373 Math Exercises

Required text book:
Introduction to Topology by Crump W. Baker

Chapter 2 :

From Text book:

2.1: 1, 4, 5, 6, 7 .

2.2: $1,2,4,5,6,7,8,9$

Additional Problems:

1. List all topologies for a set containing three distinct elements.
2. Prove that for a non empty set X , the collection $\tau=\{X, \Phi\} \cup\{U: X-$ U is countable $\}$ is a topology on X, this topology is called co-countable topology.
3. Is there a set in which discrete and indiscrete topologies coincide on it?
4. Give an example of a nontrivial topology on an infinite set X which has only a finite number of elements.
5. If τ_{1} and τ_{2} are two topologies on X , is $\tau_{1} \cap \tau_{2}$ a topology on X ? Is $\tau_{1} \cup \tau_{2}$ a topology on X ?
6. Prove that τ is the discrete topology on X iff every point in X is an open set.
7. Let $X=\mathbb{N}$. For each $n \in \mathbb{N}$ define $U_{n}=\{n, n+1, n+2, \ldots \ldots$.$\} . Let \tau=$ $\{X, \phi\} \cup\left\{U_{n}: n \in \mathbb{N}\right\}$. Prove that τ is a topology on X .

From Text book:

2.3:1, 2, 3, 4, 5, 6, 7, 8, 9, 13.
2.4: $1,2,3,4,5,6,7,10,13,14,15,16,17$,

Additional Problems:

1. In $(\mathbb{R}, \mathcal{U})$, do rationals form an open set? Closed set? Neither? Both? Justify your answer.
2. Consider $A=\{x: 0<x<2\} \cup\{10\}$. Find $\mathrm{Cl}(\mathrm{A})$ in $(\mathbb{R}, \mathcal{U})$.
3. Give an example of a collection of open sets whose intersection is not open.
4. Give an example of two sets A and B of $\operatorname{In}(\mathbb{R}, \mathcal{U})$ such that A and $A \backslash B$ are both open but B is not closed.
5. Give an example of a countable set in $\operatorname{In}(\mathbb{R}, \mathcal{U})$ that is not closed.
6. Give an example of a countable set in In $(\mathbb{R}, \mathcal{U})$ that is closed.
7. Prove that A is open iff $A \cap B d(A)=\varnothing$
8. Prove that A is closed iff $B d(A) \subseteq A$.
9. Prove that $B d(A)=\emptyset$ iff A is both open and closed.

From Text book:

2.5:1,2,3,4,5,9.10.

Additional Problems:

1.Find a base for the open half-line topology which is different from the topology itself.
2.Let (X, τ) be a topological space and \mathcal{B} a base for τ. Prove that $A \subseteq X$ is dense in X iff each nonempty element of \mathcal{B} contains a point of A.

Definition:

Two collections \mathcal{B}_{1} and \mathcal{B}_{2} of subsets of X are equivalent bases iff there exists a topology τ for X such that \mathcal{B}_{1} and \mathcal{B}_{2} are both bases for τ.
3.Let (X, τ) be a topological space, \mathcal{B}_{1} a base for τ, and \mathcal{B}_{2} a collection of subsets of X Prove that \mathcal{B}_{1} and \mathcal{B}_{2} are equivalent bases iff
a. For each $U_{1} \in \mathcal{B}_{1}$ and $x \in U_{1}$, there is a $U_{2} \in \mathcal{B}_{2}$ such that $x \in U_{2} \subseteq U_{1}$ and
b. For each $U_{2} \in \mathcal{B}_{2}$ and $x \in U_{2}$, there is a $U_{1} \in \mathcal{B}_{1}$ such that $x \in U_{1} \subseteq$ U_{2}.

Chapter 3:

From Text book:

3.1: 1,2,3,4,5,6,8,9,13,15,16.
3.2: 1,3,4,6,8,9,10,12,13,14,18.

Additional Problems:

Q1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)= \begin{cases}1 & x \geq 0 \\ -1 & x<0\end{cases}$
Detemine whether f is
a) $\tau_{c o f}-U$ continuous.
b) $U-\tau_{c o f}$ continuous.
c) $\mathscr{F}_{1}-\mathcal{U}$ continuous.
d) $U-\mathfrak{F}_{1}$ continuous.
e) $C-C$ continuous.

Q2: Repeat the previous question for the function $g(x)=x+1$

From Text book:

3.3: 1,2,3,4,7,8,11,13,14.15.20,21,22.

Additional Problems:

Q2: Let $f:(X, \mathscr{F}) \rightarrow(Y, S)$ be a homeomorphism, $A \subseteq X$. Prove the Following:
a) If $a \in \operatorname{int}(A)$, then $f(a) \in \operatorname{int}(f(A))$.
b) If $a \in B d(A)$, then $f(a) \in B d(f(A))$.

Chapter 4:

From Text book:

4.1: 1,2,3,4,5,6,8,11.

Review Exc.: 3,5

Additional Problems:

Q1: Detemine whether the set $W=\{(x, y): x>0,|y| \geq 5\}$ is open in :
(a) $(\mathbb{R}, \mathcal{U}) \times(\mathbb{R}, \mathcal{H})$
(b) $(\mathbb{R}, \mathcal{H}) \times(\mathbb{R}, \mathcal{U})$
(c) $(\mathbb{R}, C) \times(\mathbb{R}, C)$

Chapter 6 :

From Text book:

6.1: $1,2,3,4,5,6,7,8,11,12,13,14,15,18,19,20$
6.2: $1,2,3,4,5,6,7$

Additional Problems:

Q1. Let X be any infinite set with two topologies τ_{1} and τ_{2} such that $\left(X, \tau_{2}\right)$ is a compact space, and $\tau_{1} \subset \tau_{2}$. Show that $\left(X, \tau_{1}\right)$ is compact.

Q2.Let $X=\mathfrak{R}, \tau=\{U \subseteq \mathfrak{R} ; U=\mathfrak{R}$ or $U=\phi$, or $U=(a, \infty), a \geq 0\}$ Is (\mathfrak{R}, τ) a compact space.

Q3. Give an example of a compact space which has a non compact subspace.
Q4. Prove that if (X, τ) is a Hausdorff space then so is every subspace of X .
Q5. Show that Theorem 6.1.21 is not true if X is not compact.

Chapter 8:

From Text book:

8.1: $1,3,5,6,7,10,11$.

8.2: 5, 9, 10, 11, 12.
8.3: $2,3,4,5,8,9,14,15,16$.
8.4: 2(b, c, e, h), 4, 5, 6, 8.

Additional Problems:

Definition: Let $A \neq \varphi, B \neq \varphi$ be two subset of the metric space (X, d). Then the distance between A and B is given by $d(A, B)=\inf \{d(x, y): x \in A, y \in B\}$.
If $A=a$, we write $d(a, B)$ for $d(A, B)$.
Q1. Let (X, d) be a metric space and A a nonempty subset of X. If $x, y \in X$, prove that $d(x, A) \leq d(x, y)+d(y, A)$.
Q2. Give an example to show that for an open ball $B_{r}(y)$ in a metric space (X, d), it is not true that $B d\left(B_{r}(y)\right)=\{x \in X: d(x, y)=r\}$
Q3. Let (X, d) be a metric space and define $e(x, y)=d(x, y) /(1+d(x, y))$ Prove that e is a bounded metric for X .

