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Outline of the Course: 
Course code and number: STAT 340. 

Course name: Theory of Statistics 1. 

Credits: 3 (2+2+0). 

Pre-requisite: STAT 332. 

 

Instructor: 
Dr. Samah Abdullah Alghamdi. 

Office: 346 – Building 5. 

E-mail : samalghamdi@ksu.edu.sa 

Web Site: http://fac.ksu.edu.sa/samalghamdi 

 

References: 

1. Introduction to Mathematical Statistics, 2005, Sixth Edition by R. Hogg, J. McKean, and A. Craig, Prentice Hall. 
2. Introduction to the Theory of Statistics, 2007, Third Edition by A. Mood, F. Graybill and D. Boes, McGrow-Hill. 
3. Principals of Statistical Inference (Jalal Al Sayad) الریاض  –مریخ للنشر دار ال  
4. Mathematical Statistics by Steven Arnold. Prentice Hall; First Edition (1990). 
5. Fundamentals of the theory of Estimation, 1st edition, King Saud University Press, 2007. By Abdullah Abdulkarim Al-Shiha. 
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Main Topics:  
1. Sampling Distribution and Central Limit Theorem.  
2. Estimator Properties: Unbiasedness – Mean Squared Error – Consistency – Sufficiency – Minimal Sufficiency – 

Completeness - Minimum Variance Unbiased Estimator. 
3. Exponential Family Theorem. 
4. Fisher Information and Cramer-Rao Inequality. 
5. Rao-Blackwell and Lehmann-Scheffé Theorems. 
6. Estimation Methods: Method of Moments – Maximum Likelihood Method. 
7. Bayesian Estimate: Prior and Posterior Distributions – Loss Function Approach. 

 

Marking Scheme: 
First Mid-Term Exam: 25 Marks. 

Second Mid-Term Exam: 25 Marks. 

Assignments and Quizzes: 10 Marks. 

Final Exam: 40 Marks. 
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Chapter 1: Introduction 
 

This chapter introduce a brief review of some basic definitions and statistical distributions.  

1.1 Definition and Basic Concept 
In this chapter, we give some basic definitions and concepts. 

Population: 

• A population is the largest collection of elements or individuals in which we are interested in a particular 
time and about which we want to make some statement or conclusion.  

• The population values usually denoted by 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁), where N is the number of elements in the 
population, called the population size. 

Sample: 

• A sample is a subset of a population on which we collect data.  
• The sample values usually denoted by 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), where n is the number of elements in the sample, 

called the sample size. 

Parameter: 

• A parameter is a measure (or number) obtained from the population values. 
• Values of the parameters are unknown in general. 

Statistic: 

• A statistic is a measure (or number) obtained from the sample values. 
• Values of the statistic are known in general. 



STAT 340                                               Theory of Statistics 1                               Dr. Samah Alghamdi 
 

 
 

 
   7 
 

Random Variable: 

• A random variable X  is a function that associates a real number with each element in the sample space.  
• Most of the time, statisticians deal with two special kinds of random variables, which are discrete and 

continuous random variables. 

Discrete Random Variable: 

A random variable 𝑋𝑋 is discrete if: 

1. It can take on values from finite or countable infinite values. 
2. It has a discrete distribution, called the probability mass function (pmf) of 𝑋𝑋 if, for each possible outcome 

𝑥𝑥 
𝑓𝑓𝑋𝑋(𝑥𝑥) ≥ 0,      ∑ 𝑓𝑓𝑋𝑋(𝑥𝑥) = 1,    𝑥𝑥   and        𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥). 

Continuous Random Variable: 

 A random variable 𝑋𝑋 is continuous if: 

1. It can take on values from an interval or not countable values. 
2. It has a continuous distribution, called the probability density function (pdf) for X, defined over the set of 

real numbers, if  
𝑓𝑓𝑋𝑋(𝑥𝑥) ≥ 0   for all 𝑥𝑥 ∈ 𝑅𝑅,   ∫ 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1,      ∞

−∞ and       𝑃𝑃(𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏) = ∫ 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎   . 

Cumulative Distribution Function: 

𝐹𝐹𝑋𝑋(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥), for  −∞ < 𝑥𝑥 < ∞. 
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Random Sample: 

A random sample is a sample that is chosen randomly. Random sample are used to avoid bias and other unwanted 
effects. 

Joint Probability distribution: 

The function 𝑓𝑓(𝑥𝑥,𝑦𝑦) is a joint probability distribution of the random variables X and Y if: 

1. 𝑓𝑓(𝑥𝑥,𝑦𝑦) ≥ 0, for all (𝑥𝑥,𝑦𝑦). 
2.  ∑ ∑ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 1 𝑦𝑦𝑥𝑥 if X and Y are discrete 

∫ ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 𝑦𝑦𝑥𝑥  if X and Y are continuous. 

Independent Random Variables: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a n random variables, discrete or continuous, with joint probability 
distribution 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛). The random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are said to be mutually statistically independent 
if and only if  

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑓𝑓1(𝑥𝑥1)𝑓𝑓2(𝑥𝑥2) …𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛). 

For all (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) within their range. 

Expectations and Moments: 

The rth moment about the origin of the random variable X is given by  

𝜇𝜇𝑟𝑟′ = 𝐸𝐸(𝑋𝑋𝑟𝑟) = �
�𝑥𝑥𝑟𝑟  𝑓𝑓𝑋𝑋(𝑥𝑥),            If 𝑋𝑋 is discrete,

�𝑥𝑥𝑟𝑟  𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑,     If 𝑋𝑋 is continuous.
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The first moment (mean or expected value) and the second moment are given by 𝜇́𝜇1 = 𝜇𝜇 = 𝐸𝐸(𝑋𝑋) and 𝜇́𝜇2 =
𝐸𝐸(𝑋𝑋2), respectively. 

The variance is defined as 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝜎𝜎2 = 𝜇́𝜇2 − 𝜇́𝜇12 = 𝐸𝐸[(𝑋𝑋 − 𝜇𝜇)2] = 𝐸𝐸(𝑋𝑋2) − �𝐸𝐸(𝑋𝑋)�2. 

The standard deviation is the square root of the variance denoted as 

𝜎𝜎 = √𝜎𝜎2 = �𝐸𝐸(𝑋𝑋2)− �𝐸𝐸(𝑋𝑋)�2. 

The rth central moment of X is defined as  

𝐸𝐸[(𝑋𝑋 − 𝜇𝜇)𝑟𝑟] = �
�(𝑥𝑥 − 𝜇𝜇)𝑟𝑟  𝑓𝑓𝑋𝑋(𝑥𝑥),            If 𝑋𝑋 is discrete,

�(𝑥𝑥 − 𝜇𝜇)𝑟𝑟  𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑,     If 𝑋𝑋 is continuous.
 

Remark: 

If 𝑌𝑌 = 𝑎𝑎𝑎𝑎 ± 𝑏𝑏, then the mean and the variance of Y are given by  

𝐸𝐸(𝑌𝑌) = 𝑎𝑎𝑎𝑎(𝑋𝑋) ± 𝑏𝑏    and     𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝑎𝑎2𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) 

Example 1.1: 

Let X be a continuous random variable whose probability density function is 

𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2,     for 0 < 𝑥𝑥 < 1. 

Find: 

1. Prove 𝑓𝑓(𝑥𝑥) is a pdf. 



STAT 340                                               Theory of Statistics 1                               Dr. Samah Alghamdi 
 

 
 

 
   10 
 

2. 𝑃𝑃(0.5 < 𝑋𝑋 < 1). 
3. The cdf of X. 
4. 𝐸𝐸(𝑋𝑋) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋). 

Solution: 

1. Since 𝑓𝑓(𝑥𝑥) ≥ 0   for all 𝑥𝑥 ∈ (0,1) and  

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 3𝑥𝑥2𝑑𝑑𝑑𝑑 =   𝑥𝑥3]01 = 11
0 .1

0  Thus, 𝑓𝑓(𝑥𝑥) is a pdf. 

2. 𝑃𝑃(0.5 < 𝑋𝑋 < 1) = ∫ 3𝑥𝑥2𝑑𝑑𝑑𝑑 =   𝑥𝑥3]0.5
1 = 11

0.5 − 0.53 = 0.875. 
3. 𝐹𝐹(𝑥𝑥) = ∫ 3𝑡𝑡2𝑑𝑑𝑑𝑑 =   𝑡𝑡3]0𝑥𝑥 = 𝑥𝑥3.𝑥𝑥

0  

4. 𝐸𝐸(𝑋𝑋) = ∫ 3𝑥𝑥3𝑑𝑑𝑑𝑑 = 3
4
𝑥𝑥4]01 = 3

4
.1

0  

𝐸𝐸(𝑋𝑋2) = � 3𝑥𝑥4𝑑𝑑𝑑𝑑 =
3
5 𝑥𝑥

5]01 =
3
5 .

1

0
 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸(𝑋𝑋2) − �𝐸𝐸(𝑋𝑋)�2 =
3
5 − �

3
4�

2

= 0.0375. 

 

Moment-Generation Function: 

The moment-generation function (mgf) of a random variable 𝑋𝑋 is given by 𝐸𝐸(𝑒𝑒𝑡𝑡𝑡𝑡) and is denoted by, 𝑀𝑀𝑋𝑋(𝑡𝑡). 
Hence, for t in a suitable range,  

𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑡𝑡) = �
∑ 𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓(𝑥𝑥),        if 𝑋𝑋 is discrete,𝑥𝑥

∫ 𝑒𝑒𝑡𝑡𝑡𝑡𝑥𝑥 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑, if 𝑋𝑋 𝑖𝑖𝑖𝑖 continuous
. 

Some properties of the mgf: 
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1. 𝑀𝑀𝑋𝑋+𝑎𝑎(𝑡𝑡) = 𝑒𝑒𝑎𝑎𝑎𝑎𝑀𝑀𝑋𝑋(𝑡𝑡). 
2. 𝑀𝑀𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝑀𝑀𝑋𝑋(𝑎𝑎𝑎𝑎).  
3. 𝑇𝑇ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

1.2 Discrete Probability Distributions 
In this section, we present some commonly used distributions for the discrete random variable. 

1.2.1 Bernoulli and Binomial Distribution 
A Bernoulli trial can result in a success with probability 𝑝𝑝 and a failure with probability 𝑞𝑞 = 1 − 𝑝𝑝. Then the 
probability of the binomial random variable X, the number of successes in n independent trials, is 

𝑓𝑓(𝑥𝑥;𝑛𝑛,𝑝𝑝) = �𝑛𝑛𝑥𝑥�𝑝𝑝
𝑥𝑥𝑞𝑞𝑛𝑛−𝑥𝑥 , 𝑥𝑥 = 0, 1, 2, … ,𝑛𝑛. 

where �𝑛𝑛𝑥𝑥� = 𝑛𝑛!
𝑥𝑥!(𝑛𝑛−𝑥𝑥)!

. 
The mean, variance and mgf of the binomial distribution, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝), are 

𝜇𝜇 = 𝑛𝑛𝑛𝑛,   𝜎𝜎2 = 𝑛𝑛𝑛𝑛𝑛𝑛  and  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑀𝑀(𝑡𝑡) = (𝑝𝑝𝑒𝑒𝑡𝑡 + 𝑞𝑞)𝑛𝑛. 

Example 1.2: 

The probability that a certain kind of component will survive a shock test is 0.75. Find the probability that exactly 
2 of the next 4 components tested survive. 

Solution: 

Assuming that the tests are independent and 𝑝𝑝 = 0.75 for each of the 𝑛𝑛 = 4 tests, we obtain: 

𝑓𝑓(𝑥𝑥; 4,0.75) = �
4
𝑥𝑥�

(0.75)𝑥𝑥(0.25)4−𝑥𝑥 ,   𝑥𝑥 = 0, 1, 2, 3, 4. 
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𝑓𝑓(2; 4,0.75) = �42�0.7520.252 = 0.2109 

 

 

1.2.2 Poisson Distribution  
The probability distribution of the Poisson random variable X with parameter 𝜆𝜆, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆), representing the 
number of outcomes occurring in a given time interval or specified region denoted by t, is  

𝑓𝑓(𝑥𝑥; 𝜆𝜆𝜆𝜆) =
𝑒𝑒−𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆)𝑥𝑥

𝑥𝑥! ,    𝑥𝑥 = 0, 1, 2, … 

where 𝜆𝜆 > 0 is the average number of outcomes per unit time, distance or area. 

The mean and the variance of the Poisson distribution are 

𝜇𝜇 = 𝜎𝜎2 = 𝜆𝜆𝜆𝜆. 

Example 1.3: 

Births in a hospital occur randomly at an average rate of 1.6 births per hour. Calculate: 

1. The probability of observing 4 births in a given hour. 
2. The probability of observing more than or equal to 2 births in a given hour. 
3. The mean of births per hour. 
4. The probability of observing 1 birth per 2 hours. 
5. The variance of births per 30 minutes. 

Solution: 

Let X be the number of births in a given hour and 𝜆𝜆𝜆𝜆 = 1.6 per hour. The pdf of X is given as 
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𝑓𝑓(𝑥𝑥; 1.6) =
𝑒𝑒−1.6(1.6)𝑥𝑥

𝑥𝑥! ,    𝑥𝑥 = 0, 1, 2, … 

1. 𝑓𝑓(4; 1.6) = 𝑒𝑒−1.6(1.6)4

4!
= 0.0551 

2. 𝑃𝑃(𝑋𝑋 ≥ 2) = 1 − 𝑃𝑃(𝑋𝑋 < 2) = 1 − [𝑓𝑓(1; 1.6) + 𝑓𝑓(0; 1.6)] = 0.4751 
3. 𝜇𝜇 = 𝜆𝜆𝜆𝜆 = 1.6 
4. 𝜆𝜆𝜆𝜆 = (1.6)(2) = 3.2  ⇒ 𝑓𝑓(1; 3.2) = 𝑒𝑒−3.2(3.2)1

1!
= 0.1304 

5. 𝜎𝜎2 = 𝜆𝜆𝜆𝜆 = (1.6)(0.5) = 0.8. 

