Introduction to Organic Chemistry CHEM 108

Credit hrs.: (3+1)

King Saud University

College of Science, Chemistry Department

CHAPTER 3: Aromatic Hydrocarbon

1

Aromatic Hydrocarbons

- o Originally called **aromatic** due to fragrant odors, although this definition seems inaccurate as many products posses distinctly non-fragrant smells!
- o Currently a compound is said to be aromatic if it has benzene-like in its properties.

o Benzene is the *parent hydrocarbon of aromatic compounds*, because of their special chemical properties.

The Structure of Benzene Ring

- o Molecular formula = C_6H_6 The carbon-to-hydrogen ratio in benzene, suggests a highly unsaturated structure.
- Benzene reacts mainly by substitution.
 It does not undergo the typical addition reactions of alkenes or alkynes.
- Kekulé Structure for Benzene
 - He suggested that
 - six carbon atoms are located at the corners of a regular hexagon, with one hydrogen atom attached to each carbon atom.
 - single and double bonds alternate around the ring (conjugated system of double bonds) and exchange positions around the ring.

3

The Structure of Benzene Ring

o Resonance Model for Benzene.

- Benzene is planar.
- All of the carbon-carbon bond lengths are identical: 1.39 A°, intermediate between typical single (1.54 A°) and double (1.34 A°) carbon-carbon bond lengths.
- Each carbon is therefore *sp*²-hybridized.
- Bond angles of 120°.

Aromatic Character (Aromaticity)

To be classified as aromatic, a compound must have:

- Cyclic structure
- 2 Cyclic structure contains what looks like a continuous system of alternating double and single bonds
- 3 Aromatic compounds must be planar
- 4 Fulfill Huckel's rule

The number of Π electrons in the compound = (4n + 2)

Where (n = 0,1, 2, 3, and so on).

Monosubstituted Benzenes

Nomenclature of Aromatic Compounds

o Monosubstituted benzenes that do not have common names accepted by IUPAC are named as derivatives of benzene.

o Common names are accepted by IUPAC (parent compounds).

Disubstituted Benzenes

Nomenclature of Aromatic Compounds

- o When two substituents are present, three isomeric structures are possible.
 - They are designated by the prefixes; ortho- (o-), meta- (m-) and para- (p-).
 - If substituent X is attached to carbon 1;
 - o- groups are on carbons 2 and 6,
 - *m* groups are on carbons 3 and 5, and
 - *p* groups are on carbon 4.

o Examples;

;

Polysubstituted Benzenes

Nomenclature of Aromatic Compounds

o When more than two substituents are present, their positions are designated by numbering the ring.

9

Nomenclature of Aromatic Compounds

o Two groups with special names occur frequently in aromatic compounds; the phenyl group and the benzyl group.

$$C_6H_5-$$
 or $C_6H_5CH_2-$ or $C_6H_5CH_2-$ benzyl group

o Examples;

Electrophilic Substitution Reactions

Reactions of Benzene

1) Halogenation

$$+ X_2 \xrightarrow{\text{FeX}_3} + HX$$

$$X = \text{Cl, Br}$$

4) Alkylation (Friedel-Crafts)

$$+ RC1 \xrightarrow{AlCl_3} + HC1$$

$$R = alkyl group$$

2) Nitration

$$+ \text{HONO}_2^*$$
 $\xrightarrow{\text{H}_2\text{SO}_4}$ $+ \text{H}_2^*$

5) Acylation (Friedel-Crafts)

$$+R$$
 $-C$ $-Cl$ $-AlCl_3$ $+HCl$

3) Sulfonation

$$+ HOSO_3H \xrightarrow{SO_3} + H_2O$$

11

The <u>Mechanism</u> of Electrophilic Substitution Reactions

Reactions of Benzene

We can generalize this two-step mechanism for all the electrophilic aromatic substitutions.

$$+ E^{+} \xrightarrow{\text{step 1}} + \underbrace{+}_{E} \xrightarrow{\text{step 2}} E + \mathbf{H}^{+}$$

1) Halogenation

The <u>Mechanism</u> of Electrophilic Substitution Reactions

Reactions of Benzene

2) Nitration

In aromatic nitration reactions, the sulfuric acid catalyst protonates the nitric acid, which then loses water to generate the nitronium ion (NO_2^+) , which contains a positively charged nitrogen atom.

3) Sulfonation

We use either concentrated or fuming sulfuric acid, and the electrophile may be sulfur trioxide, SO_3 , or protonated sulfur trioxide, ${}^+SO_3H$.

13

The <u>Mechanism</u> of Electrophilic Substitution Reactions

Reactions of Benzene

4) Friedel-Crafts Alkylation

The electrophile is a carbocation, which can be formed either by removing a halide ion from an alkyl halide with a Lewis acid catalyst (for example, $AlCl_3$).

$$\begin{array}{c} Cl \\ Cl - Al \\ Cl \end{array} + ClCH_2CH_3 \Longrightarrow Cl - Al^- - Cl + \overset{\scriptscriptstyle \uparrow}{C}H_2CH_3 \xrightarrow{H^+} CH_2 = CH_2 \\ Cl & \text{ethyl} \\ Cl & \text{cation} \end{array}$$

The <u>Mechanism</u> of Electrophilic Substitution Reactions

Reactions of Benzene

5) Friedel-Crafts Alkylation

The electrophile is an acyl cation generated from an acid derivative, usually an acyl halide. The reaction provides a useful general route to aromatic ketones.

$$\begin{array}{c}
O \\
CH_3CCl + AlCl_3 \Longrightarrow CH_3\overset{+}{C}=O + AlCl_4^{-1} \\
acetyl choride
\end{array}$$

$$+ CH_3\overset{+}{C} = O \Longrightarrow \overset{+}{\longleftrightarrow} \xrightarrow{H} \xrightarrow{-H^+} \xrightarrow{O} \xrightarrow{CCH_3}$$

15

Disubstituted Benzenes: Orientation Reactions of Benzene

- o Substituents already present on an aromatic ring determine the position taken by a new substituent.
- o Example; nitration of toluene gives mainly a mixture of o- and p-nitrotoluene.

o On the other hand, nitration of nitrobenzene under similar conditions gives mainly the *meta* isomer.

Disubstituted Benzenes: Orientation& Reactivity

Directing and activating effects of common functional groups

- Substituents that release electrons to the ring will activate the ring toward electrophilic substitution.
- Substituents that withdraw electrons from the ring will deactivate the ring toward electrophilic substitution.

1. Halogenation of an Alkyl Side Chain

Reactions of Benzene

Side-Chain Reactions

of Benzene-Derivatives

CH₃ Br₂ UV light Toluene Benzyl bromide CH₂CH₃ CH₂CH₃ CH₂CH₃ CH₂CH₂CI UV light + HBr CH₂CH₃ CH₂CH₃ CH₂CH₂CI UV light - CH₂CH₃ CH₃ CHCH₃ C

2. Oxidation of an Alkyl Side Chain

Side-Chain Reactions of Benzene-Derivatives

- o Conversion into a carboxyl group, -COOH, by treatment with hot potassium permanganate.
- o Regardless the length of the alkyl chain, the product is always the same.