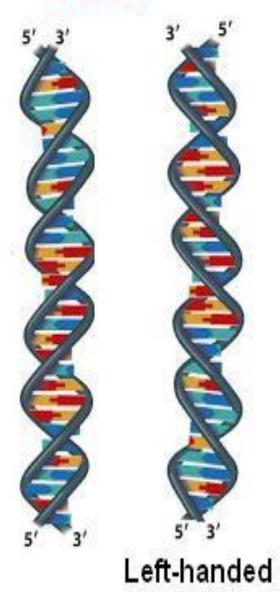
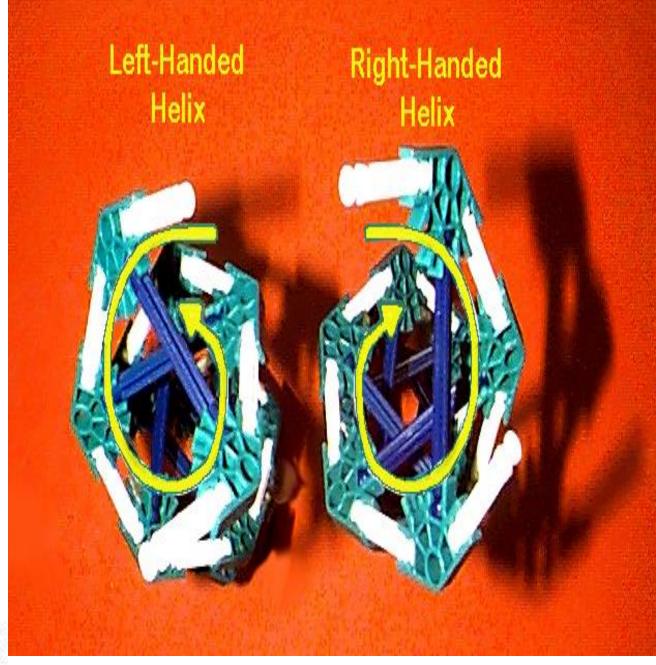
وراثة الأحياء الدقيقة Microbial Genetics


د. تركي محمد الداود مكتب ۲ ب ٥٤


أساسيات في علم الوراثة Fundamentals of Genetics Lecture 4

Physical Chemistry of Nucleic Acids

- ❖ DNA and RNA molecules can appear in several different structural variants
 - Changes in relative humidity will cause variation in DNA molecular structure
 - The twist of the DNA molecule is normally shown to be right-handed, but left-handed DNA was identified in 1979.

Right-handed helix: Correct

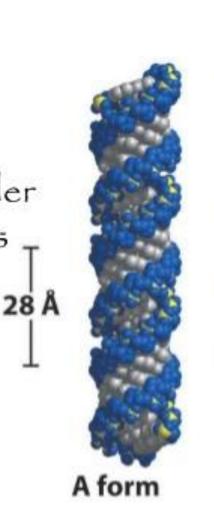
helix: Incorrect

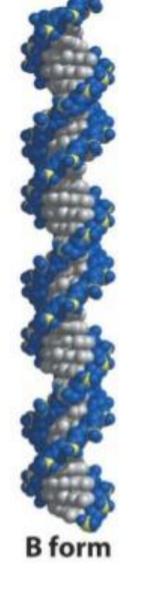
A Variety of DNA Structures

 High humidity DNA is called the B-form Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Table 2.2 Forms of DNA

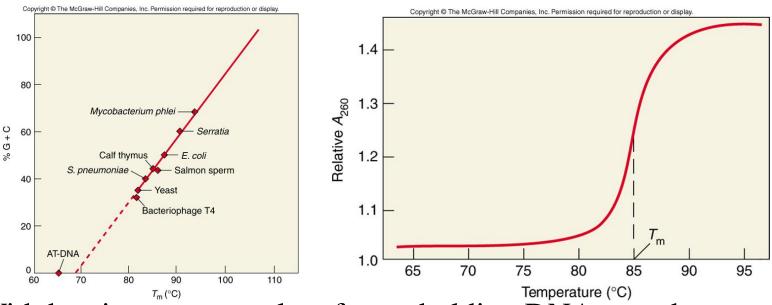
 Lower humidity from cellular conditions to about 75% and DNA takes on the A-form