 

1.3 Continuous Probability Distributions 
1.3.1 Uniform Distribution 
The density function of the continuous uniform random variable X on the interval [𝑎𝑎, 𝑏𝑏] is  

𝑓𝑓(𝑥𝑥;𝑎𝑎; 𝑏𝑏) = 1
𝑏𝑏−𝑎𝑎

,   𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏. 

The mean and the variance of the uniform distribution, 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑎𝑎, 𝑏𝑏), are 

𝜇𝜇 = 𝑎𝑎+𝑏𝑏
2

   and   𝜎𝜎2 = (𝑏𝑏−𝑎𝑎)2

12
.  

Example 1.4:  

Suppose that a large conference room at a certain company can be reserved for no more than 4 hours. In fact, it can 
be assumed that the length 𝑋𝑋 of a conference has a uniform distribution on interval [0, 4]. 

(a) What is the probability density function? 
(b) What is the probability that any given conference lasts at least 3 hours? 
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Solution: 

(a) The appropriate density function for the uniformly distributed random variable 𝑋𝑋 in the situation is  

𝑓𝑓(𝑥𝑥) =
1
4 ,     0 ≤ 𝑥𝑥 ≤ 4 

(b) 𝑃𝑃[𝑋𝑋 ≥ 3] = ∫ 1
4

 𝑑𝑑𝑑𝑑 = 1
4

4
3 . 

 

1.3.2 Exponential Distribution 
The pdf of the exponential distribution for a continuous random variable X with parameter 𝜃𝜃 > 0, denoted as 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 �1

𝜃𝜃
�, is given as 

𝑓𝑓(𝑥𝑥;𝜃𝜃) = 𝜃𝜃𝑒𝑒−𝜃𝜃𝜃𝜃,   𝑥𝑥 ≥ 0 

The mean and the variance of this distribution are 

𝐸𝐸(𝑋𝑋) = 1
𝜃𝜃
      and      𝑉𝑉(𝑋𝑋) = 1

𝜃𝜃2
. 

The cdf and mgf obtained as 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−𝜃𝜃𝜃𝜃  and   𝑀𝑀(𝑡𝑡) = 𝜃𝜃
𝜃𝜃−𝑡𝑡

= �1 − 𝑡𝑡
𝜃𝜃
�
−1

 , 𝑡𝑡 < 𝜃𝜃. 

 

1.3.3 Gamma Distribution 

The continuous random variable X has a gamma distribution with parameters 𝛼𝛼 and 1
𝛽𝛽

, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝛼𝛼, 1
𝛽𝛽
� if its density 

function is given by  



STAT 340                                               Theory of Statistics 1                               Dr. Samah Alghamdi 
 

 
 

 
   15 
 

𝑓𝑓 �𝑥𝑥;𝛼𝛼, 1
𝛽𝛽
� = 𝛽𝛽𝛼𝛼

Γ(𝛼𝛼)
𝑥𝑥𝛼𝛼−1𝑒𝑒−𝛽𝛽𝛽𝛽,   𝑥𝑥 ≥ 0  

where 𝛼𝛼 > 0,𝛽𝛽 > 0 and Γ(𝛼𝛼) is a gamma function defined as  

Γ(𝛼𝛼) = (𝛼𝛼 − 1)! = � 𝑦𝑦𝛼𝛼−1𝑒𝑒−𝑦𝑦
∞

0
𝑑𝑑𝑑𝑑 

The mean, the variance and the mgf are 

𝐸𝐸(𝑋𝑋) = 𝛼𝛼
𝛽𝛽

 ,     𝑉𝑉(𝑥𝑥) = 𝛼𝛼
𝛽𝛽2

   and   𝑀𝑀(𝑡𝑡) = � 𝛽𝛽
𝛽𝛽−𝑡𝑡

�
𝛼𝛼

= �1 − 𝑡𝑡
𝛽𝛽
�
−𝛼𝛼

, 𝑡𝑡 < 𝛽𝛽. 

Note:  

1. The exponential distribution is a special case of gamma distribution with 1
𝛽𝛽

  parameter when 𝛼𝛼 = 1. 

2.  ∫ 𝑥𝑥𝛼𝛼−1𝑒𝑒−𝛽𝛽𝛽𝛽𝑑𝑑𝑑𝑑 = Γ(𝛼𝛼)
𝛽𝛽𝛼𝛼

∞
0  . 

 

1.3.4 Weibull Distribution 

The continuous random variable X  has a Weibull distribution, with parameters 𝛼𝛼 and 1
𝛽𝛽

, if its pdf is given by 

𝑓𝑓 �𝑥𝑥;𝛼𝛼, 1
𝛽𝛽
� = 𝛼𝛼𝛼𝛼𝑥𝑥𝛽𝛽−1𝑒𝑒−𝛼𝛼𝑥𝑥𝛽𝛽,   𝑥𝑥 ≥ 0 

where 𝛼𝛼 > 0 and 𝛽𝛽 > 0. 

The cumulative distribution function for the Weibull distribution is given by 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−𝛼𝛼𝑥𝑥𝛽𝛽. 
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Note: For 𝛽𝛽 = 1, the Weibull density reduces to the exponential density function. 

 

1.3.5 Chi-Squared Distribution 
The random variable X has a chi-squared distribution with 𝑣𝑣 > 0 degrees of freedom, denoted as, 𝑋𝑋~𝜒𝜒2(𝑣𝑣), if its 
pdf is given by 

𝑓𝑓(𝑥𝑥,𝑣𝑣) = 1

2�
𝑣𝑣
2�Γ�𝑣𝑣2�

𝑥𝑥
𝑣𝑣
2−1𝑒𝑒−

𝑥𝑥
2,   𝑥𝑥 > 0 

The mean and the variance are 

𝐸𝐸(𝑋𝑋) = 𝑣𝑣      and      𝑉𝑉(𝑥𝑥) = 2𝑣𝑣. 

The mgf of this distribution is 𝑀𝑀(𝑡𝑡) = (1 − 2𝑡𝑡)− 𝑣𝑣2, 𝑡𝑡 < 1
2
. 

Note: It is a special case of gamma distribution in which 𝛼𝛼 = 𝑣𝑣
2
 and 𝛽𝛽 = 1

2
. 

Example 1.5:  

Let X be a 𝜒𝜒2(10). Find: 

1. Find 𝑃𝑃(𝑋𝑋 > 20.5). 
2. 𝑎𝑎, if 𝑃𝑃(𝑋𝑋 > 𝑎𝑎) = 0.05. 

Solution: 

By 𝜒𝜒2 Table (Table I) and 𝑣𝑣 = 10, we get 

1. 𝑃𝑃(𝑋𝑋 > 20.5) = 0.025 
2. 𝑃𝑃(𝑋𝑋 > 𝑎𝑎) = 0.05, thus 𝑎𝑎 = 18.31. 
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1.3.6 Normal Distribution 
The most important continuous probability distribution in the entire field of statistics is the normal distribution. 
Its graph, called the normal curve, is the bell-shaped curve of following figure, which approximately describes 
many phenomena that occur in nature, industry, and research.  

 

 

 

 

 

Definition: 

The density of the normal random variable 𝑋𝑋, with mean 𝜇𝜇 and variance 𝜎𝜎2, 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2), is  

𝑓𝑓(𝑥𝑥;  𝜇𝜇,𝜎𝜎) =  
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒− 12𝜎𝜎2(𝑥𝑥−𝜇𝜇)2 ,−∞ < 𝑥𝑥 < ∞ 

where −∞ <  𝜇𝜇 < ∞ and 𝜎𝜎 > 0. 

The properties of the normal curves: 

1. The mode = median = mean = 𝜇𝜇. 
2. The curve is symmetric about the mean 𝜇𝜇. 
3. The normal curve depends on the parameters μ and 𝜎𝜎, its mean and standard deviation, respectively. 

← 𝜎𝜎 → 
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4. The mean 𝜇𝜇 and the variance 𝜎𝜎2 determine the location and the shape of the normal curve, respectively. 
5. The total area under the curve and above the horizontal axis is equal to 1. 

6. The mgf is given by, for all real number t,  𝑀𝑀(𝑡𝑡) = 𝑒𝑒𝜇𝜇𝜇𝜇+
1
2𝜎𝜎

2𝑡𝑡2. 

 

1.3.7 Standard Normal Distribution 
The distribution of a normal random variable with mean 0 and variance 1 is called a standard normal 
distribution and defined as 

𝑓𝑓(𝑧𝑧) =  1
√2𝜋𝜋

𝑒𝑒− 𝑧𝑧
2

2 ,−∞ < 𝑧𝑧 < ∞. 

The properties of the standard normal curves: 

1. The mode = median = mean = 0. 
2. The curve is symmetric about the mean 0. 
3. The total area under the curve and above the horizontal axis is equal to 1. 

4. The mgf is given by 𝑀𝑀(𝑡𝑡) = 𝑒𝑒
1
2𝑡𝑡
2
. 

Application: we are able to transform all the observations of any normal random variable 𝑋𝑋 into a new set of 
observations of a normal random variable 𝑍𝑍 with mean 0 and variance 1. This can be done by mean of the 
transformation i.e. 

If 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2), then 𝑍𝑍 = 𝑋𝑋−𝜇𝜇
𝜎𝜎

~𝑁𝑁(0,1). 

Example 1.6: 

Given a standard normal distribution, find the area under the curve that lies 
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1. to the left of 𝑧𝑧 = 1.84. 
2.  to the right of 𝑧𝑧 = 1.84. 

Solution: From Table II, 

1. the area to the left of 𝑧𝑧 = 1.84 is equal to, 
𝑃𝑃(𝑍𝑍 < 1.84) = 0.9671. 

2. the area to the right of 𝑧𝑧 = 1.84 is equal to,  
𝑃𝑃(𝑍𝑍 > 1.84) = 1 − 𝑃𝑃(𝑍𝑍 < 1.84) = 1 − 0.9671 = 0.0329. 

 

Normal Approximation to the Binomial: 

Theorem 1.1:  
If X is a binomial random variable with mean 𝜇𝜇 = 𝑛𝑛𝑛𝑛 and variance 𝜎𝜎2 = 𝑛𝑛𝑛𝑛𝑛𝑛, then the limiting form of the 
distribution of  

𝑍𝑍 =
𝑋𝑋 − 𝑛𝑛𝑛𝑛
�𝑛𝑛𝑛𝑛𝑛𝑛

~𝑁𝑁(0,1) 

as 𝑛𝑛 → ∞. 

 
 

1.3.8 T-Distribution 
A continuous random variable T is said to have a t-distribution with parameter 𝑣𝑣 > 0 if its pdf defined as  
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𝑓𝑓(𝑡𝑡; 𝜈𝜈) =
𝛤𝛤�𝜈𝜈+12 �

√𝜈𝜈𝜈𝜈𝛤𝛤�𝜈𝜈2�
 �1 + 𝑡𝑡2

𝜈𝜈
�
−𝜈𝜈+12 ;    −∞ < 𝑡𝑡 < ∞. 

The properties of the standard normal curves: 

1. The mode = median = mean = 0. 
2. The curve is symmetric about the mean 0. 
3. Compared to the standard normal distribution, the t-distribution is less peaked in the center and has higher 

tails.  

4. It depends on the degrees of freedom v. 
5. T-distribution approaches the standard normal distribution as 𝑣𝑣 → ∞. 

6. The total area under the curve and above the horizontal axis is equal to 1. 

Example 1.7: Find: 

1. 𝑃𝑃(𝑇𝑇 < 2.145) when 𝑣𝑣 = 14. 
2. 𝑡𝑡0.995 when 𝑣𝑣 = 7. 

Solution: From Table III, 

1. 𝑃𝑃(𝑇𝑇 < 2.145) = 0.975 when 𝑣𝑣 = 14. 
2. 𝑡𝑡0.995 = 3.499 when 𝑣𝑣 = 7. 

 

1.3.9 F-Distribution 
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If a random variable X has a F-distribution with parameters r and v, we write ~𝐹𝐹(𝑟𝑟,𝑣𝑣) . Then the probability 
density function for X is given by 

𝑓𝑓(𝑥𝑥; 𝑟𝑟, 𝑣𝑣) =
1

𝐵𝐵 �𝑟𝑟2 , 𝑣𝑣2�
�
𝑟𝑟
𝑣𝑣�

𝑟𝑟
2 𝑥𝑥

𝑟𝑟
2−1 �1 +

𝑟𝑟
𝑣𝑣 𝑥𝑥�

−�𝑟𝑟+𝑣𝑣2 �
 

For real 𝑥𝑥 ≥ 0. Here is 𝐵𝐵(𝑎𝑎, 𝑏𝑏) = ∫ 𝑦𝑦𝑎𝑎−1(1 − 𝑦𝑦)𝑏𝑏−1𝑑𝑑𝑑𝑑1
0  is the beta function and 𝑟𝑟,𝑣𝑣 > 0. 

 

Theorem 1.2: 
If 𝐹𝐹𝛼𝛼(𝑟𝑟,𝑣𝑣) has F-distribution with r and v degrees of freedom, then  

𝐹𝐹1−𝛼𝛼(𝑣𝑣, 𝑟𝑟) =
1

𝐹𝐹𝛼𝛼(𝑟𝑟,𝑣𝑣) 

has F-distribution with v and r degrees of freedom. 

