KINGDOOM OF SAUDI ARABIA King Saud University College of Sciences - Botany and Microbiology Dep.

Plant growth and regulators BOT 373

Lecture 9

The Ethylene غاز الاثیلین

Ethylene

- ➤ It is considered the oldest growth regulator, but its importance as a growth regulator was only recently established in 1962.
- ➤ Perhaps one of the reasons for its delayed discovery was that it is a volatile gas that affects physiology at extremely low concentrations.
- ➤ It's discovery was due to the development of gas-liquid chromatography.
- The first recognition of the importance of ethylene was made by the German scientist Girardin in 1864 in Berlin.

(Ethylene) الإيثيلين (Ethylene)

يُحتبر الإيثيلين أقدم منظم نمو (Growth Regulator) مُكتشف، لكن لم يتم تثبيت أهميته كهرمون نمو إلا مؤخراً في عام 1962 م.

سبب تأخر تثبیت الاکتشاف

ربما كان أحد أسباب تأخر اكتشافه كمنظم نمو هو أنه غاز متطاير (Volatile gas) يؤثر على فسيولوجيا النبات بتراكيز منخفضة للغاية.

Ø.

1 تقنية الاكتشاف

عُزِي تَثْبِيتَ اكتشافه إلى تطور تقنية كروماتوغرافيا الغاز والسائل (Gas-liquid chromatography).

ول اعتراف بأهميته

كان أول اعتراف بأهمية الإيثيلين من قبل العالم الألماني جيراردين (Girardin) في عام 1864 م في برلين.

- Ethylene has been shown to affect root tropism and alter root direction in peas. It also accelerates the ripening of lemons after harvest and accelerates the ripening of apples.
- ➤ In 1960, Burg and Thimann demonstrated that ethylene occurs naturally in various parts of plants, and in 1969, it was recognized as a plant hormone.

پنشیرات الإیشیلین وتشبیت دوره الهرمونی

لقد تبين أن الإيثيلين يؤثر على الانتحاء الجذري (Root Tropism) ويخير اتجاه الجذور في نباتات البازلاء. كما أنه: 🕝

- يسرّع نضج الليمون بعد الحصاد.
 - پسرٌع نضج النفاح.

الشرمونية الهرمونية

- في عام 1960 م، أثبت العالمان برغ (Burg) و ثيمان (Thimann) أن الإيتيلين يتواجد بشكل طبيعي في أجزاء مختلفة من الندائات.
 - في عام 1969 م، ثم الاعتراف بالإيتيلين رسمياً كأحد الهرمونات النباتية (Plant Hormone).

➤ It was found that there are a number of compounds already present in the plant that can be precursors or intermediates for the process of producing ethylene from the amino acid methionine or linolenic acid.

ملائف ومركبات الإيثيلين الأولية

لقد وُچد أن هناك عددًا من المركبات الموجودة بالفعل في النبات والتي يمكن أن تكون سلانف (Precursors) أو مركبات وسيطة (Intermediates) لحملية إنتاج الإيثيلين.

يتم إنتاج الإيثيلين من:

- الحمض الأميني الميثيونين (Methionine amino acid).
 - 2. حمض اللينولينيك (Linolenic acid).

ملاحظة علمية: يُعد المسار الأكثر شيوعًا ودرسًا لتخليق الإيثيلين في معظم النباتات هو المسار المعتمد على الميثيونين، حيث يمر عبر مركب وسيط رئيسي هو (ACC (1-Aminocyclopropane-1-carboxylic acid).

The three-step pathway for ethylene biosynthesis in higher plants is shown in Figure 21.8.

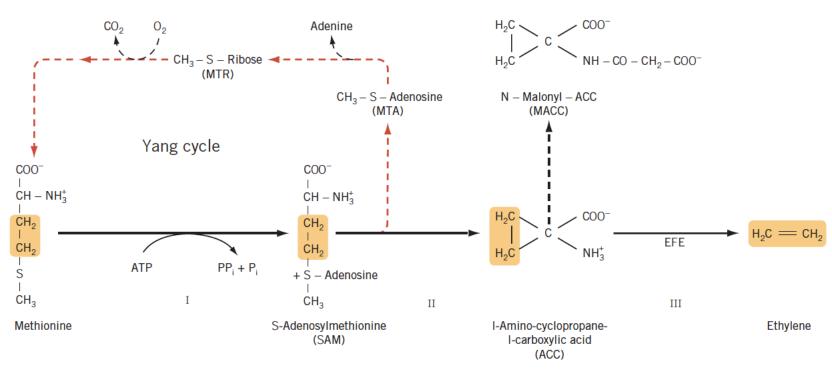
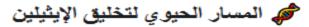



