373 Math Exercises

Required text book: Introduction to Topology *by Crump W. Baker*

Chapter 2 :

From Text book:

2.1: 1, 4, 5, 6, 7. 2.2: 1,2, 4, 5, 6, 7, 8, 9

Additional Problems:

- 1. List all topologies for a set containing three distinct elements.
- 2. Prove that for a non empty set X, the collection $\tau = \{X, \Phi\} \cup \{U: X U \text{ is countable}\}$ is a topology on X, this topology is called co-countable topology.
- 3. Is there a set in which discrete and indiscrete topologies coincide on it?
- 4. Give an example of a nontrivial topology on an infinite set X which has only a finite number of elements.
- 5. If τ_1 and τ_2 are two topologies on X, is $\tau_1 \cap \tau_2$ a topology on X? Is $\tau_1 \cup \tau_2$ a topology on X?
- 6. Prove that τ is the discrete topology on X iff every point in X is an open set.
- 7. Let $X = \mathbb{N}$. For each $n \in \mathbb{N}$ define $U_n = \{n, n + 1, n + 2, \dots \}$. Let $\tau = \{X, \phi\} \cup \{U_n : n \in \mathbb{N}\}$. Prove that τ is a topology on X.

From Text book:

2.3:1, 2, 3, 4, 5, 6, 7, 8, 9, 13. 2.4: 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17,

Additional Problems:

- 1. In $(\mathbb{R}, \mathcal{U})$, do rationals form an open set? Closed set? Neither? Both? Justify your answer.
- 2. Consider $A = \{x: 0 < x < 2\} \cup \{10\}$. Find Cl(A) in (\mathbb{R}, \mathcal{U}).
- 3. Give an example of a collection of open sets whose intersection is not open.
- 4. Give an example of two sets A and B of In $(\mathbb{R}, \mathcal{U})$ such that A and A\B are both open but B is not closed.
- 5. Give an example of a countable set in In $(\mathbb{R}, \mathcal{U})$ that is not closed.
- 6. Give an example of a countable set in In $(\mathbb{R}, \mathcal{U})$ that is closed.
- 7. Prove that A is open if $f A \cap Bd(A) = \emptyset$
- 8. Prove that A is closed if $f Bd(A) \subseteq A$.
- 9. Prove that $Bd(A) = \emptyset$ iff A is both open and closed.

From Text book:

2.5:1,2,3,4,5,9.10.

Additional Problems:

1. Find a base for the open half-line topology which is different from the topology itself.

2.Let (X, τ) be a topological space and \mathcal{B} a base for τ . Prove that $A \subseteq X$ is dense in X iff each nonempty element of \mathcal{B} contains a point of A.

Definition:

Two collections \mathcal{B}_1 and \mathcal{B}_2 of subsets of X are equivalent bases iff there exists a topology τ for X such that \mathcal{B}_1 and \mathcal{B}_2 are both bases for τ .

- 3.Let (X, τ) be a topological space, \mathcal{B}_1 a base for τ , and \mathcal{B}_2 a collection of subsets of X Prove that \mathcal{B}_1 and \mathcal{B}_2 are equivalent bases iff
- a. For each $U_1 \in \mathcal{B}_1$ and $x \in U_1$, there is a $U_2 \in \mathcal{B}_2$ such that $x \in U_2 \subseteq U_1$ and
- b. For each $U_2 \in \mathcal{B}_2$ and $x \in U_2$, there is a $U_1 \in \mathcal{B}_1$ such that $x \in U_1 \subseteq U_2$.

Chapter 3:

From Text book:

3.1: 1,2,3,4,5,6,8,9,13,15,16. 3.2: 1,3,4,6,8,9,10,12,13,14,18.

Additional Problems:

Q1: Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$ Detemine whether f is a) $\tau_{cof} - \mathcal{U}$ continuous. b) $\mathcal{U} - \tau_{cof}$ continuous. c) $\mathfrak{F}_1 - \mathcal{U}$ continuous. d) $\mathcal{U} - \mathfrak{F}_1$ continuous.

e) C - C continuous.

Q2: Repeat the previous question for the function g(x) = x + 1

From Text book:

3.3: 1,2,3,4,7,8,11,13,14.15.20,21,22.

Additional Problems:

Q2: Let $f: (X, \mathfrak{F}) \to (Y, S)$ be a homeomorphism, $A \subseteq X$. Prove the Following: a) If $a \in int(A)$, then $f(a) \in int(f(A))$. b) If $a \in Bd(A)$, then $f(a) \in Bd(f(A))$.

Chapter 4:

From Text book:

4.1: 1,2,3,4,5,6,8,11. Review Exc.: 3,5

Additional Problems:

Q1: Detemine whether the set $W = \{(x, y) : x > 0, |y| \ge 5\}$ is open in : (a) $(\mathbb{R}, \mathcal{U}) \times (\mathbb{R}, \mathcal{H})$ (b) $(\mathbb{R}, \mathcal{H}) \times (\mathbb{R}, \mathcal{U})$ (c) $(\mathbb{R}, C) \times (\mathbb{R}, C)$

Chapter 6 :

From Text book:

6.1: 1,2,3,4,5,6,7,8,11,12,13,14,15,18,19,20

6.2: 1,2,3,4,5,6,7

Additional Problems:

Q1. Let X be any infinite set with two topologies τ_1 and τ_2 such that (X, τ_2) is a compact space, and $\tau_1 \subset \tau_2$. Show that (X, τ_1) is compact.

- Q2.Let $X = \Re$, $\tau = \{U \subseteq \Re; U = \Re \text{ or } U = \phi, \text{ or } U = (a, \infty), a \ge 0\}$ Is (\Re, τ) a compact space.
- Q3. Give an example of a compact space which has a non compact subspace.
- Q4. Prove that if (X, τ) is a Hausdorff space then so is every subspace of X.
- Q5. Show that Theorem 6.1.21 is not true if X is not compact.

Chapter 8:

From Text book:

8.1: 1, 3, 5, 6, 7, 10, 11.
8.2: 5, 9, 10, 11, 12.
8.3: 2, 3, 4, 5, 8, 9, 14, 15, 16.
8.4: 2(b, c, e, h), 4, 5, 6, 8.

Additional Problems:

Definition: Let $A \neq \varphi$, $B \neq \varphi$ be two subset of the metric space (X, d). Then the distance between *A* and *B* is given by $d(A, B) = inf\{d(x, y) : x \in A, y \in B\}$. If A = a, we write d(a, B) for d(A, B).

Q1. Let (X, d) be a metric space and A a nonempty subset of X. If $x, y \in X$, prove that $d(x, A) \leq d(x, y) + d(y, A)$. Q2. Give an example to show that for an open ball $B_r(y)$ in a metric space (X,d), it is not true that $Bd(B_r(y)) = \{x \in X : d(x,y) = r\}$ Q3. Let (X,d) be a metric space and define e(x,y) = d(x,y)/(1 + d(x,y)) Prove that e is a bounded metric for X.