Form	Pitch Å	Residues per Turn	Base Pair from Horizontal (degrees)
Α	24.6	10.7	+19
В	33.2	~10	-1.2
Z	45.6	12	-9
A B Z	33.2	~10	-1.2

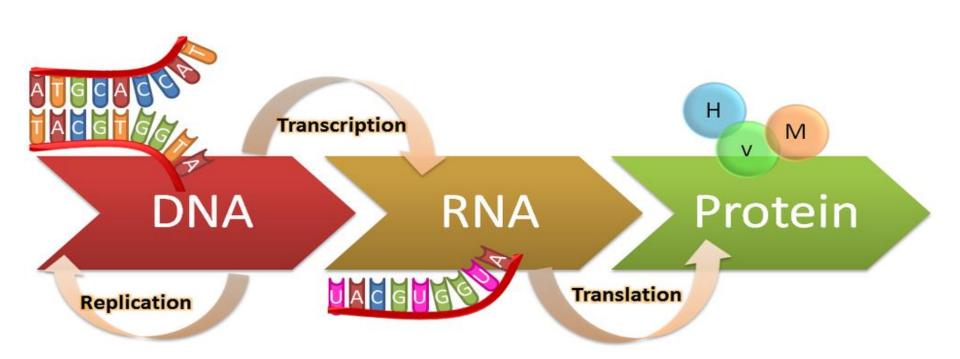

- Plane of base pairs in A-form is no longer perpendicular to the helical axis
- A-form seen when hybridize one DNA with one RNA strand in solution
- When wound in a lefthanded helix, DNA is termed Z-DNA
- One gene requires Z-DNA for activation

