MATH 352 (Numerical Analysis)
Second Midterm Exam
Duration: $1 \frac{1}{2}$ Hours

Student's Name	Student's ID	Group No.

Question No.	I	II	III	IV	Total
Mark					

[I] Determine whether the following is True or False. Justify your answer.
[4 Points]

1. If k is a positive integer, then the convergence of the sequence $p_{n}=\frac{1}{n^{k}}$ to zero is linear.
2. $x=1$ is a simple root of $g(x)=x^{3} e^{x}-2 x^{2} e^{x}+x e^{x}$.
3. If $f[3,5,6]=7$ and $f[5,6]=1$ are given divided differences for a function f, then $f[3,5]=22$.
[II] Let $f(x)=x^{5}-x^{2}+x+1$. [4 Points]
(a) Use two iterations of the Modified Newton Method to approximate the root of f on $[-1,1]$.
(b) How accurate is the approximation in (a)? Justify your answer.
[III] If $f(0.25)=1.648, f(0.5)=2.718$, and $f(0.75)=4.481, \quad$ [5 Points]
(i) use an appropriate Lagrange polynomial of degree two to approximate $f(0.43)$.
(ii) Given that $f(x)=e^{2 x}$, use the error formula to find an upper bound for the error in (i).
(iii) Compare the bound in (ii) with the actual relative error.
[V] Use the data in the following table for all parts of this question.

x	0	0.2	0.4	0.6
$\mathrm{f}(\mathrm{x})$	1	1.22	1.49	1.82

(i) Approximate $f(0.5)$ by the Newton Forward-Difference formula with 3 points.
(ii) Approximate $f^{\prime \prime}(0.4)$ by a second derivative midpoint formula.
(iii) Approximate $f^{\prime}(0.2)$ by a 3 -point formula.
(iv) Estimate the error in (iii) if you know that $f(x)=e^{x} \cos x$.