 

1.4 Transformation of Variables 
In standard statistical methods, the result of statistical hypotheses testing, estimation, or even statistical graphics 
does not involve a single random variable but, rather, functions of one or more random variables. As a result, 
statistical inference requires the distribution of these functions. In this section, we represent methods to find the 
distribution of these functions. 

1.4.1 Discrete Random Variable 

1.4.1.1 One-to-One Transformation:  
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Theorem 1.3:  
Suppose that 𝑋𝑋 is a discrete random variable with probability distribution 𝑓𝑓(𝑥𝑥). Let 𝑌𝑌 = 𝑢𝑢(𝑋𝑋) define a one-to-one 
transformation between the values of 𝑋𝑋 and 𝑌𝑌 so that the equation 𝑦𝑦 = 𝑢𝑢(𝑥𝑥) can be uniquely solved for 𝑥𝑥 in terms 
of 𝑦𝑦, say 𝑥𝑥 = 𝑤𝑤(𝑦𝑦). Then the probability distribution of 𝑌𝑌 is 

𝑔𝑔(𝑦𝑦) = 𝑓𝑓[𝑤𝑤(𝑦𝑦)]. 

Example 1.8:  

Let 𝑋𝑋 be a discrete random variable with pmf as 

𝑓𝑓(𝑥𝑥) =  
𝑥𝑥
4  ,   𝑥𝑥 = 0, 1, 3. 

Find the pmf of the random variable 𝑌𝑌 = 𝑋𝑋2. 

Solution:  

Since the value of 𝑋𝑋 are all positive, the transformation defines a one-to-one correspondence between the 𝑥𝑥 and 𝑦𝑦 
values.  

Hence, 

 Since  𝑥𝑥 = 0, 1, 3 ⟹ 𝑦𝑦 = 0, 1, 9 and 𝑦𝑦 = 𝑥𝑥2 ⟹ 𝑥𝑥 = �𝑦𝑦. 

Then, the pmf of Y is given by 

𝑔𝑔(𝑦𝑦) = 𝑓𝑓��𝑦𝑦� = √𝑦𝑦
4

,   𝑦𝑦 = 0, 1, 9. 

Similarly, for a two-dimension transformation. 
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Theorem 1.4:  
Suppose that 𝑋𝑋1 and 𝑋𝑋2 are discrete random variables with joint probability distribution 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2). Let 𝑌𝑌1 =
𝑢𝑢1(𝑋𝑋1,𝑋𝑋2) and 𝑌𝑌2 =  𝑢𝑢2(𝑋𝑋1,𝑋𝑋2) define a one-to-one transformation between the points (𝑥𝑥1, 𝑥𝑥2) and (𝑦𝑦1,𝑦𝑦2) so that 
the equations 

𝑦𝑦1 =  𝑢𝑢1(𝑥𝑥1, 𝑥𝑥2) and 𝑦𝑦2 =  𝑢𝑢2(𝑥𝑥1, 𝑥𝑥2) 

may be uniquely solved for 𝑥𝑥1 and 𝑥𝑥2 in terms of 𝑦𝑦1 and 𝑦𝑦2, say 𝑥𝑥1 =  𝑤𝑤1(𝑦𝑦1, 𝑦𝑦2) and 𝑥𝑥2 =  𝑤𝑤2(𝑦𝑦1,𝑦𝑦2). Then the 
joint probability distribution of 𝑌𝑌1 and 𝑌𝑌2 is  

𝑔𝑔(𝑦𝑦1, 𝑦𝑦2) = 𝑓𝑓[𝑤𝑤1(𝑦𝑦1,𝑦𝑦2),𝑤𝑤2 (𝑦𝑦1, 𝑦𝑦2)] 

 

1.4.2 Continuous Random Variable 
This section introduced three methods of transformation to find the distribution of continuous random variable. 

 

1.4.2.1 One-to-One Transformation 

Theorem 1.5:  
Suppose that 𝑋𝑋 is a continuous random variable with probability distribution 𝑓𝑓(𝑥𝑥). Let 𝑌𝑌 = 𝑢𝑢(𝑋𝑋) define a one-to-
one correspondence between the values of 𝑋𝑋 and 𝑌𝑌 so that the equation 𝑦𝑦 = 𝑢𝑢(𝑥𝑥) can be uniquely solved for 𝑥𝑥 in 
terms of 𝑦𝑦, say 𝑥𝑥 = 𝑤𝑤(𝑦𝑦). Then the probability distribution of 𝑌𝑌 is  

𝑔𝑔(𝑦𝑦) = 𝑓𝑓[𝑤𝑤(𝑦𝑦)]. |𝐽𝐽| 
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where |𝐽𝐽| = |𝑤𝑤′(𝑦𝑦)| = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� and is called the Jacobian of the transformation. 

Example 1.9:  

Let 𝑋𝑋 be a continuous random variable with probability distribution 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥

12 , 1 < 𝑥𝑥 < 5,

0, elsewhere.
 

Find the probability distribution of the random variable 𝑌𝑌 = 2𝑋𝑋 − 3. 

Solution: 

The inverter solution of 𝑦𝑦 = 2𝑥𝑥 − 3 yields 𝑥𝑥 = (𝑦𝑦 + 3)/2, from which we obtain 𝐽𝐽 = 𝑤𝑤′(𝑦𝑦)  = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
2
.  

Therefore,  

  1 < 𝑥𝑥 < 5 ⟹  1 <
𝑦𝑦 + 3

2 < 5 ⇒  2 < 𝑦𝑦 + 3 < 10 ⇒  −1 < 𝑦𝑦 < 7 

Using Theorem 1.5, we find the density function of 𝑌𝑌 to be 

𝑔𝑔(𝑦𝑦) = �
(𝑦𝑦+3)

2�

12
�1
2
� =  𝑦𝑦+3

48
,       − 1 < 𝑦𝑦 < 7

0,                                         elswhere
. 

 

Theorem 1.6:  
Suppose that 𝑋𝑋1 and 𝑋𝑋2 are continuous random variable with joint probability distribution 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2). Let 𝑌𝑌1 =
𝑢𝑢1(𝑋𝑋1,𝑋𝑋2) and 𝑌𝑌2 = 𝑢𝑢2(𝑋𝑋1,𝑋𝑋2) define a one-to-one transformation between the points (𝑥𝑥1, 𝑥𝑥2) and (𝑦𝑦1, 𝑦𝑦2) so that 
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the equations 𝑦𝑦1 = 𝑢𝑢1(𝑥𝑥1, 𝑥𝑥2) and 𝑦𝑦2 = 𝑢𝑢2(𝑥𝑥1, 𝑥𝑥2) may be uniquely solved for 𝑥𝑥1 and 𝑥𝑥2 in terms of 𝑦𝑦1 and 𝑦𝑦2, 
say 𝑥𝑥1 = 𝑤𝑤1(𝑦𝑦1, 𝑦𝑦2) and 𝑥𝑥2 = 𝑤𝑤2(𝑦𝑦1,𝑦𝑦2). Then the joint probability distribution of 𝑌𝑌1 and 𝑌𝑌2 is 

𝑔𝑔(𝑦𝑦1,𝑦𝑦2) = 𝑓𝑓[𝑤𝑤1(𝑦𝑦1, 𝑦𝑦2),𝑤𝑤2(𝑦𝑦1, 𝑦𝑦2)]. |𝐽𝐽| 

where the Jacobian is 2 × 2 determinant as 

|𝐽𝐽| = �

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑥𝑥2
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑥𝑥2
𝜕𝜕𝑦𝑦2

�. 

 

1.4.2.2 Distribution Function Method (cdf Method): 
The general method works as follows: 

If 𝑋𝑋 be an independent random variable with pdf 𝑓𝑓𝑋𝑋(𝑥𝑥) and 𝑌𝑌 = 𝑢𝑢(𝑋𝑋) be a function of 𝑋𝑋. Then, find 

1. 𝐹𝐹𝑋𝑋(𝑥𝑥), cdf of X. 
2. The region of Y. 
3. 𝐹𝐹𝑌𝑌(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦) = 𝑃𝑃(𝑢𝑢(𝑋𝑋)  ≤ 𝑦𝑦) = 𝑃𝑃(𝑋𝑋 ≤ 𝑤𝑤(𝑌𝑌)) = 𝐹𝐹𝑋𝑋(𝑤𝑤(𝑌𝑌)). 
4. The density function 𝑓𝑓𝑌𝑌(𝑦𝑦) by differentiating 𝐹𝐹𝑌𝑌(𝑦𝑦). 

 

Example 1.10: 

Suppose the random variable X  has a pdf  

𝑓𝑓𝑋𝑋(𝑥𝑥) = 3𝑥𝑥2,      0 < 𝑥𝑥 < 1. 

Find the pdf of 𝑌𝑌 = 2𝑋𝑋 + 3. 
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Solution: 

From Example 1.3, we get 𝐹𝐹𝑋𝑋(𝑥𝑥) = 𝑥𝑥3. 

Since 0 < 𝑥𝑥 < 1 ⟹ 0 < 2𝑥𝑥 < 2 ⇒ 3 < 𝑦𝑦 < 5. 

𝐹𝐹𝑌𝑌(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦) = 𝑃𝑃(2𝑋𝑋 + 3 ≤ 𝑦𝑦) = 𝑃𝑃(2𝑋𝑋 ≤ 𝑦𝑦 − 3)  = 𝑃𝑃 �𝑋𝑋 ≤
𝑦𝑦 − 3

2 � = 𝐹𝐹𝑋𝑋 �
𝑦𝑦 − 3

2 � = �
𝑦𝑦 − 3

2 �
3

. 

Then, the pdf of Y is 𝑓𝑓𝑌𝑌(𝑦𝑦) = 𝑑𝑑𝐹𝐹𝑌𝑌(𝑦𝑦)
𝑑𝑑𝑑𝑑

= 3
8

(𝑦𝑦 − 3)2, 3 < 𝑦𝑦 < 5.   

 

1.4.2.3 Moment-Generating Method: 

Theorem 1.7: (uniqueness Theorem)  
Let 𝑋𝑋 and 𝑌𝑌 be two random variables with moment-generating functions 𝑀𝑀𝑋𝑋(𝑡𝑡) and 𝑀𝑀𝑌𝑌(𝑡𝑡), respectively, if 
𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝑀𝑀𝑌𝑌(𝑡𝑡) for all values of 𝑡𝑡, then 𝑋𝑋 and 𝑌𝑌 have the same probability distribution. 

Theorem 1.8: 
If 𝑋𝑋1,𝑋𝑋2, … . . ,𝑋𝑋𝑛𝑛 are independent random variable with moment-generating 
functions 𝑀𝑀𝑋𝑋1(𝑡𝑡),𝑀𝑀𝑋𝑋2(𝑡𝑡), … . . ,𝑀𝑀𝑋𝑋𝑛𝑛(𝑡𝑡), respectively, and 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯ . +𝑋𝑋𝑛𝑛, then 

𝑀𝑀𝑌𝑌(𝑡𝑡) =   𝑀𝑀𝑋𝑋1(𝑡𝑡).𝑀𝑀𝑋𝑋2(𝑡𝑡) … 𝑀𝑀𝑋𝑋𝑛𝑛(𝑡𝑡). 

Moreover, if 𝑀𝑀𝑋𝑋1(𝑡𝑡),𝑀𝑀𝑋𝑋2(𝑡𝑡), … . . ,𝑀𝑀𝑋𝑋𝑛𝑛(𝑡𝑡)are equals. Then,  𝑀𝑀𝑌𝑌(𝑡𝑡) =   �𝑀𝑀𝑋𝑋1(𝑡𝑡)�
𝑛𝑛

. 
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Example 1.11: 

If 𝑋𝑋1,𝑋𝑋2, … . . ,𝑋𝑋𝑛𝑛 are independent, each with an exponential distribution with parameter 1
𝜃𝜃
. Show that 𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1  

has a gamma distribution with parameters n and 1
𝜃𝜃
. 

Solution: 

Since that the mgf of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �1
𝜃𝜃
� is 𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝜃𝜃

𝜃𝜃−𝑡𝑡
. Thus, the mgf of Y is given by 

𝑀𝑀𝑌𝑌(𝑡𝑡) = 𝑀𝑀∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1

(𝑡𝑡) = 𝑀𝑀𝑋𝑋1+𝑋𝑋2+⋯.+𝑋𝑋𝑛𝑛(𝑡𝑡) = 𝑀𝑀𝑋𝑋1(𝑡𝑡).𝑀𝑀𝑋𝑋2(𝑡𝑡) … 𝑀𝑀𝑋𝑋𝑛𝑛(𝑡𝑡) = � 𝜃𝜃
𝜃𝜃−𝑡𝑡

�
𝑛𝑛

. 

which is the mgf of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝑛𝑛, 1
𝜃𝜃
�.  
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Chapter 2: Sampling Distribution 
 

In a typical statistical problem, we have a random variable X of interest but its probability distribution 𝑓𝑓(𝑥𝑥) is not 
known. This problem can be classified in one of two ways: 

1. 𝑓𝑓(𝑥𝑥) is completely unknown (Sampling Distribution). 
2. The form of 𝑓𝑓(𝑥𝑥) is known but the parameter 𝜃𝜃 is unknown (Statistical Inference). 

In this chapter, we will discuss the first problem and introduce some solution methods. First, let us begin with 
important definitions. 

Random sample: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a n independent random variables, each of which has the same probability distribution 𝑓𝑓(𝑥𝑥). 
Define 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 to be a random sample of size n from the population 𝑓𝑓(𝑥𝑥) and write its joint probability 
distribution as  

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝑓𝑓1(𝑥𝑥1)𝑓𝑓2(𝑥𝑥2) …𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛). 

Statistic: 

Any function of the random sample and does not depend upon any unknown parameter is called a statistic.  

