373 Math Chapter 8

From Text book:

8.1: $1,3,5,6,7,10,11$.
8.2: 5, 9, 10, 11, 12.
8.3: $2,3,4,5,8,9,14,15,16$.
8.4: 2(b, c, e, h), 4, 5, 6, 8.

Additional Exercises:

Definition: Let $A \neq \phi, B \neq \phi$ be two subset of the metric space (X, d). Then the distance between A and B is given by

$$
d(A, B)=\inf \{d(x, y): x \in A, y \in B\}
$$

If $A=a$, we write $d(a, B)$ for $d(A, B)$
Q1. In \mathbb{R}^{2}, take $A=\{(x, y): 0 \leq x \leq 1,0<x<1\}, B=\{(x, y): 2<x<3,0<y<1\}$, $C=\{(0,0)\}, D=\left\{\left(\frac{1}{2}, \frac{1}{2}\right)\right\}$. Find the following:

$$
d(A, B), d(A, C), d(C, B), d(D, A), d(D, B)
$$

Q2. Let (X, d) be a metric space and A a nonempty subset of X. If $x, y \in X$, prove that $d(x, A) \leq d(x, y)+d(y, A)$.

Q3. Give an example to show that for an open ball $B_{r}(y)$ in a metric space (X, d), it is not true that $B d\left(B_{r}(y)\right)=\{x \in X: d(x, y)=r\}$.

Q4. Let (X,d) be a metric space and define $e(x, y)=d(x, y) /(1+d(x, y))$. Prove that e is a bounded metric for X .