FIGURE 21.8 A scheme for ethylene biosynthesis in higher plants. The enzymes are I: SAM synthesis; II: ACC synthase; and III: ACC oxidase. The ethylene group is highlighted in yellow. The Yang cycle for sulfur recovery is highlighted in orange.

يظهر المسار ثلاثي الخطوات (Three-step pathway) لتخليق الإيتيلين في النباتات الراقية في الشكل 21.8.

ملاحظة علمية إضافية حول المسار:

هذا المسار هو الأكثر شيوعًا ومركزية في فسيولوجيا النبات، وينطوي على تحول الحمض الأميني الميثيونين (Methionine) إلى الإيثيلين عبر ثلاث خطوات رئيسية ومركبات وسيطة مهمة:

- 1. الميثيونين (S-adenosylmethionine)
- .SAM ACC (1-aminocyclopropane-1-carboxylic acid) .2
 - 3. ACC بإيثينين (Ethylene).

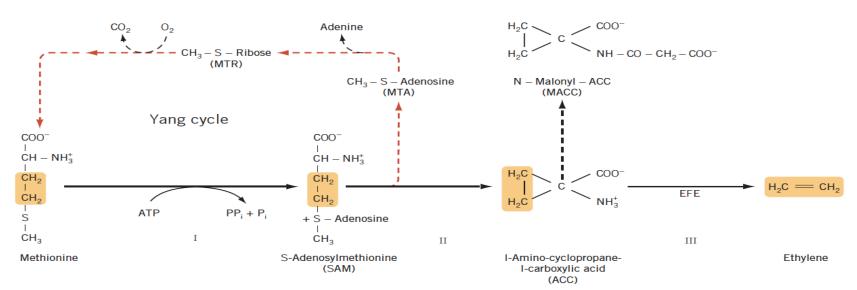


FIGURE 21.8 A scheme for ethylene biosynthesis in higher plants. The enzymes are I: SAM synthesis; II: ACC synthase; and III: ACC oxidase. The ethylene group is highlighted in yellow. The Yang cycle for sulfur recovery is highlighted in orange.

Distribution of ethylene in plants

- Ethylene is synthesized extensively in the nodes and meristematic tissues. This has been proven in pea seedlings.
- ➤ It is predominantly concentrated in the latent buds of apple plants and diminishes as the bud matures.
- > Concentrations are elevated in the leaves and developing flowers during the senescent phase.
- ➤ Ethylene is generated at elevated concentrations during the maturation and ripening phases of fruit.

وريع الإيثيلين في النباتات النباتات

يُظهر الإيثيلين نمط توزيع مرتبط بشدة بمناطق النمو النشطة، وكذلك بمراحل الشيخوخة والنضج:

- مناطق التخليق: يتم تخليق الإيثيلين بكميات كبيرة في العقد (Nodes) والأتسجة الميرستيمية (Meristematic tissues). وهَد أُثبت ذلك في بادرات نبات البازلاء.
- البراعم الساكنة: بتركز الإبتيلين بشكل كبير في البراعم الكامنة (Latent buds) لنبات النفاح، ثم يتناقص تركيزه مع نضج البرعم.
 - الأجزاء المتقادمة: تكون تراكيز الإيتيلين مرتفعة في الأوراق والأزهار الثامية خلال مرحلة الشيخوخة (Senescent phase).
 - الثمار: بِنُولُد الإِبْتِلِين بِنَر اكْبِر عالية أثناء مرحلتي النضج والإنضاج للثمرة.

Various sources of ethylene

- The majority of plants produce ethylene gas during biological processes.
- ➤ Plant injuries, contact with rigid surfaces, and severing of plant components generally generate ethylene gas. Pollution and pesticides may also generate ethylene gas.
- > Ethylene gas is frequently generated during seed germination.
- The combustion of gathered plants produces smoke and gases that contain a certain percentage of this gas.
- > **Soil microorganisms**, including bacteria and fungus, are capable of producing ethylene gas.

