

Student's Name	Student's ID	Group No.

Question No.	Ι	II	III	IV	V	Total
Mark						

[T]	Determine whether the following is True or Folgo Justify your answer	[1 Dointe]	
1	Determine whether the following is True of Faise . Justify your answer.	4 Points	

1. The Newton Method converges quadratically to the root p = 0 of the function $f(x) = e^{2x} - 2x - 1$. ()

2. The sequence $p_n = \frac{1}{n^2}$, $n \ge 1$ converges linearly to zero.

3. If $x_0 = 2$ and $x_1 = 2.75$ are used to find the first Lagrange interpolation polynomial for $f(x) = \frac{1}{x}$, then the error is less than 0.04. ()

(

)

[II] Let $f(x) = x^5 + x + 1$. [3 Points]

- (a) Use three iterations of the Newton Method to approximate the root of f on [-1, 1].
- (b) How accurate is the approximation in (a)? Justify your answer.

[III] Let $f(x) = x^3 - x - 3$. For $p_0 = 1.5$ and $p_1 = 2$,

[4 Points]

- (a) **Find** p_2 using the Secant Method.
- (b) **Find** p_4 using the method of False Position.

[IV] Use the second Lagrange interpolation polynomial with three distinct nodes x_0 , $x_1 = x_0 + h$ and $x_2 = x_0 + 2h$ to derive the formula

$$f'(x_0) \approx \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right]$$
 [4Points]

[V] Use the data in the following table for all parts of this question.

[5 Points]

х	0.1	0.4	0.7	1.0
f(x)	0.1103	0.5809	1.297	2.287

- (i) **Approximate** f(0.5) by the Newton Forward-Difference formula with 3 points.
- (ii) Approximate f''(0.7) by a second derivative midpoint formula.