Sampling Distribution: 

The probability distribution of a statistic is called a sampling distribution. 
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In this chapter, we studied several of the important sampling distributions of frequently used statistic. Applications 
of these sampling distributions to problems of statistical inference are considered throughout most of the remaining 
chapters.  

In Chapter 1 we defined the two parameters 𝜇𝜇 and 𝜎𝜎2, which measure the center of location and the variability of a 
probability distribution, respectively. Here, we shall define some important statistics that describe corresponding 
measures of a random sample. The most common statistics are the sample mean and variance. 

Mean and Variance: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 denote a random sample of size n from a given distribution. The statistic 

𝑋𝑋� = 1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 

is called the mean of the random sample, and the statistic 

𝑆𝑆2 = 1
𝑛𝑛−1

∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 , 

is called the variance of the random sample. 

Now, we should view the sampling distribution of 𝑋𝑋� and 𝑆𝑆2 as the mechanisms from which we will be able to 
make inference on the unknown parameters 𝜇𝜇 and 𝜎𝜎2. 

 

2.1 Sampling Distribution of 𝑿𝑿� 
Suppose that we have a population with mean 𝜇𝜇 and variance 𝜎𝜎2 and let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of size n 
from this population. Let the mean of the random sample be 𝑋𝑋�. Now, consider the following theorems of different 
cases of sampling distribution of 𝑋𝑋�. 
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Theorem 2.1: 

Let 𝑋𝑋1, … . ,𝑋𝑋𝑛𝑛 be independent random variables such that, for 𝑖𝑖 = 1, … ,𝑛𝑛,  𝑋𝑋𝑖𝑖 has a 𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2) distribution. Let 𝑌𝑌 =
 ∑ 𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖, where 𝑎𝑎1, … . ,𝑎𝑎𝑛𝑛 are constants. Then, the distribution of 𝑌𝑌 is 𝑁𝑁�∑ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝜇𝜇𝑖𝑖 ,∑ 𝑎𝑎𝑖𝑖2𝜎𝜎𝑖𝑖2𝑛𝑛

𝑖𝑖=1 �.  

Proof:  

Using independent and the mgf of normal distribution, for 𝑡𝑡 ∈ 𝑅𝑅, the mgf of 𝑌𝑌 is, 

𝑀𝑀𝑌𝑌(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑡𝑡) = 𝐸𝐸�𝑒𝑒𝑡𝑡∑ 𝑎𝑎𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 � 

                                  =  ∏ 𝐸𝐸[𝑒𝑒𝑡𝑡𝑎𝑎𝑖𝑖𝑋𝑋𝑖𝑖]𝑛𝑛
𝑖𝑖=1 =  ∏ 𝑒𝑒𝑎𝑎𝑖𝑖𝜇𝜇𝑖𝑖𝑡𝑡+

1
2𝑎𝑎𝑖𝑖

2𝜎𝜎𝑖𝑖
2𝑡𝑡2𝑛𝑛

𝑖𝑖=1  

                                                                             = 𝑒𝑒∑ 𝑎𝑎𝑖𝑖𝜇𝜇𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑡𝑡+12∑ 𝑎𝑎𝑖𝑖

2𝜎𝜎𝑖𝑖
2𝑡𝑡2𝑛𝑛

𝑖𝑖=1  

which is the mgf of a 𝑁𝑁�∑ 𝑎𝑎𝑖𝑖𝜇𝜇𝑖𝑖 ,∑ 𝑎𝑎𝑖𝑖2𝜎𝜎𝑖𝑖2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 � distribution. 

 

Example 2.1: 

Let 𝑋𝑋1~𝑁𝑁(3,2) independent of 𝑋𝑋2~𝑁𝑁(2,1). Find the distribution of 𝑌𝑌 = 5𝑋𝑋1 − 2𝑋𝑋2. 

 

Solution: 

Then, the distribution of Y is obtained as  

𝑌𝑌~𝑁𝑁(5(3)− 2(2), 52(2) + 22(1))⇒𝑌𝑌~𝑁𝑁(11, 54). 

 



STAT 340                                               Theory of Statistics 1                               Dr. Samah Alghamdi 
 

 
 

 
   31 
 

Theorem 2.2: 

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a random sample from any distribution with mean 𝜇𝜇 and variance 𝜎𝜎2; then  

𝜇𝜇𝑋𝑋� =  𝜇𝜇 and variance 𝜎𝜎𝑥̅𝑥2 = 𝜎𝜎2

𝑛𝑛
. 

Proof: 

Since 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a random sample, then  

𝜇𝜇𝑋𝑋� =  𝐸𝐸( 𝑋𝑋�) = 𝐸𝐸 �1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 � = 1

𝑛𝑛
∑ 𝐸𝐸(𝑋𝑋𝑖𝑖) = 1

𝑛𝑛
𝑛𝑛 𝜇𝜇 =𝑛𝑛

𝑖𝑖=1 𝜇𝜇. 

𝜎𝜎𝑥̅𝑥2 = 𝑉𝑉𝑉𝑉𝑉𝑉( 𝑋𝑋�) = 𝑉𝑉𝑉𝑉𝑉𝑉 �1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 � = 1

𝑛𝑛2
∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 1

𝑛𝑛2
𝑛𝑛 𝜎𝜎2 = 𝜎𝜎2

𝑛𝑛
. 

 

Theorem 2.3: 

Suppose that 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of 𝑛𝑛 observations are taken from a normal population with mean 𝜇𝜇 
and variance 𝜎𝜎2. Each observation 𝑋𝑋𝑖𝑖 , 𝑖𝑖 = 1, 2, … . ,𝑛𝑛, has the same normal distribution. Hence, we conclude that  

1. 𝑋𝑋� has a normal distribution with mean 𝜇𝜇 and variance 𝜎𝜎
2

𝑛𝑛
, �i. e.  𝑋𝑋�~𝑁𝑁�𝜇𝜇, 𝜎𝜎

2

𝑛𝑛
��. 

2. 𝑍𝑍 = 𝑋𝑋�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

~𝑁𝑁(0,1). 

Proof: 

Since, we know 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are independent random variables and have the same normal distribution, then they 
have the same mgf which is  
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𝑀𝑀𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑒𝑒𝜇𝜇𝜇𝜇+
1
2𝜎𝜎

2𝑡𝑡2  , 𝑖𝑖 = 1, 2, … ,𝑛𝑛. 

Now, by using the mgf transformation method (Theorem 1.8), we get 

𝑀𝑀𝑋𝑋�(𝑡𝑡) = 𝐸𝐸�𝑒𝑒𝑋𝑋�𝑡𝑡� = 𝐸𝐸 �𝑒𝑒
1
𝑛𝑛∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1  𝑡𝑡� = 𝐸𝐸 �𝑒𝑒
1
𝑛𝑛(𝑋𝑋1+𝑋𝑋2+⋯+𝑋𝑋𝑛𝑛) 𝑡𝑡� 

                                                                                = 𝐸𝐸 �𝑒𝑒𝑋𝑋1 𝑡𝑡𝑛𝑛+𝑋𝑋2
𝑡𝑡

 𝑛𝑛+⋯+𝑋𝑋𝑛𝑛 𝑡𝑡𝑛𝑛� = �𝑀𝑀𝑋𝑋1 �
𝑡𝑡
𝑛𝑛
��

𝑛𝑛
, for any random variable 𝑋𝑋1 

                                                                                = �𝑒𝑒𝜇𝜇
𝑡𝑡
𝑛𝑛+

1
2𝜎𝜎

2𝑡𝑡2

𝑛𝑛2�
𝑛𝑛

= 𝑒𝑒𝜇𝜇𝜇𝜇+
1
2 𝜎𝜎

2
𝑛𝑛  𝑡𝑡2. 

which is the mgf of the normal distribution with mean 𝜇𝜇 and variance 𝜎𝜎
2

𝑛𝑛
. 

 

Theorem 2.4:  Central Limit Theorem:  

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a random sample of size n from any distribution with mean 𝜇𝜇 and variance 𝜎𝜎2; if 𝑋𝑋� is the mean 
of the random sample, then as 𝑛𝑛 → ∞, 

1. 𝑋𝑋� has approximately a normal distribution with mean 𝜇𝜇 and variance 𝜎𝜎
2

𝑛𝑛
, �i. e.  𝑋𝑋�~𝑁𝑁 �𝜇𝜇, 𝜎𝜎

2

𝑛𝑛
��. 

2. 𝑍𝑍 = 𝑋𝑋�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

~𝑁𝑁(0,1). 

Example 2.2:  

An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed, 
with mean equal to 800 hours and a standard deviation of 40 hours, find the probability that a random sample of 16 
bulbs will have an average life of less than 775 hours. 
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Solution:  

The sampling distribution of 𝑋𝑋� will be approximately normal, with 𝜇𝜇𝑋𝑋� = 800 and 𝜎𝜎𝑋𝑋� = 40
√16

= 10. Then,  

𝑃𝑃(𝑋𝑋� < 775) = 𝑃𝑃 �𝑍𝑍 < 775−800
10

� = 𝑃𝑃(𝑍𝑍 < −2.5) = 0.0062. 

 

Theorem 2.5:  

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a random sample of size n from a normal distribution with mean 𝜇𝜇 and unknown variance 𝜎𝜎2, 
then  

1. 𝑋𝑋� has a t-distribution with mean 𝜇𝜇, variance 𝑆𝑆
2

𝑛𝑛
 and (𝑛𝑛 − 1) degrees of freedom. 

2. 𝑇𝑇 = 𝑋𝑋�−𝜇𝜇
𝑆𝑆 √𝑛𝑛⁄

~𝑡𝑡(𝑛𝑛−1). 

Example 2.3: 

A sample of 16 ten-year-old girls had a standard deviation of 12 pounds. Assume the population is normal 
distribution with mean weight 70 pounds. Find 𝑃𝑃(𝑋𝑋� > 74). 

Solution: 

We have, 𝜇𝜇 = 70, 𝑆𝑆 = 12 and 𝑛𝑛 = 16. Then, 𝑋𝑋� has a t-distribution with 𝑛𝑛 − 1 = 15 degree of freedom. Thus, 

𝑃𝑃(𝑋𝑋� > 74) = 1 − 𝑃𝑃 �𝑇𝑇 <
74 − 70
12 √16⁄

� = 1 − 𝑃𝑃(𝑇𝑇 < 1.333) = 1 − 0.9 = 0.1 
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2.2 Sampling Distributions from the Normal and Chi-Squared Distributions 
In this section we introduce some sampling distributions of some important and useful random variables. 
 
Theorem 2.6: 

Let 𝑍𝑍~𝑁𝑁(0, 1). Then, 𝑈𝑈 = 𝑍𝑍2 = �𝑋𝑋−𝜇𝜇
𝜎𝜎
�
2
 follows the chi-squared distribution with 1 degree of freedom i.e. 𝑍𝑍2~𝜒𝜒12. 

Proof: 

We know that the pdf of Z is 𝑓𝑓(𝑧𝑧) = 1
√2𝜋𝜋

𝑒𝑒−
1
2𝑧𝑧

2
. Now, to find the distribution of 𝑈𝑈, use the cdf transformation 

method as following: 
𝐹𝐹𝑈𝑈(𝑢𝑢) = 𝑃𝑃(𝑈𝑈 ≤ 𝑢𝑢) = 𝑃𝑃(𝑍𝑍2 ≤ 𝑢𝑢) = 𝑃𝑃(−√𝑢𝑢 ≤ 𝑍𝑍 ≤ √𝑢𝑢) = 𝐹𝐹𝑍𝑍�√𝑢𝑢� − 𝐹𝐹𝑍𝑍�−√𝑢𝑢�. 

Therefore, 
                                             𝑓𝑓𝑈𝑈(𝑢𝑢) = 𝑓𝑓𝑍𝑍�√𝑢𝑢�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑓𝑓𝑍𝑍�−√𝑢𝑢�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

= 1
2
𝑢𝑢− 12 1

√2𝜋𝜋
𝑒𝑒− 12𝑢𝑢 + 1

2
𝑢𝑢− 12 1

√2𝜋𝜋
𝑒𝑒− 12𝑢𝑢 = 1

2
1
2 Γ�12�

𝑢𝑢− 12𝑒𝑒− 𝑢𝑢2 . 

which is the pdf of chi-squared distribution with 1 degree of freedom. 
 
Corollary 2.1: 
Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of size n from a normal population with mean 𝜇𝜇 and variance 𝜎𝜎2. If the mean 

of the random sample is 𝑋𝑋,�  where 𝑋𝑋�~𝑁𝑁 �𝜇𝜇, 𝜎𝜎
2

𝑛𝑛
� and 𝑋𝑋

�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

~𝑁𝑁(0, 1), then 

� 𝑋𝑋
�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄ �

2
~𝜒𝜒12. 
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Proof: 
Left as an exercise. 
 
Theorem 2.7: 
Let 𝑍𝑍1,𝑍𝑍2, … . . ,𝑍𝑍𝑛𝑛 be independent random variables with 𝑍𝑍𝑖𝑖 = 𝑋𝑋𝑖𝑖−𝜇𝜇𝑖𝑖

𝜎𝜎𝑖𝑖
~𝑁𝑁(0, 1), where 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖) for each 𝑖𝑖 =

1, 2, … ,𝑛𝑛. If 𝑌𝑌 = ∑ 𝑧𝑧𝑖𝑖2 = ∑ �𝑋𝑋𝑖𝑖−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1  then 𝑌𝑌 follows the chi-squared distribution with 𝑛𝑛 degrees of freedom. 

We write 𝑌𝑌 = ∑ 𝑧𝑧𝑖𝑖2𝑛𝑛
𝑖𝑖=1 ~χ𝑛𝑛2 . 