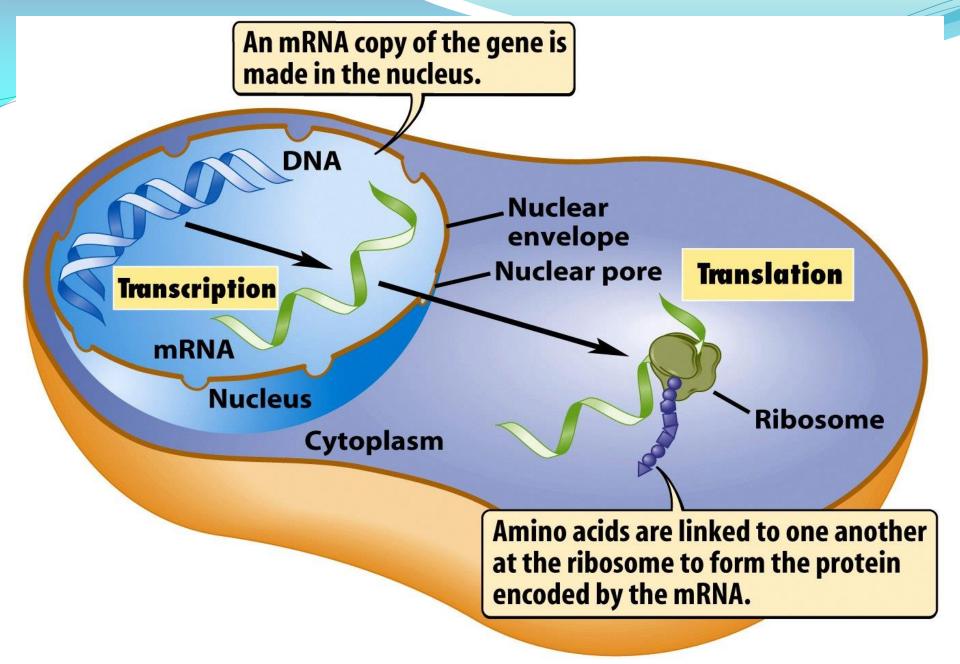
Inclination of

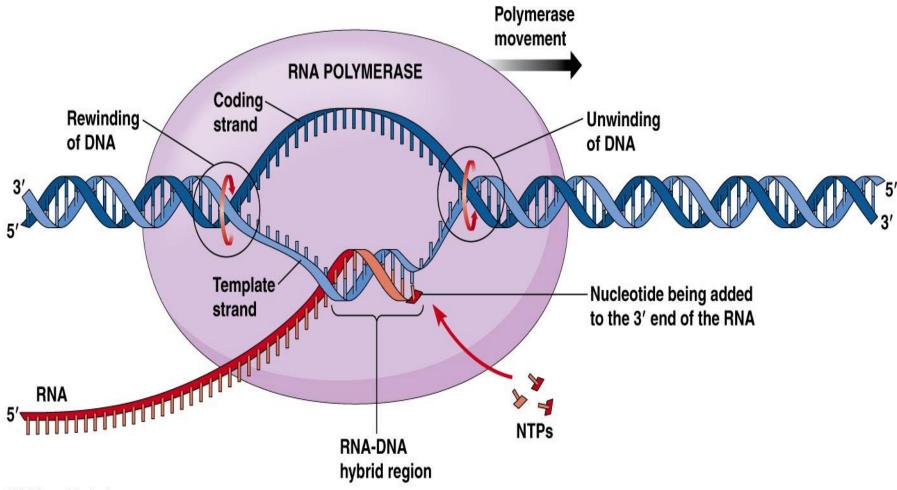
A, B and Z DNA


- A form favored by RNA
- B form Standard
 DNA double helix under
 physiological conditions –
- Z form laboratory anomaly,
 - Left Handed
 - Requires Alt. GC
 - High Salt/ Charge neutralization

DNA Melting

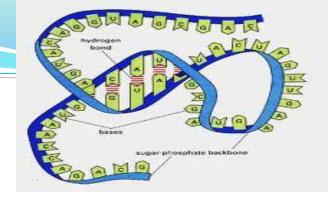



- With heating, non-covalent forces holding DNA strands together weaken and break
- When the forces break, the two strands come apart in denaturation or melting
- Temperature at which DNA strands are $\frac{1}{2}$ denatured is the melting temperature or T_m
- GC content of DNA has a significant effect on T_m with higher GC content meaning higher T_m .


- If DNA is a book, then how is it read?
- In DNA transcription process, DNA is converted to RNA, a more portable set of instructions for the cell.
- Transcription is the synthesis of ssRNA from dsDNA.
- DNA-dependent RNA polymerase.
- DNA is double-stranded: one strand serves as a template for transcription.
- Template strand is called the non-coding strand, and the non-template strand is referred to as the coding strand.

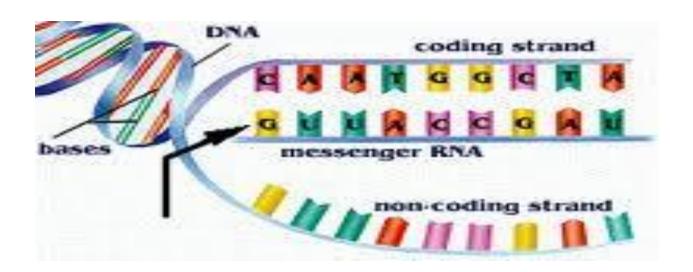
- Major RNA types-mRNA, rRNA and tRNA.
- All synthesized in a similar way-modified to their own specific forms "post-transcriptional processing".
- Certain DNA regions with strong affinity for RNA polymerase- "**Promoters**".
- Yeast promoters- TATA box.
- Bacterial- Pribnow-Schaller box.

