373 Math
Excercises Chapter 3
3.1: $1,2,3,4,5,6,8,9,13,15,16$.
3.2: $1,3,4,6,8,9,10,12,13,14,18$.

Q1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\left\{\begin{array}{cl}1 & x \geq 0 \\ -1 & x<0\end{array}\right.$
Detemine whether f is
a) $\Im_{c o}-\mathcal{U}$ continuous.
b) $\mathcal{U}-\Im_{c o}$ continuous.
c) $\Im_{1-} \mathcal{U}$ continuous.
d) $\mathcal{U}-\Im_{1}$ continuous.
e) $\mathcal{C}-\mathcal{C}$ continuous.

Q2: Repeat the previous question for the function $g(x)=x+1$.
3.3: $1,2,3,4,7,8,11,13,14,15,20,21,22$.

Q3: Let $f:(X, \Im) \rightarrow(Y, S)$ be a homeomorphism, $A \subseteq X$. Prove the following
a) If $a \in \operatorname{int}(A)$, then $f(a) \in \operatorname{int}(f(A))$.
b) f $a \in B d(A)$, then $f(a) \in B d(f(A))$.

Q4: Detemine whether $\left(\mathbb{R}, \Im_{1}\right)$ and $(\mathbb{R}, \mathcal{C})$ are Hausdorff spaces and justify your answer.

Q5:Prove that if (X, \Im) is a Hausdorff space then so is every subspace of X.
Excercises Chapter 4
4.1: $1,2,3,4,5,6,8,11$.

Review Exc.: 3,5,13,14

Q1: Detemine whether the set $W=\{(x, y): x>0,|y| \geq 5\}$ is open in
a) $(\mathbb{R}, \mathcal{U}) \times(\mathbb{R}, \mathcal{H})$ open.
b) $(\mathbb{R}, \mathcal{H}) \times(\mathbb{R}, \mathcal{U})$ open.
c) $(\mathbb{R}, \mathcal{C}) \times(\mathbb{R}, \mathcal{C})$ open.