Proof: 
Since 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛 are independent, then 

𝑀𝑀𝑌𝑌(𝑡𝑡) = 𝑀𝑀∑ 𝑧𝑧𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
(𝑡𝑡) = 𝐸𝐸�𝑒𝑒�𝑧𝑧12+𝑧𝑧22+⋯+𝑧𝑧𝑛𝑛2�𝑡𝑡� 

                                                 = 𝐸𝐸�𝑒𝑒𝑧𝑧12𝑡𝑡�.𝐸𝐸�𝑒𝑒𝑧𝑧22𝑡𝑡�…𝐸𝐸�𝑒𝑒𝑧𝑧𝑛𝑛2𝑡𝑡� 
                                            = 𝑀𝑀𝑧𝑧12(𝑡𝑡) 𝑀𝑀𝑧𝑧22(𝑡𝑡) …𝑀𝑀𝑧𝑧𝑛𝑛2(𝑡𝑡) 

From Theorem 2.6, each 𝑍𝑍𝑖𝑖2 follows χ12 and therefore it has mgf equal to (1 − 2𝑡𝑡)− 12. Conclusion: 

  𝑀𝑀𝑌𝑌(𝑡𝑡) = �𝑀𝑀𝑧𝑧12(𝑡𝑡)�
𝑛𝑛

= (1 − 2𝑡𝑡)− 𝑛𝑛2  ,  for  𝑡𝑡 > 1
2
 

This is the mgf of chi-squared distribution with 𝑛𝑛 degrees of freedom. 
 
Corollary 2.2: 

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 is a random sample from 𝑁𝑁(𝜇𝜇,𝜎𝜎2), then ∑ �𝑋𝑋𝑖𝑖−𝜇𝜇
𝜎𝜎
�
2

𝑛𝑛
𝑖𝑖=1 ~χ𝑛𝑛2 . 
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Theorem 2.8: 
If 𝑆𝑆2 = 1

𝑛𝑛−1
∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2 is the sample variance of a random sample from a normal distribution with mean 𝜇𝜇  and 

variance 𝜎𝜎2, then  

𝑈𝑈 =
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2 ~χ𝑛𝑛−12  

Proof: 
Since 𝑆𝑆2 = 1

𝑛𝑛−1
∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2, where 𝑋𝑋� = 1

𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 ; then we can redefine U as 

𝑈𝑈 =
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2 =
∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2

𝜎𝜎2  

Now, let 
∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2 = ∑ [(𝑋𝑋𝑖𝑖 − 𝜇𝜇) − (𝑋𝑋� − 𝜇𝜇)]2𝑛𝑛

𝑖𝑖=1 , 
                                                                   = ∑ [(𝑋𝑋𝑖𝑖 − 𝜇𝜇)2 − 2(𝑋𝑋𝑖𝑖 − 𝜇𝜇)(𝑋𝑋� − 𝜇𝜇) + (𝑋𝑋� − 𝜇𝜇)2]𝑛𝑛

𝑖𝑖=1   
                                                                   = ∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛

𝑖𝑖=1 − 2(𝑛𝑛𝑋𝑋� − 𝑛𝑛𝑛𝑛)(𝑋𝑋� − 𝜇𝜇)+𝑛𝑛(𝑋𝑋� − 𝜇𝜇)2 
                                                                                       = ∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛

𝑖𝑖=1 − 2𝑛𝑛(𝑋𝑋� − 𝜇𝜇)2+𝑛𝑛(𝑋𝑋� − 𝜇𝜇)2 
                                       = ∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛

𝑖𝑖=1 − 𝑛𝑛(𝑋𝑋� − 𝜇𝜇)2. 
Then,  

𝑈𝑈 = 1
𝜎𝜎2

[∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1 − 𝑛𝑛(𝑋𝑋� − 𝜇𝜇)2] = ∑ �𝑋𝑋𝑖𝑖−𝜇𝜇

𝜎𝜎
�
2

𝑛𝑛
𝑖𝑖=1 − � 𝑋𝑋

�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄ �

2
. 

  
  Use the mgf transformation method to find the distribution of 𝑈𝑈 as follows 

𝑀𝑀𝑈𝑈(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝑈𝑈 𝑡𝑡) = 𝐸𝐸 �𝑒𝑒
�∑ �𝑋𝑋𝑖𝑖−𝜇𝜇𝜎𝜎 �

2
𝑛𝑛
𝑖𝑖=1 −� 𝑋𝑋

�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

�
2
�𝑡𝑡
� 
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Since, ∑ �𝑋𝑋𝑖𝑖−𝜇𝜇
𝜎𝜎
�
2

𝑛𝑛
𝑖𝑖=1 and � 𝑋𝑋

�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄ �

2
  are independent random variables (Prove it), we can get 

𝑀𝑀𝑈𝑈(𝑡𝑡) = 𝐸𝐸 �𝑒𝑒∑ �𝑋𝑋𝑖𝑖−𝜇𝜇𝜎𝜎 �
2
𝑡𝑡𝑛𝑛

𝑖𝑖=1 �𝐸𝐸 �𝑒𝑒
−� 𝑋𝑋

�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

�
2
𝑡𝑡
� =

𝐸𝐸 �𝑒𝑒∑ �𝑋𝑋𝑖𝑖−𝜇𝜇𝜎𝜎 �
2
𝑡𝑡𝑛𝑛

𝑖𝑖=1 �

𝐸𝐸 �𝑒𝑒
� 𝑋𝑋
�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

�
2
𝑡𝑡
�

=
𝑀𝑀
∑ �𝑥𝑥𝑖𝑖−𝜇𝜇𝜎𝜎 �

2𝑛𝑛
𝑖𝑖=1

(𝑡𝑡)

𝑀𝑀
�𝑋𝑋
�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

�
2(𝑡𝑡)  

From Corollary 2.1 and Corollary 2.2, we found that 

∑ �𝑋𝑋𝑖𝑖−𝜇𝜇
𝜎𝜎
�
2

𝑛𝑛
𝑖𝑖=1 ~𝜒𝜒𝑛𝑛2   and   � 𝑋𝑋

�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄ �

2
~𝜒𝜒12 

i.e.,  

𝑀𝑀
∑ �𝑋𝑋𝑖𝑖−𝜇𝜇𝜎𝜎 �

2𝑛𝑛
𝑖𝑖=1

(𝑡𝑡) = (1 − 2𝑡𝑡)− 𝑛𝑛2   and  𝑀𝑀
�𝑋𝑋
�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄ �

2(𝑡𝑡) = (1 − 2𝑡𝑡)− 12 

Then, 

𝑀𝑀𝑈𝑈(𝑡𝑡) =
(1 − 2𝑡𝑡)− 𝑛𝑛2  

(1 − 2𝑡𝑡)− 12
= (1 − 2𝑡𝑡)− (𝑛𝑛−1)

2   

which is the mgf of chi-squared distribution with 𝑛𝑛 − 1 degrees of freedom. Thus, 
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2 ~𝜒𝜒𝑛𝑛−12  

 
Theorem 2.9: 
Let 𝑋𝑋~𝜒𝜒𝑛𝑛2, 𝑌𝑌~𝜒𝜒𝑚𝑚2 . If  𝑋𝑋,𝑌𝑌 are independent then 𝑋𝑋 + 𝑌𝑌~𝜒𝜒𝑛𝑛+𝑚𝑚2 . 
Proof: 
Left as an exercise.  
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Theorem 2.10: 
Let Z denote a random variable that is 𝑍𝑍~𝑁𝑁(0,1); let 𝑈𝑈 denote a random variable that is 𝑈𝑈~𝜒𝜒𝑘𝑘2 and let Z and U are 
independent. Then,   

𝑇𝑇 =
𝑍𝑍

�𝑈𝑈 𝑘𝑘⁄
~𝑡𝑡𝑘𝑘 

Proof: 
Since are 𝑍𝑍 and 𝑈𝑈 independent, the joint density of 𝑍𝑍 and 𝑈𝑈 is given by 

𝑓𝑓𝑍𝑍,𝑈𝑈(𝑧𝑧,𝑢𝑢) = 𝑓𝑓𝑍𝑍(𝑧𝑧).𝑓𝑓𝑈𝑈(𝑢𝑢) 

                                        = 1
√2𝜋𝜋

𝑒𝑒− 12𝑧𝑧
2 1

2�
𝑘𝑘
2�Γ�𝑘𝑘2�

𝑢𝑢
𝑘𝑘
2 −1𝑒𝑒− 𝑢𝑢2  

                                                                                                = 1

2�
𝑘𝑘
2�Γ�𝑘𝑘2�√2𝜋𝜋

𝑢𝑢
𝑘𝑘
2 −1𝑒𝑒− 12𝑧𝑧

2− 𝑢𝑢2 ,   𝑢𝑢 > 0,−∞ < 𝑧𝑧 < ∞ 

The one-to-one transformation will be used to obtain the pdf of T. Define the random variables 

𝑇𝑇 = 𝑍𝑍
�𝑈𝑈 𝑘𝑘⁄

  and  𝑌𝑌 = 𝑈𝑈 

Then, we can write  

𝑧𝑧 = 𝑡𝑡√𝑦𝑦
√𝑘𝑘

  and  𝑢𝑢 = 𝑦𝑦 

Therefore, the Jacobian is  
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|𝐽𝐽| = �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� = �
√𝑦𝑦
√𝑘𝑘

𝑡𝑡
2�𝑘𝑘𝑘𝑘

0 1
� = √𝑦𝑦

√𝑘𝑘
. 

Thus, the joint pdf of T and Y is given by 

𝑓𝑓𝑇𝑇,𝑌𝑌(𝑡𝑡, 𝑦𝑦) = 𝑓𝑓𝑍𝑍,𝑈𝑈 �
𝑡𝑡�𝑦𝑦

√𝑘𝑘
,𝑦𝑦� . |𝐽𝐽| =

1

2�
𝑘𝑘
2�Γ �𝑘𝑘2�√2𝜋𝜋

 𝑦𝑦
𝑘𝑘
2 −1𝑒𝑒−  

𝑦𝑦𝑡𝑡2

2𝑘𝑘  − 
𝑦𝑦
2  
√𝑦𝑦
√𝑘𝑘

 ,   𝑦𝑦 > 0,−∞ < 𝑡𝑡 < ∞ 

The marginal pdf of T is then 

𝑓𝑓𝑇𝑇(𝑡𝑡) = ∫ 𝑓𝑓𝑇𝑇,𝑌𝑌(𝑡𝑡,𝑦𝑦)∞
0 𝑑𝑑𝑑𝑑 = 1

2
𝑘𝑘+1
2 Γ�𝑘𝑘2�√𝜋𝜋𝜋𝜋

∫  𝑦𝑦
𝑘𝑘+1
2  −1𝑒𝑒− 𝑦𝑦2 �1 + 𝑡𝑡

2

𝑘𝑘 � ∞
0 𝑑𝑑𝑑𝑑 

By using gamma function, Γ(𝛼𝛼)
𝛽𝛽𝛼𝛼

= ∫ 𝑥𝑥𝛼𝛼−1𝑒𝑒−𝛽𝛽 𝑥𝑥  𝑑𝑑𝑑𝑑∞
0 , then we get 

                                    𝑓𝑓𝑇𝑇(𝑡𝑡) = 1

2
𝑘𝑘+1
2 Γ�𝑘𝑘2�√𝜋𝜋𝜋𝜋

Γ�𝑘𝑘+12 �

�
1 + 𝑡𝑡

2
𝑘𝑘

2 �

𝑘𝑘+1
2

 =
Γ�𝑘𝑘+12 �

Γ�𝑘𝑘2�√𝜋𝜋𝜋𝜋
�1 + 𝑡𝑡

2

𝑘𝑘
�
− 𝑘𝑘+12 ;    −∞ < 𝑡𝑡 < ∞.                       

And this is the pdf of t-distribution with k degrees of freedom. 
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Theorem 2.11: 
Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of size n from a 𝑁𝑁(𝜇𝜇,𝜎𝜎2), where 𝜎𝜎2 is unknown. Then, 

𝑋𝑋� − 𝜇𝜇
𝑆𝑆 √𝑛𝑛⁄

~𝑡𝑡(𝑛𝑛−1) 

Proof: 
Since 𝑆𝑆2 = 1

𝑛𝑛−1
∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2, write  

𝑋𝑋� − 𝜇𝜇
𝑆𝑆 √𝑛𝑛⁄

=
(𝑋𝑋� − 𝜇𝜇) �𝜎𝜎 √𝑛𝑛⁄ ��

�∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2
(𝑛𝑛 − 1)𝜎𝜎2

 

From Theorem 2.3 and Theorem 2.8, we obtain 
𝑋𝑋�−𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

~𝑁𝑁(0,1)  and  ∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2

𝜎𝜎2
~𝜒𝜒𝑛𝑛−12  

Then, from Theorem 2.10, we conclude that 
𝑋𝑋� − 𝜇𝜇
𝑆𝑆 √𝑛𝑛⁄

~𝑡𝑡(𝑛𝑛−1) 

 
 
Theorem 2.12: 
Let U and V are two independent random variables such that 𝑈𝑈~𝜒𝜒𝑛𝑛2 and 𝑉𝑉~𝜒𝜒𝑚𝑚2  . Then, 

𝑈𝑈 𝑛𝑛⁄
𝑉𝑉 𝑚𝑚⁄

~𝐹𝐹𝑛𝑛,𝑚𝑚 

where 𝑛𝑛 and 𝑚𝑚 are the degrees of freedom of F-distribution. 
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2.3 Sampling Distribution of 𝑺𝑺𝟐𝟐 
The sample variance 𝑆𝑆2 is given by 

𝑆𝑆2 =
1

𝑛𝑛 − 1�(𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−𝑋𝑋�)2 

From Theorem 2.8, we found that the distribution of 𝑆𝑆2 is  

(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2 ~𝑋𝑋𝑛𝑛−12  

By using this conclusion, we can calculate the mean and the variance of 𝑆𝑆2 as follows 

𝐸𝐸 �
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2 � = 𝑛𝑛 − 1 ⇒ 𝐸𝐸(𝑆𝑆2) = 𝜎𝜎2 

𝑉𝑉𝑉𝑉𝑉𝑉 �
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2 � = 2(𝑛𝑛 − 1)  ⇒  𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆2) =
2𝜎𝜎4

𝑛𝑛 − 1 

 

Corollary 2.3:  
The general derivation of the mean and the variance of the sample variance 𝑆𝑆2 that does not assume normality are 
given by 

𝐸𝐸(𝑆𝑆2) = 𝜎𝜎2 and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆2) = 𝜇𝜇4
𝑛𝑛
− 𝜎𝜎4(𝑛𝑛−3)

𝑛𝑛(𝑛𝑛−1)
 

where 𝜇𝜇4 = 𝐸𝐸[(𝑋𝑋 − 𝜇𝜇)4] is the fourth central moment of X. 
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2.4 Sampling Distribution of Order Statistics 
In this section, the concept of order statistic will be defined and some of their properties. 