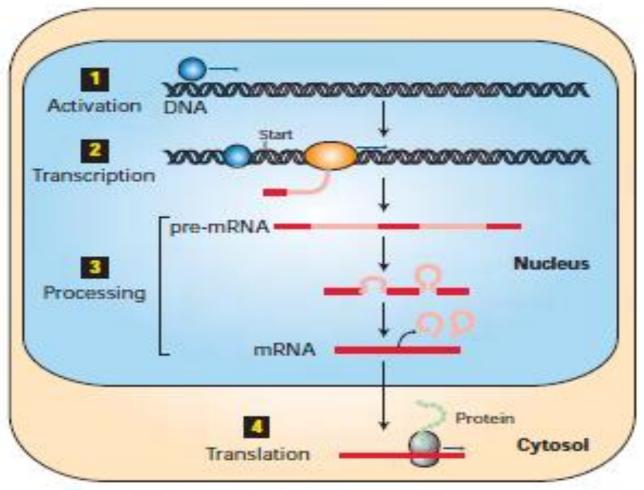
- Eukaryotic cells- 3 RNA polymerase designated I, II, and III.
- RNA polymerase I resides in the nucleoli synthesizes rRNA.
- RNA polymerase II synthesizes mRNA and some small RNA molecules.
- RNA polymerase III synthesizes tRNA and some small RNA molecules.
- In Bacteria there is only one RNA polymerase core.

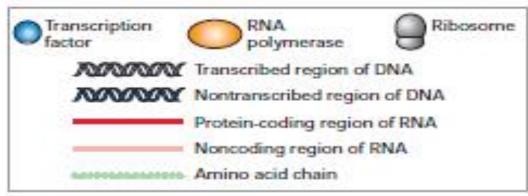


@ 2012 Pearson Education, Inc.

Ribonucleic acid (RNA)

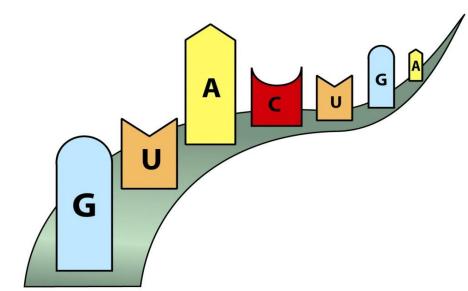

- * RNA is a biologically important type of molecule that consists of a long chain of nucleotide units.
- ❖ Each nucleotide consists of a nitrogenous base, a ribose sugar, and a phosphate.
- *RNA is a single stranded; the pyrimidine base **uracil** (U) replaces thymine and ribose sugar replaces deoxyribose.
- ❖ Three major classes of <u>RNA</u>: messenger (mRNA), transfer (tRNA) and ribosomal (rRNA). Minor classes of RNA include small nuclear RNA;.....


Types of RNA


Type	Abbr	Function	Distribution				
Messenger RNA	mRN/	A Codes for protein	All organisms				
Ribosomal RNA	rRNA	Translation	All organisms				
Transfer RNA	tRNA	Translation	All organisms				
In post-transcriptional modification							
Small nuclear RNA	snRNA	Splicing and other functions	Eukaryotes and Achaea				
Y RNA		RNA processing, DNA replication	Animals				
Telomerase RNA		Telomere synthesis	Most eukaryotes				
Regulatory RNAs							
Antisense RNA	aRNA ml	anscriptional attenuation / RNA degradation / mRNA tabilization / Translation block	All organisms				

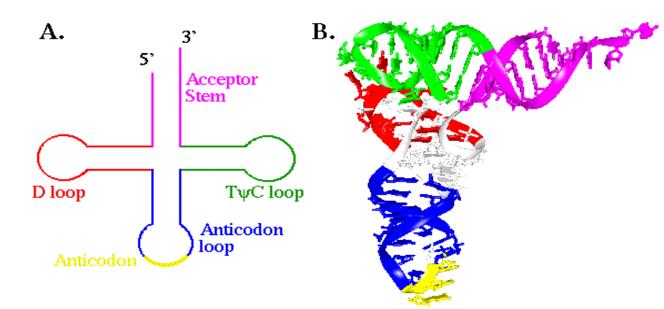
Messenger RNA

- *mRNA carries information about a protein sequence to the ribosomes, the protein synthesis factories in the cell.
- ❖ It is coded so that every three nucleotides (a codon) correspond to one amino acid.
- ❖ In eukaryotic cells, once precursor mRNA (pre-mRNA) has been transcribed from DNA, it is processed to mature mRNA. This removes its introns—non-coding sections of the pre-mRNA.



