King Saud University

College of Engineering

IE - 341: "Human Factors"
Fall - 2014 (1 st Sem. 1435-6H)
Chapter 3. Information Input and Processing Part - I*
Prepared by: Ahmed M. El-Sherbeeny, PhD *(Adapted from Slides by: Dr. Khaled A/-Saleh)

Chapter Overview
 - Information:

- How it can be measured (part I)
- How it can be displayed (part II)
- How it can be coded (part II)

Information Theory

- Information Processing is AKA:
- Cognitive Psychology
- Cognitive Engineering
- Engineering Psychology
- Objectives of Information Theory:
- Finding an operational definition of information
- Finding a method for measuring information
- Note, most concepts of Info. Theory are descriptive (i.e. qualitative vs. quantitative)
- Information (Def ${ }^{n}$):
- "Reduction of Uncertainty"
- Emphasis is on "highly unlikely" events Example (information in car):
- "Fasten seat belt": likely event \Rightarrow not imp. in Info. Th.
- "Temperature warning": unlikely event \Rightarrow imp.

Unit of Measure of Information

- Case $1: \geq 1$ equally likely alternative events:

$$
H=\log _{2} N=\frac{\log N}{\log 2}
$$

- H : amount of information [Bits]
- N : number of equally likely alternatives
- e.g.: 2 equally likely alternatives $\Rightarrow H=\log _{2} 2=1$ \Rightarrow Bit (Defn): "amount of info. to decide between two equally likely (i.e. $50 \%-50 \%$) alternatives"
- e.g.: 4 equally likely alternatives $\Rightarrow H=\log _{2} 4=2$
- e.g.: equally likely digits $(0-9) \Rightarrow \quad H=\log _{2} 10=3.32$
- e.g.: equally likely letters (a-z) $\Rightarrow H=\log _{2} 26=4.70$

Note, for each of above, unit [bit] must be stated.

Cont. Unit of Measure of Information - Case $2: \geq 1$ non-equally likely alternatives:

$$
h_{i}=\log _{2} \frac{1}{p_{i}}
$$

- h_{i} : amount of information [Bits] for single event, i
- p_{i} : probability of occurrence of single event, i

Note, this is not usually significant
(i.e. for individual event basis)

Cont. Unit of Measure of Information - Case 3: Average info. of non-equally likely series of events:

$$
H_{a v}=\sum_{i=1}^{N} p_{i}\left(\log _{2} \frac{1}{p_{i}}\right)
$$

${ }^{\circ} H_{a v}$: average information [Bits] from all events

- p_{i} : probability of occurrence of single event, i
- N : num. of non-equally likely alternatives/events
- e.g.: 2 alternatives $(N=2)$
- Enemy attacks by land, $p_{1}=0.9$
- Enemy attacks by sea,
$p_{2}=0.1$

$$
\begin{aligned}
\Rightarrow H_{a v} & =\sum_{i=1}^{2} p_{i}\left(\log _{2} \frac{1}{p_{i}}\right)=p_{1}\left(\log _{2} \frac{1}{p_{1}}\right)+p_{2}\left(\log _{2} \frac{1}{p_{2}}\right) \\
& =0.9\left(\log _{2} \frac{1}{0.9}\right)+0.1\left(\log _{2} \frac{1}{0.1}\right)=0.47
\end{aligned}
$$

Cont. Unit of Measure of Information

 - Case 4: Redundancy:- If 2 occurrences: equally likely \Rightarrow
- $\mathrm{p}_{1}=\mathrm{p}_{2}=0.5$ (i.e. 50% each)
- $\Rightarrow H=H_{\max }=1$
- In e.g. in last slide, departure from max. info.
- $=1-0.47=0.53=53 \%$
. \% Redundancy $=\left(1-\frac{H_{a v}}{H_{\max }}\right) * 100$
- Note, as departure from equal prob. $\uparrow \Rightarrow \%$ Red. \uparrow
- e.g.: not all English letters equally likely: "th","qu"
- \Rightarrow \%Red. of English language $=68$ \%
- PS. How about Arabic language?

Choice Reaction Time Experiments

- Experiments:
- Subjects: exposed to different stimuli
- Response time is measured
- e.g. 4 lights - 4 buttons
- Hick (1952):
- Varied number of stimuli (eq. likely alternatives)
- He found:
- As \# of eq. likely alt. $\uparrow \Rightarrow$ reaction time to stimulus \uparrow
- Reaction time vs. Stimulus (in Bits): linear function
- Hyman (1953):
- Kept number of stimuli (alternatives) fixed
- Varied prob. of occurrence of events \Rightarrow info. Varies

He found: "Hick-Hyman Law"

- AGAIN: Reaction time vs. Stimulus (in Bits): linear function! ${ }_{8}$