Order Statistic:  

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of size n from a cumulative distribution function 𝐹𝐹(𝑥𝑥). Then, 𝑌𝑌1 ≤  𝑌𝑌2 ≤
⋯ ≤ 𝑌𝑌𝑛𝑛, where 𝑌𝑌𝑖𝑖 are the 𝑋𝑋𝑖𝑖  arranged in order of increasing degrees and are defined to be the order statistics 
corresponding to the random sample 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛. 

 

Theorem 2.13: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of size n from a continuous cdf 𝐹𝐹(𝑥𝑥) and pdf 𝑓𝑓(𝑥𝑥); let 𝑌𝑌1 ≤  𝑌𝑌2 ≤ ⋯ ≤ 𝑌𝑌𝑛𝑛 be 
the order statistics of this random sample. Then, the marginal pdf of any order statistic of order k, say 𝑌𝑌𝑘𝑘 is given 
by 

𝑓𝑓𝑌𝑌𝑘𝑘(𝑦𝑦𝑘𝑘) = 𝑛𝑛!
(𝑘𝑘−1)!(𝑛𝑛−𝑘𝑘)!

[𝐹𝐹(𝑦𝑦𝑘𝑘)]𝑘𝑘−1[1 − 𝐹𝐹(𝑦𝑦𝑘𝑘)]𝑛𝑛−𝑘𝑘𝑓𝑓(𝑦𝑦𝑘𝑘),  for 𝑎𝑎 < 𝑦𝑦𝑘𝑘 < 𝑏𝑏. 

 

Corollary 2.4: 

As a result of Theorem 2.13, the marginal pdf of 𝑌𝑌1 = 𝑚𝑚𝑚𝑚𝑚𝑚[𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛] and the marginal pdf of 𝑌𝑌𝑛𝑛 =
𝑚𝑚𝑚𝑚𝑚𝑚[𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛] are, respectively, given by 

𝑓𝑓𝑌𝑌1(𝑦𝑦1) = 𝑛𝑛[1 − 𝐹𝐹(𝑦𝑦1)]𝑛𝑛−1𝑓𝑓(𝑦𝑦1),  for 𝑎𝑎 < 𝑦𝑦1 < 𝑏𝑏 

𝑓𝑓𝑌𝑌𝑛𝑛(𝑦𝑦𝑛𝑛) = 𝑛𝑛[𝐹𝐹(𝑦𝑦𝑛𝑛)]𝑛𝑛−1𝑓𝑓(𝑦𝑦𝑛𝑛),  for 𝑎𝑎 < 𝑦𝑦𝑛𝑛 < 𝑏𝑏. 
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Theorem 2.14: 

Let 𝑌𝑌1 ≤  𝑌𝑌2 ≤ ⋯ ≤ 𝑌𝑌𝑛𝑛 be the order statistics based on the random sample 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 from a continuous 
distribution with pdf 𝑓𝑓(𝑥𝑥) and support (𝑎𝑎, 𝑏𝑏). Then, the joint pdf of the order statistics is given by,  

𝑓𝑓(𝑦𝑦1, 𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) = 𝑛𝑛! 𝑓𝑓(𝑦𝑦1)𝑓𝑓(𝑦𝑦2) …𝑓𝑓(𝑦𝑦𝑛𝑛),   for 𝑎𝑎 < 𝑦𝑦1 <  𝑦𝑦2 < ⋯ < 𝑦𝑦𝑛𝑛 < 𝑏𝑏. 

 

Theorem 2.15: 
Let 𝑌𝑌1 ≤  𝑌𝑌2 ≤ ⋯ ≤ 𝑌𝑌𝑛𝑛 be the order statistics based on the random sample 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛. Then, the joint pdf of any 
two order statistics, say 𝑌𝑌𝑟𝑟 < 𝑌𝑌𝑘𝑘, is expressed in terms of cdf 𝐹𝐹(𝑥𝑥) and pdf 𝑓𝑓(𝑥𝑥) as follows 

𝑓𝑓𝑟𝑟,𝑘𝑘(𝑦𝑦𝑟𝑟 ,𝑦𝑦𝑘𝑘) =
𝑛𝑛!

(𝑟𝑟 − 1)! (𝑘𝑘 − 𝑟𝑟 − 1)! (𝑛𝑛 − 𝑘𝑘)!
[𝐹𝐹(𝑦𝑦𝑟𝑟)]𝑟𝑟−1[𝐹𝐹(𝑦𝑦𝑘𝑘) − 𝐹𝐹(𝑦𝑦𝑟𝑟)]𝑘𝑘−𝑟𝑟−1 

                                                  [1 − 𝐹𝐹(𝑦𝑦𝑘𝑘)]𝑛𝑛−𝑘𝑘𝑓𝑓(𝑦𝑦𝑟𝑟)𝑓𝑓(𝑦𝑦𝑘𝑘), 𝑎𝑎 < 𝑦𝑦𝑟𝑟 < 𝑦𝑦𝑘𝑘 < 𝑏𝑏 

Example 2.4: 

Let 𝑌𝑌1 < 𝑌𝑌2 < 𝑌𝑌3 < 𝑌𝑌4 denote the order statistics of a random sample of size 4 from a distribution having pdf 

𝑓𝑓(𝑥𝑥) = 2𝑥𝑥, 0 < 𝑥𝑥 < 1 

Compute: 

1. 𝑃𝑃 �1
2

< 𝑌𝑌3�. 
2. The joint distribution of 𝑌𝑌1 and 𝑌𝑌3. 

Solution: 
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Here 𝐹𝐹(𝑥𝑥) = 𝑥𝑥2, provided that 0 < 𝑥𝑥 < 1, so that 

1. 𝑓𝑓𝑌𝑌3(𝑦𝑦3) = 4!
2!1!

(𝑦𝑦32)2(1− 𝑦𝑦32)(2𝑦𝑦3) = 24�𝑦𝑦35 − 𝑦𝑦37 �, 0 < 𝑦𝑦3 < 1 

Thus, 

          𝑃𝑃 �1
2

< 𝑌𝑌3� = ∫ 𝑓𝑓𝑌𝑌3(𝑦𝑦3
1
1
2

) 𝑑𝑑𝑦𝑦3 = ∫ 24�𝑦𝑦35 − 𝑦𝑦37 �1
1
2

𝑑𝑑𝑦𝑦3 = 243
256

. 

2. 𝑓𝑓1,3(𝑦𝑦1, 𝑦𝑦3) = 4!
0!1! 1!

[𝑦𝑦12]0 [𝑦𝑦32 − 𝑦𝑦12]1 [1 − 𝑦𝑦32]1  2𝑦𝑦1  2𝑦𝑦3  

                             = 96  𝑦𝑦1 𝑦𝑦3  [𝑦𝑦32 − 𝑦𝑦12]  [1 − 𝑦𝑦32] , , 0 < 𝑦𝑦1 < 𝑦𝑦3 < 1 
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Chapter 3: Point Estimation 

 

In this chapter, we begin by formally outlining the purpose of statistical inference. We follow this by discussing the 
problem of point estimation of population parameters. We confine our formal developments of specific estimation 
procedures to problems involving one sample. 

Statistical Inference: 

Statistical inference consists of those methods by which one makes inferences or generalizations about a 
population. There are two types of methods, the classic method of estimating a population parameter, whereby 
inferences  are based strictly on information obtained from a random sample selected from the population, and the 
Bayesian method, which utilizes prior subjective knowledge about the probability distribution of the unknown 
parameters in conjunction with the information provided by the sample data. Throughout of this chapter and the 
next, we shall use classical methods to estimate unknown population parameters such as the mean and the variance 
by computing statistics from random samples and applying the theory of sampling distributions, much of which 
was covered in Chapter 2. Bayesian estimation will be discussed in Chapter 4. 

Statistical inference may be divided into two major areas: estimation and tests of hypotheses, see Figure 3.1. We 
treat only estimation area in this course. Estimation methods divide into two parts, point estimation which we will 

Figure 3.1 

Statistical Inference

Estimation

Point Estimation Interval Estimation

Test of Hypotheses
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discuss it in this chapter and interval estimation. 

Point Estimate and Estimator: 

A point estimate of some population parameter 𝜃𝜃 is a single value 𝜃𝜃� of an estimator which is a statistic 𝑇𝑇. For 
example, the value 𝑥̅𝑥 of the estimator (statistic) 𝑋𝑋�, computed from a sample of size 𝑛𝑛 is a point estimate of the 
population mean 𝜇𝜇.  

 

3.1 Point Estimation Methods 
This section introduced two different methods to derive the point estimator that are, method of moments estimator 
(MME) and maximum likelihood estimator (MLE). 

 

3.1.1 Method of Moments Estimation 

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 be random sample of size 𝑛𝑛 from a distribution with probability distribution 
𝑓𝑓(𝑥𝑥;  𝜃𝜃1,𝜃𝜃2, … . . ,𝜃𝜃𝑟𝑟), (𝜃𝜃1, … ,𝜃𝜃𝑟𝑟) ∈ Ω. The expectation 𝜇𝜇𝑘𝑘′ = 𝐸𝐸(𝑋𝑋𝑘𝑘) is frequently called the kth moment of the 

distribution, 𝑘𝑘 = 1, 2, 3, ….. The sum 𝑀𝑀𝑘𝑘 = ∑ 𝑋𝑋𝑖𝑖
𝑘𝑘

𝑛𝑛
𝑛𝑛
𝑖𝑖=1  is the kth moment of the sample, 𝑘𝑘 = 1, 2, 3, ….. The 

method of moments estimators, 𝜃𝜃�1,𝜃𝜃�2, … . . ,𝜃𝜃�𝑟𝑟, are then the solution of the following rth equations, 

𝜇𝜇𝑖𝑖′ = 𝑀𝑀𝑖𝑖 

for 𝜃𝜃1, 𝜃𝜃2, … . . , 𝜃𝜃𝑟𝑟, 𝑖𝑖 = 1, 2, … , 𝑟𝑟. 
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3.1.2 Maximum Likelihood Estimation 

Maximum likelihood estimation is one of the most important approaches to estimation in all of statistical inference. 
In this section we develop statistical inference (point estimation) based on likelihood methods. We show that this 
procedure are asymptotically optimal under certain conditions (regularity conditions).  

 

Likelihood Function 

Suppose that 𝑋𝑋1, … . ,𝑋𝑋𝑛𝑛 are independent identically distributed (iid) random variables with common probability 
density function (continuous case) or probability mass function (discrete case), 𝑓𝑓(𝑥𝑥;𝜃𝜃). Then, the likelihood 
function is given by, 

𝐿𝐿(𝜃𝜃; 𝑥𝑥) = ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖;𝜃𝜃),𝜃𝜃 ∈ Ω𝑛𝑛
𝑖𝑖=1 . 

where 𝑥𝑥 = (𝑥𝑥1, … … , 𝑥𝑥𝑛𝑛). Because we will treat 𝐿𝐿 as a function of 𝜃𝜃 in this section, we will often write it as 𝐿𝐿(𝜃𝜃). 
Actually, the log or ln of this function is usually more convenient to work with mathematically. Denote the  
log 𝐿𝐿(𝜃𝜃) by 

log 𝐿𝐿(𝜃𝜃) = ∑ log𝑓𝑓(𝑥𝑥𝑖𝑖;𝜃𝜃),𝜃𝜃 ∈ Ω𝑛𝑛
𝑖𝑖=1 . 

Note that there is no loss of information in using log 𝐿𝐿(𝜃𝜃) because the log is a one-to-one function. In this section, 
we will generally consider 𝑋𝑋 as a random variable. 
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Maximum Likelihood Estimator: 

Given independent observations 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 from a probability distribution 𝑓𝑓(𝑥𝑥;  𝜃𝜃1,𝜃𝜃2, … . . ,𝜃𝜃𝑟𝑟), (𝜃𝜃1, … , 𝜃𝜃𝑟𝑟) ∈
Ω, the maximum likelihood estimators 𝜃𝜃�1,𝜃𝜃�2, … . . ,𝜃𝜃�𝑟𝑟 are that which maximizes the likelihood function 
𝐿𝐿(𝜃𝜃1,𝜃𝜃2, … . . ,𝜃𝜃𝑟𝑟; 𝑥𝑥). 