📤 مصادر الإيثيلين المتنوعة

يُنتج الإيثيلين من مصادر بيولوجية وبيئية مختلفة، حيث تفرزه الكائنات الحية والنباتات كرد فعل لعمليات طبيعية أو إجهادات خارجية:

المصادر النباتية والبيولوجية:

- العمليات الحيوية: تنتج عالبية النباتات عاز الإيتيلين أثناء سير العمليات البيولوجية الطبيعية.
- الإصابات والإجهاد الميكانيكي: يؤدي تضرر النباتات، والتلامس مع الأسطح الصلبة (الاحتكاك)، وقطع أجزاء النبات بشكل عام إلى توليد عاز الإيثيلين.
 - إثبات البذور: عالباً ما يتولّد عاز الإيثيلين أثناء إثبات البذور.

المصائر البينية:

- التلوث والمبيدات: قد بنتج التلوث والمبيدات الحشرية عاز الإبتيلين.
- الاحتراق والدخان: بنتج عن احتراق النبائات المجمعة دخان وغازات تحتوي على نسبة معينة من هذا الغاز.
- الكانثات الدقيقة في التربة: تستطيع الكانثات الدقيقة في التربة، يما في ذلك البكتيريا والفطريات، إنتاج عان الإيتيلين.

Transport of Ethylene

- As a gaseous hormone, the sole hormone in this condition, characterized by low molecular weight and small volume, it traverses within the plant with ease and free. Its transport and penetration into plant tissues are facilitated by its water solubility, which is further enhanced by its lipid solubility.
- ➤ It also traverses across scattered water and can readily infiltrate cells by permeating the plasma membrane owing to its lipid solubility.

(Ethylene Transport) انتقال الإيثيلين (Ethylene Transport)

يُعد الإيثيلين الهرمون الغاري الوحيد في النبائات، ويتميز بوزن جزيئي منخفض وحجم صغير.

لهذه الخصائص، ينتقل الإيثيلين داخل النبات بسهولة وحرية تامة. يتم تسهيل نقله واختراقه لأنسجة النبات من خلال ما يلي:

- الذوباتية في الماء: يسهل نوبانه في الماء من عملية النقل عبر الأجزاء المائية.
- 2. الذوباتية في الدهون (Lipid solubility): يعزز ذوبانه في الدهون قدرته على العبور.

كما أنه:

- بعبر من خلال الماء المتبعثر (Scattered water).
- يمكنه النسلل بسهولة إلى داخل الخلايا عن طريق النفاذ عبر الغشاء البلازمي (Plasma membrane)، وذلك بفضل طبيعته الذائبة في الدهون.

The Significance of Auxin in Ethylene Synthesis

- Auxins are the primary catalyst for increasing ethylene production. Consequently, the rate of ethylene production in the vegetative system is contingent upon the concentration of auxins in the plant.
- The concentration of plant auxins governs the synthesis of ethylene in vegetative tissues.
- Consequently, regions of the plant with elevated ethylene levels, such as the apical meristem and juvenile organs, also exhibit high quantities of auxins.

📈 أهمية الأوكسين في تخليق الإيثيلين

تُعد الأوكسينات (Auxins) هي المحقل الأولي (Primary catalyst) لزيادة إنتاج الإيثيلين. وبناءً على ذلك:

- معدل إنتاج الإيثيلين في النظام الخضري بِنَوفَف على تركيز الأوكسينات في النبات.
- بتحكم تركيز الأوكسينات في النبات في عملية تخليق الإيثيلين داخل الأنسجة الخضرية.

النتيجة:

تبعاً لذلك، فإن مناطق النبات ذات المستويات المرتفعة من الإيثيلين، مثل الميرستيم القمي (Apical meristem) والأعضاء الفتية (Juvenile organs)، تظهر أيضاً كميات عالية من الأوكسينات.

ملاحظة هامة: هذه العلاقة تشير إلى أن الأوكسين هو الذي يحث الإنزيمات المسؤولة عن تخليق الإيثيلين (مثل ACC Synthase)، مما يربط بين هرمون نمو (الأوكسين) وهرمون نضيج وشيخوخة (الإيثيلين).

