

CHEM 108

FUNDAMENTALS OF ORGANIC CHEMISTRY

FOR B.Sc. PROGRAMS OF SCIENTIFIC COLLEGES

PRE-REQUISITES COURSE; CHEM 101 CREDIT HOURS; 4 (3+1)

Chemistry Department, College of Science, King Saud University

Dr Mohamed El-Newehy

CHAPTER 3

AROMATIC HYDROCARBONS

or Mohamed FI-Neweh

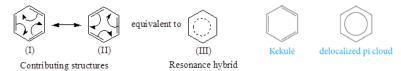
Aromatic Hydrocarbons

- o Originally called aromatic due to fragrant odors, although this definition seems inaccurate as many products posses distinctly non-fragrant smells!
- Currently a compound is said to be aromatic if it has benzene-like in its properties.

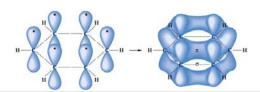
- Their properties differ markedly from those of aliphatic hydrocarbons.
 Aromatic hydrocarbons undergo electrophilic substitution whereas aliphatic hydrocarbons undergo ionic addition to double and triple bonds and free radical substitution.
- Benzene is the parent hydrocarbon of aromatic compounds, because of their special chemical properties.
- o Today a compound is said to be aromatic if it is benzene-like in its properties.

Dr Mohamed FI-Newehy

Aromatic Hydrocarbons; Structure of Benzene


- o Molecular formula = C_6H_6 The carbon-to-hydrogen ratio in benzene, suggests a **highly unsaturated structure**.
- Benzene reacts mainly by substitution.
 It does not undergo the typical addition reactions of alkenes or alkynes.
- Kekulé structure for benzene.
 - ➤ He suggested that six carbon atoms are located at the corners of a regular hexagon, with one hydrogen atom attached to each carbon atom.
 - ➤ He suggested that **single and double bonds alternate** around the ring (conjugated system of double bonds).
 - ➤ Kekulé suggested that the single and double bonds exchange positions around the ring so rapidly that the typical reactions of alkenes cannot take place.

$$H \longrightarrow H \longrightarrow H \longrightarrow H$$


Dr Mohamed Fl-Newel

Aromatic Hydrocarbons; Structure of Benzene

o Resonance Model for Benzene.

- o Benzene is planar.
- o All of the carbon-carbon bond lengths are identical: 1.39 A°, intermediate between typical single (1.54A°) and double (1.34 A°) carbon-carbon bond lengths.
- Each carbon is therefore sp²-hybridized.
- Bond angles of 120°.

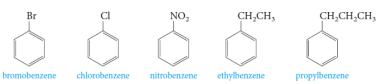
Dr Mohamed El-Neweh

Aromatic Character (Aromaticity)

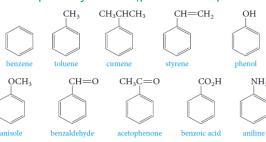
To be classified as aromatic, a compound must have:

- Cyclic structure
- Oyclic structure contains what looks like a continuous system of alternating double and single bonds
- **6** Aromatic compounds must be planar
- 4 Fulfill Hückel's rule

The number of π electrons in the compound = (4n + 2)


Where (n = 0,1, 2, 3, and so on).

Dr Mohamed FI-Newehy


Aromatic Character (Aromaticity) Structure and name of aromatic compound Pyridine Furan Benzene Pyrrole Thiophene **Examples** 10 4n+2 =n= 1.5 4n+2 =n= 0.5 0.5 0.5

Nomenclature of Aromatic Compounds

 Monosubstituted benzenes that do not have common names accepted by IUPAC are named as derivatives of benzene.

Common names are accepted by IUPAC (parent compounds).