To determine the MLE, we use the following estimating equations (EE). Then, if the function 
𝐿𝐿(𝜃𝜃1,𝜃𝜃2, … . . ,𝜃𝜃𝑟𝑟; 𝑥𝑥) is differentiable, the MLE is the solution of these equations  

𝜕𝜕𝐿𝐿(𝜃𝜃𝑖𝑖;𝑥𝑥)
𝜕𝜕𝜃𝜃𝑖𝑖

= 0  or  𝜕𝜕 log 𝐿𝐿(𝜃𝜃𝑖𝑖;𝑥𝑥)
𝜕𝜕𝜃𝜃𝑖𝑖

= 0,   𝑖𝑖 = 1,2, . . , 𝑟𝑟 

There is no guarantee that the MLE exists or if it does whether it is unique.  

 

Example 3.1:  

Consider a Poisson distribution with probability mas function 

𝑓𝑓(𝑥𝑥, 𝜇𝜇) =
𝑒𝑒−𝜇𝜇𝜇𝜇𝑥𝑥

𝑥𝑥! , 𝑥𝑥 = 0, 1, 2, …. 

Supposed that a random sample 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is taken from the distribution. Find:  

1. The method of moments estimator of 𝜇𝜇. 
2. The maximum likelihood estimator of 𝜇𝜇. 

Solution:  
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1. Since the Poisson distribution has one parameter, then we will derive only the first moment of the 
distribution and the first moment of the sample, as following 

𝐸𝐸(𝑋𝑋) = 𝜇𝜇 and 𝑀𝑀1 = ∑ 𝑋𝑋𝑖𝑖
𝑛𝑛

𝑛𝑛
𝑖𝑖=1  

Solving the equation, 𝐸𝐸(𝑋𝑋) = 𝑀𝑀1, then the MME is obtained as 

𝜇𝜇� = ∑ 𝑋𝑋𝑖𝑖
𝑛𝑛

𝑛𝑛
𝑖𝑖=1 = 𝑋𝑋�. 

2. The likelihood function is  

𝐿𝐿(𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛;𝜇𝜇) = ∏ 𝑓𝑓𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖 ,𝜇𝜇) = 𝑒𝑒−𝑛𝑛𝑛𝑛𝜇𝜇∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1

∏ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 !

  

Now consider 

log 𝐿𝐿(𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛;𝜇𝜇) = −𝑛𝑛𝑛𝑛 + ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 log 𝜇𝜇 − log ∏ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 !, 
𝜕𝜕 log 𝐿𝐿(𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑛𝑛;𝜇𝜇)

𝜕𝜕𝜇𝜇
= −𝑛𝑛 + ∑ 𝑥𝑥𝑖𝑖

𝜇𝜇
𝑛𝑛
𝑖𝑖=1 = 0, 

Solving for 𝜇̂𝜇, the maximum likelihood estimator is given by  

𝜇̂𝜇 = ∑ 𝑋𝑋𝑖𝑖
𝑛𝑛

𝑛𝑛
𝑖𝑖=1 = 𝑋𝑋�. 

The second derivative of the log-likelihood function is negative, which implies that the solution above indeed 
is maximum. Since 𝜇𝜇 is the mean of the Poisson distribution (Chapter 1), the sample average would certainly 
seem like a reasonable estimator. 
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Example 3.2:  

Suppose 10 rats are used in a biomedical study where they are injected with cancer cells and then given a cancer 
drug that is designed to increase their survival rate. The survival times, in months, are 14, 17, 27, 18, 12, 8, 22, 13, 
19, and 12. Assume that the exponential distribution applies. 

𝑓𝑓(𝑥𝑥,𝛽𝛽) = �
1
𝛽𝛽
𝑒𝑒−𝑥𝑥/𝛽𝛽 , 𝑥𝑥 > 0

0, elsewhere
. 

Drive the method of moments and the maximum likelihood estimates of the mean survival time. 

Solution:  

To find the method of moments estimate we need to calculate the following moments 

𝐸𝐸(𝑋𝑋) = 𝛽𝛽 and 𝑀𝑀1 = ∑ 𝑋𝑋𝑖𝑖
𝑛𝑛

10
𝑖𝑖=1  

By equating these moments, we get the MME as 

𝛽𝛽� = ∑ 𝑋𝑋𝑖𝑖
𝑛𝑛

10
𝑖𝑖=1 = 𝑋𝑋� = 16.2. 

Now, the log-likelihood function for the date, given 𝑛𝑛 = 10, is 

log 𝐿𝐿(𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥10;𝛽𝛽) = −10 log 𝛽𝛽 − 1
𝛽𝛽
∑ 𝑋𝑋𝑖𝑖10
𝑖𝑖=1 , 

Setting 
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𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝜕𝜕

= −10
𝛽𝛽

+ 1
𝛽𝛽2
∑ 𝑋𝑋𝑖𝑖10
𝑖𝑖=1 = 0, 

Applies that 

𝛽̂𝛽 = 𝑋𝑋� = 1
10
∑ 𝑋𝑋𝑖𝑖 =10
𝑖𝑖=1 16.2. 

As a result, the estimator of the parameter 𝛽𝛽, the population mean, is the sample average 𝑋𝑋�. 

 

3.2 Properties of the Estimators 
In this section, we will study several measures of the quality of an estimator, so that we can choose the best. Some 
of these measures tell us the quality of the estimator with small samples, while other measures tell us the quality of 
the estimator with large samples. The last are also known as asymptotic properties of estimators. 
 

Small-sample Properties: 
(n finite or infinite) 

Large-sample Properties: 
(n→∞) 

Unbiasedness (mean). Asymptotic unbiasedness 
Sufficiency Consistency. 
Complete Asymptotic efficiency 
Efficiency (variance). Asymptotic normality. 

 

3.2.1 Unbiasedness 



STAT 340                                               Theory of Statistics 1                               Dr. Samah Alghamdi 
 

 
 

 
   52 
 

Let 𝑋𝑋1, … . ,𝑋𝑋𝑛𝑛 be a random sample from the probability distribution 𝑓𝑓(𝑥𝑥;𝜃𝜃); and let T denote an estimator of 𝜃𝜃. 
We say that a statistic T is an unbiased estimator of 𝜃𝜃 if 

𝐸𝐸(𝑇𝑇 ) = 𝜃𝜃. 

If T is not unbiased (that is, 𝐸𝐸(𝑇𝑇 ) ≠ 𝜃𝜃), we say that T  is a biased estimator of 𝜃𝜃. 

3.2.2 Mean Squared Error 

Let 𝑋𝑋1, … . ,𝑋𝑋𝑛𝑛 be a random sample from the probability distribution 𝑓𝑓(𝑥𝑥;𝜃𝜃). Let a statistic 𝑇𝑇 is an estimator of 𝜃𝜃. 
Then, the mean squared error of 𝑇𝑇, MSE, is given by 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇 ) = 𝐸𝐸[(𝑇𝑇 − 𝜃𝜃)2] = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) + �𝜃𝜃 − 𝐸𝐸(𝑇𝑇 )�
2 

The term  �𝜃𝜃 − 𝐸𝐸(𝑇𝑇)� is called the bias of the estimator 𝑇𝑇 . Note That if 𝑇𝑇 is an unbiased estimator of 𝜃𝜃, then the 
MSE is  

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇 ) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) 

Proof:  

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇 ) = 𝐸𝐸[(𝑇𝑇 − 𝜃𝜃)2] = 𝐸𝐸 ���𝑇𝑇 − 𝐸𝐸(𝑇𝑇 )� − �𝜃𝜃 − 𝐸𝐸(𝑇𝑇 )��
2
� 

                                                                  = 𝐸𝐸 ��𝑇𝑇 − 𝐸𝐸(𝑇𝑇 )�
2 − 2�𝑇𝑇 − 𝐸𝐸(𝑇𝑇 )��𝜃𝜃 − 𝐸𝐸(𝑇𝑇 )� + �𝜃𝜃 − 𝐸𝐸(𝑇𝑇 )�

2� 

                                     = 𝐸𝐸�𝑇𝑇 − 𝐸𝐸(𝑇𝑇 )�
2 − 2𝐸𝐸�𝑇𝑇 − 𝐸𝐸(𝑇𝑇 )��𝜃𝜃 − 𝐸𝐸(𝑇𝑇 )�+ 𝐸𝐸�𝜃𝜃 − 𝐸𝐸(𝑇𝑇 )�

2 

                                                                  = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) + ��𝜃𝜃 − 𝐸𝐸(𝑇𝑇)�
2� 
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Definition 3.1: 

If 𝑇𝑇1 and 𝑇𝑇2 are two estimators of 𝜃𝜃, then 𝑇𝑇1 is better estimator than 𝑇𝑇2 if  

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇1 ) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇2). 

3.2.3 Consistency 

Definition 3.2: 

Any estimator (statistic) 𝑇𝑇𝑛𝑛  that converges to a parameter 𝜃𝜃 is called a consistent estimator of that parameter 𝜃𝜃, i.e. 

lim
𝑛𝑛→∞

𝑃𝑃(|𝑇𝑇𝑛𝑛 − 𝜃𝜃| ≥ 𝜀𝜀) = 0 . 

Theorem 3.2: 

An estimator 𝑇𝑇𝑛𝑛 based on a sample of size n is consistent for 𝜃𝜃 if  

1. lim
𝑛𝑛→∞

𝐸𝐸(𝑇𝑇𝑛𝑛) = 𝜃𝜃  (asymptotically unbiased) and                      

2. lim
𝑛𝑛→∞

𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇𝑛𝑛) = 0. 

 

3.2.4 Sufficiency 

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 denote a random sample of size 𝑛𝑛 from a distribution 𝑓𝑓(𝑥𝑥;  𝜃𝜃),𝜃𝜃 ∈ Ω. Let 𝑇𝑇(𝑥𝑥) be a statistic 
whose distribution is 𝑓𝑓𝑇𝑇(𝑡𝑡;  𝜃𝜃). Then, 𝑇𝑇 is a sufficient statistic of 𝜃𝜃 if and only if 
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∏ 𝑓𝑓(𝑥𝑥𝑖𝑖; 𝜃𝜃)𝑛𝑛
𝑖𝑖=1
𝑓𝑓𝑇𝑇(𝑡𝑡; 𝜃𝜃)

 does not depend on 𝜃𝜃. 

 

Theorem 3.3: (Factorization Theorem) 

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 denote a random sample from a distribution 𝑓𝑓(𝑥𝑥;  𝜃𝜃),𝜃𝜃 ∈ Ω. The statistic 𝑇𝑇(𝑥𝑥) is a sufficient 
statistic of 𝜃𝜃 if and only if we can find two nonnegative functions, 𝐾𝐾1 and 𝐾𝐾2, such that 

∏ 𝑓𝑓(𝑥𝑥𝑖𝑖;  𝜃𝜃)𝑛𝑛
𝑖𝑖=1 = 𝐾𝐾1(𝑡𝑡,𝜃𝜃).𝐾𝐾2(𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛),  

where 𝐾𝐾2(𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛) does not depend upon 𝜃𝜃. 

 

Theorem 3.4:  

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 denote a random sample from a distribution that has probability distribution 𝑓𝑓(𝑥𝑥;  𝜃𝜃).𝜃𝜃 ∈ Ω. If a 
sufficient statistic 𝑇𝑇(𝑥𝑥) of 𝜃𝜃 exist and if a maximum likelihood estimator 𝜃𝜃� of 𝜃𝜃 also exists uniquely, then 𝜃𝜃� is a 
function of 𝑇𝑇(𝑥𝑥). 

 

Example 3.3: 

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 be a random sample has exponential distribution with parameter 𝛽𝛽 as following: 

𝑓𝑓(𝑥𝑥,𝛽𝛽) =
1
𝛽𝛽 𝑒𝑒

−𝑥𝑥/𝛽𝛽 ,   𝑥𝑥 > 0 
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Show that the estimator 𝑋𝑋� is an unbiased, consistent and sufficient statistic estimator, then find the mean squared 
error of 𝑋𝑋�. 

Solution: 

We know that the mean and the variance of X are 

𝐸𝐸(𝑋𝑋) = 𝛽𝛽  and  𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝛽𝛽2 

Then, 

𝐸𝐸(𝑋𝑋� ) = 𝐸𝐸(𝑋𝑋) = 𝛽𝛽. 

Thus, the statistic 𝑋𝑋� is an unbiased estimator of 𝛽𝛽. Now, we will find the variance of 𝑋𝑋� as 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)
𝑛𝑛

= 𝛽𝛽2

𝑛𝑛
. 

Thus,  

lim
𝑛𝑛→∞

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) = lim
𝑛𝑛→∞

�𝛽𝛽
2

𝑛𝑛
� = 0, 

Therefore, since 𝑋𝑋� is an unbiased estimator of 𝛽𝛽 and lim
𝑛𝑛→∞

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) = 0, from Theorem 3.2, the estimator 𝑋𝑋� is a 

consistent estimator. 

