Question 1. [4+3]

a. Let (X, \mathfrak{F}) be a topological space with $A \subseteq X$ and let \mathcal{B} be a base for \mathfrak{F} . Show that the collection $\mathcal{B}^* = \{A \cap B \colon B \in \mathcal{B}\}$ is a base for \mathfrak{F}_A .

b. Let $X = \{a, b, c, d\}$ with the topology $\mathfrak{T} = \{X, \emptyset, \{a\}, \{b, d\}, \{a, b, d\}\}$. If $A = \{a, b, c\}$ and $B = \{b, c\}$

i. Find \mathfrak{I}_A .

ii. Find $Int_A(B)$ and $Cl_A(B)$.

Question 2. [2+2]

a. Show that every constant function between topological spaces is continuous.

b. Let $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1, & x \ge 0 \\ x, & x < 0 \end{cases}$$

Is $f \mathcal{U} - \mathcal{H}$ continuous? Is $f \mathcal{U} - \mathcal{H}$ open? Justify your answer.

Question 3. [3+1]

a. Show that being Hausdorff is hereditary.

b. Let $X = \{a, b, c, d\}$ with topology $\mathcal{T} = \{X, \emptyset, \{a, c\}, \{b, d\}\}$ and $Y = \{x, y, z, w\}$ with topology $\mathcal{T}' = \{Y, \emptyset, \{x\}, \{x, y\}\}$. Is $(X, \mathcal{T}) \cong (Y, \mathcal{T}')$? Justify your answer.

Question 4. [3+2]

- **a**. Let $X = \mathbb{R}$ with the usual topology \mathcal{U} and $Y = \mathbb{R}$ with the left ray topology \mathcal{L} .
- 1. Find a base for the product topology on $X \times Y$.

2. Let A = (0,1) and $B = (0, \infty)$. Find $\overline{A \times B}$ and $(A \times B)'$

Question 5. [2+3]

a. Show that $(\mathbb{R}, \mathcal{T}_{cof})$ is not Hausdorrf.

- **b.** 1. Show that (0,1) is open in ([0,3], $\mathcal{U}_{[0,3]}$).
- 2. Show that [1,2] is closed in $((0,3), \mathcal{H}_{(0,3)})$.