Dr Mohamed FI-New

Nomenclature of Aromatic Compounds

- o When two substituents are present, three isomeric structures are possible.
 - They are designated by the prefixes; ortho- (o-), meta- (m-) and para- (p-).
 - If substituent X is attached to carbon 1; o- groups are on carbons 2 and 6, m-groups are on carbons 3 and 5, and p-groups are on carbon 4.

o Examples;

Dr Mohamed El-Newehy

Nomenclature of Aromatic Compounds

■ The prefixes; ortho- (o-), meta- (m-) and para- (p-) are used when the two substituents are not identical.

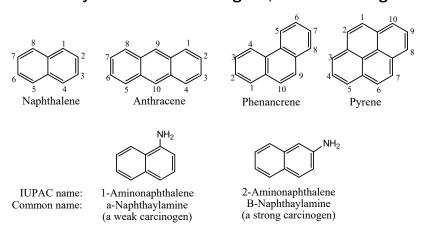
Br
$$CH_3$$
 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 CH_8 CH_8 CH_8 CH_9 CH_9

o When more than two substituents are present, their positions are designated by numbering the ring.

or Mohamed FI-Neweh

Nomenclature of Aromatic Compounds

o Two groups with special names occur frequently in aromatic compounds; the **phenyl** group and the **benzyl** group.


$$C_6H_5-$$
 or $C_6H_5CH_2-$ or C_6H_2-

o Examples;

Dr Mohamed El-Newehy

Nomenclature of Aromatic Compounds

o Polynuclear aromatic hydrocarbons containing two, three & four rings are :

12

o In this reaction, an electrophile E + replaces a hydrogen atom, from the aromatic ring system.

aromatic substitution

o This reaction is in contrast to electrophilic addition to the double bonds of alkene

Electrophilic Aromatic Substitution Reactions

$$\begin{array}{c} H \\ E \\ Y \\ \end{array} \xrightarrow{\text{slow}} \begin{array}{c} H \\ E \\ \end{array} + : Y^{-}$$
Benzene and electrophile Carbocation

The electrophile E+ approaches the cloud of the aromatic ring and forms a bond to carbon, creating a +ve charge in the ring

The removal of the proton nucleophile Y -, which leads to the restoration of the aromatic ring

The net overall result is the substitution of the group E+ for a proton H+.

1) Halogenation

$$+ X_2 \xrightarrow{FeX_3} + HX$$

$$X = Cl, Br$$

2) Nitration

$$+ \text{HONO}_2^* \xrightarrow{\text{H}_2\text{SO}_4} + \text{H}_2\text{O}$$

3) Sulfonation

4) Alkylation (Friedel-Crafts)

$$\begin{array}{c|c} & & & \\ & & & \\ & & \\ R = \text{alkyl group} \end{array} + \text{HCl}$$

5) Acylation (Friedel-Crafts)

$$+ R - C - Cl \longrightarrow + HCl$$

Dr Mohamed FI-Newehy

Electrophilic Aromatic Substitution Reactions

The Mechanism of Electrophilic Aromatic Substitution

We can generalize this two-step mechanism for all the electrophilic aromatic substitutions.

$$+ E^{+} \xrightarrow{\text{step 1}} + E^{+} \xrightarrow{\text{step 2}} E + H^{+}$$

➤ Halogenation

$$\begin{array}{c} \text{Cl} & \text{Cl} \\ \vdots \\ \text{Cl} \\ \text{Cl} \\ \text{Cl} \\ \text{Cl} \\ \text{Cl} \\ \text{weak} \end{array}) \Longrightarrow \begin{array}{c} \text{Cl} \\ \begin{array}{c} \delta + & \delta - \\ \\ \text{Cl} \\ \text{Cl} \\ \text{Cl} \\ \text{strong electrophile} \end{array}$$

ortho para for honorisis in

composite representation of the benzenonium ion resonance hybrid

Dr Mohamed FI-Neweh

The Mechanism of Electrophilic Aromatic Substitution

Nitration

In aromatic nitration reactions, the sulfuric acid catalyst protonates the nitric acid, which then loses water to generate the nitronium ion (NO_2^+) , which contains a positively charged nitrogen atom.

