

Student's Name	Student's ID	Group No.	

Question No.	Ι	II	III	IV	Total
Mark					

(-1		[· ·	1
L	Determine whether the following is True or False . Justify your answer.	4 Points	
			1

1. If k is a positive integer, then the convergence of the sequence $p_n = \frac{1}{n^k}$ to zero is **linear**. ()

2. x = 1 is a **simple** root of $g(x) = x^3 e^x - 2x^2 e^x + x e^x$.

3. If f[3,5,6] = 7 and f[5,6] = 1 are given divided differences for a function f, then f[3,5] = 22. ()

(

)

[II] Let $f(x) = x^5 - x^2 + x + 1.$ [4 Points]

- (a) Use two iterations of the Modified Newton Method to approximate the root of f on [-1, 1].
- (b) How accurate is the approximation in (a)? Justify your answer.

[III] If f(0.25) = 1.648, f(0.5) = 2.718, and f(0.75) = 4.481, [5 Points]

- (i) use an appropriate Lagrange polynomial of degree two to approximate f(0.43).
- (ii) Given that $f(x) = e^{2x}$, use the error formula to find an upper bound for the error in (i).
- (iii) **Compare** the bound in (ii) with the actual relative error.

[V] Use the data in the following table for all parts of this question. [7 Points]

х	0	0.2	0.4	0.6
f(x)	1	1.22	1.49	1.82

- (i) Approximate f(0.5) by the Newton Forward-Difference formula with 3 points.
- (ii) Approximate f''(0.4) by a second derivative midpoint formula.
- (iii) Approximate f'(0.2) by a 3-point formula.
- (iv) **Estimate** the error in (iii) if you know that $f(x) = e^x \cos x$.