑 𝑘 < 0

However, here 𝑎10 =
1

2

10

𝑎−10 = 0, 𝑎10 ≠ 𝑎−10
∗

𝑥1(𝑡) is not real.

𝑥1 −𝑡 = ෍

𝑘=0

100
1

2

𝑘

𝑒
−𝑗𝑘

2𝜋
50

𝑡
= ෍

𝑘=−100

0
1

2

−𝑘

𝑒
𝑗𝑘

2𝜋
50

𝑡
≠ ෍

𝑘=0

100
1

2

𝑘

𝑒
𝑗𝑘

2𝜋
50

𝑡
= 𝑥1(𝑡)

For 𝑥1(𝑡) to be even: 𝑥1 𝑡 = 𝑥1(−𝑡)

𝑥1(𝑡) is not even.

For 𝑥1(𝑡) to be real: 𝑎−𝑘
∗ = 𝑎𝑘



For 𝑥2(𝑡)

ω0 =
2𝜋

50

𝑎k = 𝑐𝑜𝑠 𝑘𝜋 , 𝑓𝑜𝑟 − 100 ≤ 𝑘 ≤ 100

𝑎k = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑎−𝑘
∗ = 𝑐𝑜𝑠 −𝑘𝜋

∗
= 𝑐𝑜𝑠 𝑘𝜋 = 𝑎k

𝑅𝑒 𝑎k = 𝑐𝑜𝑠 𝑘𝜋 , 𝑅𝑒 𝑎−k = 𝑐𝑜𝑠 −𝑘𝜋 = 𝑐𝑜𝑠 𝑘𝜋

𝑅𝑒 𝑎k = 𝑅𝑒 𝑎−k

𝐼𝑚 𝑎k = 0 = 𝐼𝑚 𝑎−k

𝑎k = 𝑎−k , ∡𝑎k = 0 = ∡𝑎−k

𝑥2(𝑡) is real.

𝑎k = 𝑐𝑜𝑠 𝑘𝜋

𝑎−k = 𝑐𝑜𝑠 −𝑘𝜋 = 𝑐𝑜𝑠 𝑘𝜋

𝑎k = 𝑎−k

𝑥2(𝑡) is even.

For 𝑥1(𝑡) to be even: 𝑥1 𝑡 = 𝑥1 −𝑡 , and 𝑎k = 𝑎−kFor 𝑥1(𝑡) to be real: 𝑎−𝑘
∗ = 𝑎𝑘



For 𝑥3(𝑡) ω0 =
2𝜋

50

𝑎k = 𝑗 𝑠𝑖𝑛 𝑘𝜋/2 , 𝑓𝑜𝑟 − 100 ≤ 𝑘 ≤ 100

𝑎k = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑎k = 𝑗 𝑠𝑖𝑛 𝑘𝜋/2

𝑅𝑒 𝑎k = 0 = 𝑅𝑒 𝑎−k

For 𝑥1(𝑡) to be even: 𝑎k = 𝑎−k

For 𝑥1(𝑡) to be real: 𝑎−𝑘
∗ = 𝑎𝑘

𝑎−𝑘
∗ = −𝑗 𝑠𝑖𝑛 −

𝑘𝜋

2
= 𝑗 𝑠𝑖𝑛

𝑘𝜋

2
= 𝑎𝑘

𝐼𝑚 𝑎k = −𝐼𝑚 𝑎−k

𝑎𝑘 = 𝑗 𝑠𝑖𝑛 𝑘𝜋/2 = 𝑠𝑖𝑛 𝑘𝜋/2

𝑎−𝑘 = 𝑗 𝑠𝑖𝑛 −𝑘𝜋/2 = 𝑠𝑖𝑛 𝑘𝜋/2

𝑎𝑘 = 𝑎−𝑘

∡𝑎k = −∡𝑎−k

∡𝑎−k = 𝑡𝑎𝑛−1
𝑠𝑖𝑛 −𝑘𝜋/2

0
= 𝑡𝑎𝑛−1 −∞ = −𝜋/2

∡𝑎k = 𝑡𝑎𝑛−1
𝑠𝑖𝑛 𝑘𝜋/2

0
= 𝑡𝑎𝑛−1 ∞ = 𝜋/2

𝑥3(𝑡) is real.

𝑎−𝑘 = 𝑗 𝑠𝑖𝑛 −
𝑘𝜋

2
= −𝑗𝑠𝑖𝑛

𝑘𝜋

2
= −𝑎𝑘

𝑎−𝑘 ≠ 𝑎𝑘

𝑥3(𝑡) is not even.



Problem 2 
Suppose we are given the following information about a signal 𝑥(𝑡):

(1) 𝑥(𝑡) is real and odd.

(2) 𝑥(𝑡) is periodic with period T = 2, and has Fourier coefficients 𝑎𝑘:

(3) 𝑎𝑘 = 0 for 𝑘 > 1.

(4) 
1

2
0׬
2
𝑥(𝑡) 2 𝑑𝑡 = 1. Specify a signal that satisfies these conditions.

Fourier series representation: 𝑥 𝑡 = σ𝑘=−∞
∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡

From (3):

From (2):
𝜔0 =

2𝜋

𝑇
=
2𝜋

2
= 𝜋

𝑥 𝑡 = 𝑎1𝑒
𝑗𝜔0𝑡 + 𝑎−1𝑒

−𝑗𝜔0𝑡

From (1): 𝑎0 = 0, because 𝑥(𝑡) is odd. 

𝑥(𝑡) is odd 𝑎1 = −𝑎−1

𝑥 𝑡 = 𝑎1𝑒
𝑗𝜔0𝑡 + 𝑎−1𝑒

−𝑗𝜔0𝑡

= 𝑎1 𝑒𝑗𝜔0𝑡 − 𝑒−𝑗𝜔0𝑡

𝑥∗(𝑡) = 𝑎1
∗ 𝑒−𝑗𝜔0𝑡 − 𝑒𝑗𝜔0𝑡 = 𝑎1 𝑎1

∗ 2 − 2𝑐𝑜𝑠 2𝜔0𝑡 = 2 𝑎1 𝑎1
∗ 1 − 𝑐𝑜𝑠 2𝜔0𝑡

𝑥 𝑡 2 = 𝑥 𝑡 𝑥∗(𝑡) = 𝑎1 𝑎1
∗ 1 − 𝑒𝑗𝜔0𝑡 − 𝑒−𝑗𝜔0𝑡 + 1



1

2
0׬
2
2 𝑎1 𝑎1

∗ 1 − 𝑐𝑜𝑠 2𝜔0𝑡 𝑑𝑡 = 1.From (4): 1

2
0׬
2
𝑥(𝑡) 2 𝑑𝑡 = 1.

𝑎1 𝑎1
∗ 0׬

2
1 − 𝑐𝑜𝑠 2𝜔0𝑡 𝑑𝑡 = 1.

𝑎1 𝑎1
∗ 𝑡 −

sin(2𝜔0𝑡)

2𝜔0 0

2
= 1. 𝑎1 𝑎1

∗ 2 − 0 − 0 + 0 = 1 𝑎1 𝑎1
∗ =

1

2

As 𝑎1 is complex: 𝑅𝑒(𝑎1 )
2 + 𝐼𝑚(𝑎1 )

2 =
1

2

As 𝑎1 is purely imaginary: 0 2 + 𝐼𝑚(𝑎1 )
2 =

1

2
𝐼𝑚 𝑎1 = ±

1

2

𝑎1 = ±𝑗
1

2

𝑎−1 = −𝑎1 = ∓𝑗
1

2

Therefore, the signals are


