Student's Name	Student's ID	Group No.

Question No.	I	II	III	IV	Total
Mark					

[I] Determine whether the following is True or False. Justify your answer.
[4 Points]

1. If p^{*} approximates π to 3 significant digits, then $p^{*} \in[0.995 \pi, 1.005 \pi]$.
2. If $x=\frac{6}{7}$ and $y=\frac{2}{3}$ then the 4 -digit rounding value of $x \ominus y$ is 0.1905 .
3. If the growth of error for an algorithm is linear, then this algorithm is stable.
4. $g(x)=x^{3}-4 x^{2}$ has two fixed-points in $[-1,5]$.
[II] Let $\alpha_{n}=\frac{n+4}{(2 n+1)^{3}}$ and $F(h)=\frac{1-e^{h}}{h}$. [4 Points]
(a) Determine the rate of convergence for α_{n}.
(b) Determine the rate of convergence for $F(h)$.
[III] Let $f(x)=x^{5}-2 x-1 . \quad$ [5 Points]
(a) Show that f has a root in $[1,1.5]$.
(b) Use the Bisection method to find the root of f on $[1,1.5]$ accurate to within 10^{-2}.
(c) Estimate the relative error in (b).
A. Let $f(x)=x^{3}-x^{2}-3$.
(i) If $f(p)=0$, show that each of the functions $g_{1}(x)=\sqrt[3]{3+x^{2}}$ and $g_{2}(x)=\frac{3}{x^{2}}+1$ has a fixed point at p.
(ii) Which of the functions g_{1} and g_{2} in (i) is better for the fixed-point iterations on $[1,2]$? Justify your answer.
B. Use an appropriate fixed-point iteration to find the root of $\pi+\frac{1}{2} \sin \left(\frac{x}{2}\right)-x$ on $[0,2 \pi]$ with accuracy 10^{-3}.