> Sulfonation

We use either concentrated or fuming sulfuric acid, and the electrophile may be sulfur trioxide, SO₃, or protonated sulfur trioxide, ⁺SO₃H.

Dr Mohamed El-Newehy

Electrophilic Aromatic Substitution Reactions

The Mechanism of Electrophilic Aromatic Substitution

Friedel-Crafts Alkylation

The electrophile is a carbocation, which can be formed either by removing a halide ion from an alkyl halide with a Lewis acid catalyst (for example, $AICl_3$).

$$\begin{array}{c} Cl \\ Cl - Al + ClCH_2CH_3 \Longrightarrow Cl - Al^- - Cl + \overset{\dagger}{C}H_2CH_3 \overset{H^+}{\longleftarrow} CH_2 = CH_2 \\ Cl & Cl & ethyl \\ Cl & cation \end{array}$$
 (4.20)

Dr Mohamed FI-Newehy

The Mechanism of Electrophilic Aromatic Substitution

> Friedel-Crafts Acylation

The electrophile is an acyl cation generated from an acid derivative, usually an acyl halide. The reaction provides a useful general route to aromatic ketones.

$$CH_{3}CCl + AlCl_{3} \Longrightarrow CH_{3}\overset{+}{C} = O + AlCl_{4}^{-}$$

$$acetyl \ choride \qquad acetyl \ cation$$

$$+ CH_{3}\overset{+}{C} = O \Longrightarrow \overset{+}{\longleftrightarrow} \overset{+}{\longleftrightarrow} \overset{-}{\longleftrightarrow} \overset{-}{\longleftrightarrow}$$

Dr Mohamed El-Newehy

Electrophilic Aromatic Substitution Reactions

Disubstituted Benzenes: Orientation

Introduction of a second group, G, into a monosubstituted benzene, C₆H₅ – E

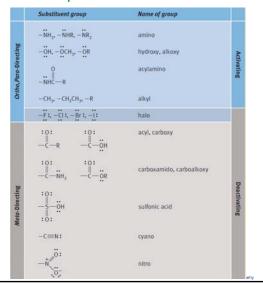
Disubstituted Benzenes: Orientation

- Substituents already present on an aromatic ring determine the position taken by a new substituent.
- Example; nitration of toluene gives mainly a mixture of o- and p-nitrotoluene.

o On the other hand, nitration of nitrobenzene under similar conditions gives mainly the *meta* isomer.

nitrobenzene

 $HONO_2$


Dr Mohamed FI-Ner

mp 89°C 93%

Disubstituted Benzenes: Orientation& Reactivity

Directing and Activating Effects of Common Functional Groups

- Substituents that release electrons to the ring will activate the ring toward electrophilic substitution.
- Substituents that withdraw electrons from the ring will deactivate the ring toward electrophilic substitution.

Disubstituted Benzenes: Orientation& Reactivity

Substituent	Effect on reactivity
o,p- director	
NH ₂ , -NHR, -NR ₂ , -OH,	Very strongly activating
NHCOR, OR	Strongly activating
·C ₆ H _{5.} -CH ₃ , -R (Alkyl), CH ₂ =CHR	Moderately activating
H	Standard for comparison
F, -Cl, -Br, -I	Deactivating
m- director	
SO ₃ H, -COOH, -COOR	Strongly deactivating
-CHO, -COR, -CN	
·NO ₂ , -CF ₃	Very strongly deactivating

24

Side-Chain Reactions of Benzene-Derivatives

1. Halogenation of an Alkyl Side Chain

Side-Chain Reactions of Benzene-Derivatives

2. Oxidation of an Alkyl Side Chain

- o Conversion into a carboxyl group, -COOH, by treatment with hot potassium permanganate.
- o Regardless the length of the alkyl chain, the product is always the same.