- The one exception to this principle is senescent tissues, whereby auxin levels diminish and ethylene levels may rise.
- Research on the influence of auxin on ethylene synthesis in pea and bean seedlings has demonstrated that auxin treatment amplifies ethylene production and synthesis by a factor of 100.

🕥 استثناء القاعدة وتأثير الأوكسين على الابثيلين

(Senescent Tissues) استثناء الأنسجة الهرمة

الاستثناء الوحيد لهذه القاعدة (وهي أن الأوكسين يحفز الإيتبلين) هو الأنسجة الهرمة أو الأنسجة التي تمر بالشيخوخة، حيث:

- تثخفض مستويات الأو كسين.
- قد ترتفع مستويات الإيثيلين.

(Auxin Treatment) تأثير الأوكسين المعالَج (Auxin Treatment)

أظهرت الأبحاث حول تأثير الأوكسين على تخليق الإبتيلين في بادرات البازلاء والقول ما بلي:

المعالجة بالأوكسين تُضخِّم (amplifies) إنتاج وتخليق الإيثيلين بمقدار 100 ضعف.

خلاصة: بؤكد هذا البحث قوة الأوكسين كمنشط رئيسي لتخليق الإيثيلين، مما يفس سبب ارتباط الأوكسين (هرمون النمو) في بعض الأحيان يناثيرات الشيخوخة (الإنشلان).

The many impacts of ethylene on plants

Endogenous ethylene

Burg elucidated that ethylene is inherently synthesized in vegetative and floral tissues, in addition to fruits and seeds. Consequently, it functions as a growth regulator during all phases of plant development, from seed germination to senescence.

الإيثيلين الداخلي (Endogenous Ethylene)

أوضح العالم برغ (Burg) أن الإيثيلين يُخلُق بشكل أصيل (inherently synthesized) في:

- الأنسجة الخضرية (Vegetative tissues).
 - الأنسجة الزهرية (Floral tissues).
 - بالإضافة إلى الثمار والبذور.

النتيجة:

بناءً على ذلك، يعمل الإيثيلين كـ منظم نمو (Growth Regulator) خلال جميع مراحل نمو النبات، بدءاً من إنبات البذور ووصولاً إلى الشيخوخة (Senescence). ②

Division:

It inhibits division in land plants and counteracts the action of divisionstimulating growth hormones such as cytokinin.

Elongation:

It inhibits cell elongation in the diagonal walls, but increases cell volume and wall thickness, thereby inhibiting elongation and increasing cell volume.

1 تأثيرات الإيثيلين القسيولوجية

1. الاتقسام (Division)

- يثبط الإيثيلين عملية الانقسام الخلوي في النباتات البرية.
- بعمل الإبتيلين على معاكسة (counteracts) عمل هرمونات النمو المحفزة للانتسام مثل السيتوكيتين (Cytokinin).

الاستطالة (Elongation)

يُحدث الإيثيلين تغيراً في نمو الخلايا بدلاً من الاستطالة الطبيعية:

- بثبط استطالة الخلايا في الجدران القطرية (Diagonal walls).
 - في المقابل، فإنه بربد من حجم الخلية وسلمك الجدار الخلوي.
 - وبالثالي، بؤدي إلى تتبيط الاستطالة مع زيادة حجم الخلية الكلي.

ملاحظة (الاستجابة الثلاثية): تُعد هذه الآلية جرءًا من الاستجابة الثلاثية (Triple Response) للإيثيلين في البادرات، حيث نظهر البادرة ساقًا قصيرة وسميكة بدلاً من النمو الطولي.

- This is achieved by organizing, directing, and aligning microtubules.

 The quality of the alignment and the arrangement of cellulose fibrils determines cell growth.
- Ethylene has been found to play a role in directing cellulose fibrils to align in a way that ensures increased cell volume.

الدقيقة المنابيب الدقيقة الخلية وتوجيه الأتابيب الدقيقة

يتم تحقيق (تغيير نمط الاستطالة الخلوية المذكور سابقاً) من خلال تنظيم (organizing) وتوجيه (directing) ومُحاذاة (aligning) الأنابيب الدقيقة (Microtubules).

- تحدد جودة مُحاذاة وترتب ليبقات السليلوز (Cellulose fibrils) نمو الخلية.
- لقد وُجِد أن الإِبْشِلْسِ بِلعب دوراً في توجيه ليبقات السليلوز لتتموضع بطريقة تضمن زيادة حجم الخلية الكلي.