Messenger RNA

- The mRNA is then exported from the nucleus to the cytoplasm, where it is bound to ribosomes and translated into its corresponding protein form with the help of tRNA.
- ❖In prokaryotic cells, which do not have nucleus and cytoplasm compartments, mRNA can bind to ribosomes while it is being transcribed from DNA.



Transfer RNA

- ❖ Transfer RNA (tRNA) is a small RNA chain of about 80 nucleotides that transfers a specific amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis during translation.
- ❖ It has sites for amino acid attachment and an anticodon region for codon recognition.
- *the site binds to a specific sequence on the messenger RNA chain through hydrogen bonding.

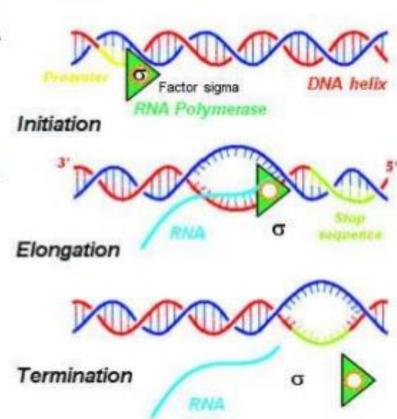
Transfer RNA

- ❖ All the tRNAs share a common secondary structure resembles a cloverleaf: They have four base- paired stems defining three stemloops (the D loop, anticodon loop, and T loop) and the acceptor stem.
- *tRNA carry correct amino acids to their position along the mRNA template to be added to the growing polypeptide chain.

Ribosomal RNA

- ❖ Ribosomal RNA (rRNA) is the catalytic and central component of the ribosomes.
- *Ribosome; factory for protein synthesis; composed of ribosomal RNA and ribosomal proteins (known as a Ribonucleoprotein or RNP).
- *rRNA molecules are synthesized in the nucleolus.
- ❖ In the cytoplasm, ribosomal RNA and protein combine to form a nucleoprotein called a ribosome for decoding mRNA into amino acids.
- ❖ The ribosome binds mRNA and carries out protein synthesis.

 Several ribosomes may be attached to a single mRNA at any time.


Transcription in Prokaryotes

Three stages

- Initiation phase: RNA-polymerase recognizes the promoter and starts the transcription.
- <u>Elongation phase</u>: the RNA strand is continuously growing.
- <u>Termination phase</u>: the RNA-polymerase stops synthesis and the nascent RNA is separated from the DNA template.

Similarities between Replication and Transcription

- The processes of DNA and RNA synthesis are similar in that they involve-
- (1) the general steps of initiation elongation, and termination with 5' to 3' polarity;
- (2) large, multicomponent initiation complexes; and
- (3) adherence to Watson-Crick base-pairing rules.

Differences between replication and transcription

	replication	transcription
template	double strands	single strand
substrate	dNTP	NTP
primer	yes	no
Enzyme	DNA polymerase	RNA polymerase
product	dsDNA	ssRNA
base pair	A-T, G-C	A-U, T-A, G-C

Differences between Replication and Transcription

- Ribonucleotides are used in RNA synthesis rather than deoxy ribonucleotides;
- U replaces T as the complementary base pair for A in RNA;
- (3) A primer is not involved in RNA synthesis;
- (4) Only a portion of the genome is transcribed or copied into RNA, whereas the entire genome must be copied during DNA replication; and
- (5) There is no proofreading function during RNA transcription.

QUESTIONS??