خلاصة: يؤدي هذا التوجيه إلى تثبيط الاستطالة الرأسية (الطولية) وتشجيع التوسع العرضي (الجانبي)، وهو ما يفسر التأثير الذي لوحظ في البادرات (دمو قصير وسميك).

→ Differentiation:

Hinders the differentiation process in land plant cells.

> Flowers:

➤ Hinders flower formation or causes flowers to enter the sensecence stage quickly.

> Floral wilting

In orchids, the bloom will remain unaltered for an extended period if fertilization and pollination do not take place. Subsequently, following pollination, the flower will rapidly wither. Pollination generates ethylene gas, resulting in the wilting and aging of petals.

🤏 تأثيرات الإيثيلين الفسيولوجية

1. التمايز (Differentiation)

بعيق (Hinders) الإيثيلين عملية التمايز الخلوي في خاتيا النباتات البرية.

2. الأزهار (Flowers)

بعرق الإبثيلين تكوين الأزهار أو يتسبب في دخول الأزهار في مرحلة الشيخوخة (Senescence stage) بسرعة.

ديول الأزهار (Floral Wilting)

تُعد أرهار الأوركيد مثالاً واضماً لتأثير الإيثيلين على النبول:

- في بباتات الأوركيد (Orchids)، تظل الزهرة دون تغيير لفترة طويلة إذا لم يحدث إخصاب أو تلقيح (Pollination).
 - بعد التلقيح مباشرة، تذيل الرهرة بسرعة.
 - بؤدي التلقيح إلى توليد غاز الإيثيلين، مما بنئج عنه ذبول وشيخوخة البتلات (Petals).

- The correlation between ethylene and the maturation of fruit.

 This association was established by two observations:
- ➤ firstly, that natural fruit ripening correlates with an increase in ethylene production.
- right secondly, that the application of ethylene to specific fruits induces an earlier and accelerated ripening process.
- Research indicates that under typical settings, a physiological concentration develops in the tissues, sufficient to trigger the ripening of bananas, tomatoes, apples, avocados, pears, and others.

(Fruit Maturation) العلاقة بين الإيثيلين ونضج الثمار (Fruit Maturation)

تُعد العلاقة بين الإيثيلين ونضج الثمار من أهم الأدوار الفسيولوجية لهذا الهرمون، وقد تم إثبات هذه العلاقة بملاحظتين رئيسيتين:

- الارتباط الطبيعي: يرتبط نضبج الثمار الطبيعي بـ زيادة في إنتاج الإيثيلين.
- النائير المُحقّر: بؤدي تطبيق الإيثيلين على ثمار معينة إلى بدء عملية نضج أبكر وأكثر تعمار عاً.

(Physiological Concentration) التركيز القسيولوجي

تشير الأبحاث إلى أنه في الظروف العادية، تتطور تركيزات فسيولوجية (أي طبيعية وفعالة) في أنسجة الثمار، تكون كافية ليدء إنضاج ثمار مثل:

- الموز (Bananas)
- الطماطم (Tomatoes)
 - التقاح (Apples)
- الأَقْوَ كَادُورَ (Avocados) @
- الكمثرى (Pears) وغيرها.

➤ Multiple investigations have identified a significant association between the apex of ethylene production and the zenith of respiration rates.

العلاقة بين الإيثيلين وذروة التنفس

لقد حددت تحقيقات متعددة (Multiple investigations) وجود ارتباط كبير (significant association) بين ذروة (semificant association) بين ذروة (apex) إنتاج الإيثيلين وأوج (zenith) معدلات التنفس.

ملاحظة هامة: ظاهرة التنفس القِتي (Climacteric Respiration)

تُشير هذه العبارة إلى ظاهرة التنفس الفِتي (Climacteric Respiration)، وهي سمة مميزة لنضج العديد من الثمار (مثل التفاح والموز والطماطم). حيث تثميز هذه المرحلة بـ:

- ارتقاع مقاجئ وحاد في محدل التنقس الخلوى.
- ارتقاع مقابل في إنتاج الإيثيلين، الذي يعمل كمحفر ذائي لهذا الارتفاع.

تم بحمد الله