Now, we need to derived the distribution of T which can be found by using the mgf transformation method as  

𝑀𝑀𝑋𝑋�(𝑡𝑡) = 𝐸𝐸�𝑒𝑒𝑋𝑋�𝑡𝑡� = 𝐸𝐸 �𝑒𝑒
∑ 𝑋𝑋𝑖𝑖
𝑛𝑛
𝑖𝑖=1
𝑛𝑛  𝑡𝑡� = �𝑀𝑀𝑋𝑋1 �

𝑡𝑡
𝑛𝑛
��

𝑛𝑛
= �1 − 𝛽𝛽

𝑛𝑛
𝑡𝑡�

−𝑛𝑛
  

which is the mgf of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝑛𝑛, 𝛽𝛽
𝑛𝑛
�, thus the pdf of 𝑋𝑋� is (let 𝑇𝑇 = 𝑋𝑋�) 
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𝑓𝑓𝑇𝑇 �𝑡𝑡;  𝑛𝑛, 𝛽𝛽
𝑛𝑛
� = 𝑛𝑛𝑛𝑛

𝛽𝛽𝑛𝑛Γ(𝑛𝑛) 𝑡𝑡
𝑛𝑛−1𝑒𝑒− 

𝑛𝑛𝑛𝑛
𝛽𝛽   ,   𝑡𝑡 > 0, 

 ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖;  𝛽𝛽)𝑛𝑛
𝑖𝑖=1 = ∏ 1

𝛽𝛽
𝑒𝑒−𝑥𝑥𝑖𝑖/𝛽𝛽𝑛𝑛

𝑖𝑖=1 = 1

𝛽𝛽𝑛𝑛
𝑒𝑒−∑ 𝑥𝑥𝑖𝑖/𝛽𝛽

𝑛𝑛
𝑖𝑖=1   ,  

∏ 𝑓𝑓(𝑥𝑥𝑖𝑖; 𝛽𝛽)𝑛𝑛
𝑖𝑖=1

𝑓𝑓𝑇𝑇�𝑡𝑡; 𝑛𝑛,𝛽𝛽
𝑛𝑛
�

=
1
𝛽𝛽𝑛𝑛
𝑒𝑒−∑ 𝑥𝑥𝑖𝑖/𝛽𝛽

𝑛𝑛
𝑖𝑖=1  

𝑛𝑛𝑛𝑛

𝛽𝛽𝑛𝑛Γ(𝑛𝑛)𝑡𝑡
𝑛𝑛−1𝑒𝑒

− 
𝑛𝑛𝑛𝑛
𝛽𝛽

= Γ(𝑛𝑛)
𝑛𝑛𝑛𝑛

𝑡𝑡1−𝑛𝑛  

which does not depend on 𝛽𝛽, thus we conclude that  𝑇𝑇 = 𝑋𝑋� is a sufficient statistic estimator. 

The MSE of 𝑋𝑋� is given by  

𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋� ) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) = 𝛽𝛽2

𝑛𝑛
  (since 𝑋𝑋� is an unbiased estimator). 

Thus, the estimator 𝑋𝑋� is unbiased, consistent and sufficient statistic estimator of 𝛽𝛽. Notice that the estimator 𝑋𝑋� is 
the MME and the MLE of 𝛽𝛽. 

 

Example 3.4: 

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 be a random sample with Poisson pmf and parameter 𝜇𝜇, i.e. 

𝑓𝑓(𝑥𝑥, 𝜇𝜇) =
𝑒𝑒−𝜇𝜇𝜇𝜇𝑥𝑥

𝑥𝑥! , 𝑥𝑥 = 0, 1, 2, …. 

Show that the MLE of 𝜇𝜇 is an unbiased, consistent and sufficient statistic estimator then find the mean squared 
error of 𝜇𝜇. 

Solution: 
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From example 3.1, the MLE of 𝜇𝜇 is 𝑋𝑋� and we know that the mean and the variance of Poisson distribution with 
parameter 𝜇𝜇 are given by 

𝐸𝐸(𝑋𝑋) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝜇𝜇 

Then, 

𝐸𝐸(𝑋𝑋� ) = 𝐸𝐸 �∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

� = 1
𝑛𝑛
∑ 𝐸𝐸(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 1

𝑛𝑛
(𝑛𝑛𝑛𝑛) = 𝜇𝜇. 

which conclude that the MLE of 𝜇𝜇 is an unbiased estimator. Thus, 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋� ) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) = 𝑉𝑉𝑉𝑉𝑉𝑉 �
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛 � =

1
𝑛𝑛2�𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

=
1
𝑛𝑛2

(𝑛𝑛𝑛𝑛) =
𝜇𝜇
𝑛𝑛 

lim
𝑛𝑛→∞

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) = lim
𝑛𝑛→∞

�𝜇𝜇
𝑛𝑛
� = 0, 

Therefore, the estimator 𝑋𝑋� is a consistent estimator of 𝜇𝜇. 

Now,  

∏ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜇𝜇)𝑛𝑛
𝑖𝑖=1 = ∏ 𝑒𝑒−𝜇𝜇𝜇𝜇𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖!
𝑛𝑛
𝑖𝑖=1 = 𝑒𝑒−𝑛𝑛𝑛𝑛𝜇𝜇∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1

∏ 𝑥𝑥𝑖𝑖!𝑛𝑛
𝑖𝑖=1

= 𝑒𝑒−𝑛𝑛𝑛𝑛𝜇𝜇𝑛𝑛𝑥𝑥�

∏ 𝑥𝑥𝑖𝑖!𝑛𝑛
𝑖𝑖=1

  

Thus, ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜇𝜇)𝑛𝑛
𝑖𝑖=1  can be written by a product of two functions 𝐾𝐾1(𝑡𝑡,𝜃𝜃) = 𝑒𝑒−𝑛𝑛𝑛𝑛𝜇𝜇𝑛𝑛𝑥̅𝑥 which depends on the 

parameter 𝜇𝜇 and the MLE, 𝑇𝑇 = 𝑥̅𝑥 and 𝐾𝐾2(𝑥𝑥1,𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛) = 1
∏ 𝑥𝑥𝑖𝑖!𝑛𝑛
𝑖𝑖=1

  which depends only on the random sample. 

Therefore, we conclude that 𝑇𝑇 = 𝑋𝑋� is a sufficient statistic estimator. 

Thus, the MLE, 𝑋𝑋� is unbiased, consistent and sufficient statistic estimator of 𝜇𝜇. 
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Theorem 3.5:  

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 denote a random sample from a distribution 𝑓𝑓�𝑥𝑥;  𝜃́𝜃�, 𝜃́𝜃 = (𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑘𝑘). Then, statistic 𝑇́𝑇 =
(𝑇𝑇1,𝑇𝑇2, … . ,𝑇𝑇𝑘𝑘) are joint sufficient statistic of  𝜃́𝜃 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑘𝑘) if and only if   

𝐿𝐿(𝑥𝑥; 𝜃́𝜃) = ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖;  𝜃́𝜃)𝑛𝑛
𝑖𝑖=1 = 𝐾𝐾1(𝑡́𝑡, 𝜃́𝜃).𝐾𝐾2(𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛),  

where 𝐾𝐾2(𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛) does not depend on 𝜃𝜃. 

 

Example 3.5: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample drawn from continuous uniform distribution when 𝑥𝑥 ∈ (0,𝜃𝜃). Find the 
following: 

(a) The MLE of 𝜃𝜃. 
(b) Prove that 𝑌𝑌𝑛𝑛 = Maximum(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) is a sufficient statistic, asymptotically unbiased and consistent 

estimator of 𝜃𝜃. 
(c) An unbiased estimator of 𝜃𝜃. 

Solution: 

(a) The pmf and cdf of the uniform distribution of 𝑥𝑥 ∈ (0,𝜃𝜃) are defined as 

𝑓𝑓(𝑥𝑥,𝜃𝜃) = 1
𝜃𝜃
   and   𝐹𝐹(𝑥𝑥) = 𝑥𝑥

𝜃𝜃
 

and the likelihood function is given by 
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𝐿𝐿(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛;  𝜃𝜃) =
1
𝜃𝜃𝑛𝑛  ,   0 < 𝑥𝑥𝑖𝑖 ≤ 𝜃𝜃 

Then, the maximum of such functions cannot be found by differentiation but by selecting 𝜃𝜃 as small as 
possible. Now, each 𝑥𝑥𝑖𝑖 ≤ 𝜃𝜃, in particular 𝑌𝑌𝑛𝑛 ≤ 𝜃𝜃. Thus, the likelihood function attains to the maximum value 
when 

𝐿𝐿�𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛;𝜃𝜃�� =
1

(𝑌𝑌𝑛𝑛)𝑛𝑛 

or 𝜃𝜃� = 𝑌𝑌𝑛𝑛 is the MLE for 𝜃𝜃. 

(b)  To find the properties of the estimator 𝑌𝑌𝑛𝑛, we should first derive the distribution of it as: 

𝑓𝑓(𝑦𝑦𝑛𝑛,𝜃𝜃) =
𝑛𝑛
𝜃𝜃𝑛𝑛 𝑦𝑦𝑛𝑛

𝑛𝑛−1  ,    0 < 𝑦𝑦𝑛𝑛 ≤ 𝜃𝜃 

Thus,  

∏ 𝑓𝑓(𝑥𝑥𝑖𝑖; 𝜃𝜃)𝑛𝑛
𝑖𝑖=1
𝑓𝑓�𝑦𝑦𝑛𝑛,𝜃𝜃�

= 1 𝜃𝜃𝑛𝑛⁄
(𝑛𝑛 𝜃𝜃𝑛𝑛)⁄  𝑦𝑦𝑛𝑛𝑛𝑛−1 = 1

𝑛𝑛 𝑦𝑦𝑛𝑛𝑛𝑛−1 dose not depend on 𝜃𝜃 

The estimator 𝑌𝑌𝑛𝑛 is sufficient statistic for 𝜃𝜃. Now, the mean and the variance of are given by 

𝐸𝐸(𝑌𝑌𝑛𝑛) = �
𝑛𝑛
𝜃𝜃𝑛𝑛
𝑦𝑦𝑛𝑛
𝑛𝑛

𝜃𝜃

0
𝑑𝑑𝑦𝑦𝑛𝑛 =

𝑛𝑛 
𝜃𝜃𝑛𝑛(𝑛𝑛 + 1) 𝑦𝑦𝑛𝑛

𝑛𝑛+1�
0

𝜃𝜃

=
𝑛𝑛 𝜃𝜃

(𝑛𝑛 + 1) 

𝐸𝐸(𝑌𝑌𝑛𝑛2) = �
𝑛𝑛
𝜃𝜃𝑛𝑛
𝑦𝑦𝑛𝑛
𝑛𝑛+1

𝜃𝜃

0
𝑑𝑑𝑦𝑦𝑛𝑛 =

𝑛𝑛 
𝜃𝜃𝑛𝑛(𝑛𝑛 + 2) 𝑦𝑦𝑛𝑛

𝑛𝑛+2�
0

𝜃𝜃

=
𝑛𝑛 𝜃𝜃2

(𝑛𝑛 + 2) 
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𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑛𝑛) = 𝐸𝐸(𝑌𝑌𝑛𝑛2) − �𝐸𝐸(𝑌𝑌𝑛𝑛)�2 =
𝑛𝑛 𝜃𝜃2

(𝑛𝑛 + 2) −
𝑛𝑛2 𝜃𝜃2

(𝑛𝑛 + 1)2 =
𝑛𝑛 𝜃𝜃2

(𝑛𝑛 + 2)(𝑛𝑛 + 1)2 

                                      
Thus,  

lim
𝑛𝑛→∞

𝐸𝐸(𝑌𝑌𝑛𝑛 ) =
𝑛𝑛 𝜃𝜃

(𝑛𝑛 + 1) = lim
𝑛𝑛→∞

𝑛𝑛 𝜃𝜃
(𝑛𝑛 + 1) = 𝜃𝜃 

lim
𝑛𝑛→∞

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑛𝑛 ) = lim
𝑛𝑛→∞

𝑛𝑛 𝜃𝜃2

(𝑛𝑛 + 2)(𝑛𝑛 + 1)2 = 0 

Therefore, 𝑌𝑌𝑛𝑛 is asymptotically unbiased and consistent estimator of 𝜃𝜃. 

(c)  Since 𝐸𝐸(𝑌𝑌𝑛𝑛) = 𝑛𝑛 𝜃𝜃

(𝑛𝑛+1), thus we can choose 𝑇𝑇 = (𝑛𝑛+1)
𝑛𝑛

𝑌𝑌𝑛𝑛 which is an unbiased estimator for 𝜃𝜃 such that  

𝐸𝐸(𝑇𝑇) = 𝐸𝐸 �(𝑛𝑛+1)
𝑛𝑛

𝑌𝑌𝑛𝑛� = 𝜃𝜃. 

 

Example 3.6:  

Let 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛 denote a random sample from a distribution that is 𝑁𝑁(𝜇𝜇,𝜎𝜎2),−∞ < 𝜇𝜇 < ∞, 𝜎𝜎2 > 0. Find the 
following: 

1. Maximum likelihood estimators of 𝜇𝜇 and 𝜎𝜎2. 
2. Method of moments estimators of 𝜇𝜇 and 𝜎𝜎2. 
3. Properties of MLE and MME of 𝜇𝜇 and 𝜎𝜎2. 
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Solution: 

1. Maximum likelihood estimators of 𝜇𝜇 and 𝜎𝜎2: 

The pdf of the 𝑁𝑁(𝜇𝜇,𝜎𝜎2) is  

𝑓𝑓(𝑥𝑥,𝜇𝜇,𝜎𝜎2) = 1
√2𝜋𝜋𝜎𝜎

𝑒𝑒− 1
2𝜎𝜎2

(𝑥𝑥−𝜇𝜇)2, 𝑥𝑥 > 0 

 The likelihood and the logarithm of the likelihood function may be written in the form 

𝐿𝐿(𝜇𝜇,𝜎𝜎2; 𝑥𝑥1, … . . , 𝑥𝑥𝑛𝑛) = �√2𝜋𝜋𝜎𝜎�
− 𝑛𝑛

 𝑒𝑒− 12𝜎𝜎2 ∑ (𝑥𝑥𝑖𝑖−𝜇𝜇)2𝑛𝑛
𝑖𝑖=1  

                                                                                 = (2𝜋𝜋)− 𝑛𝑛2  (𝜎𝜎2)− 𝑛𝑛2  𝑒𝑒− 1
2𝜎𝜎2

∑ (𝑥𝑥𝑖𝑖−𝜇𝜇)2𝑛𝑛
𝑖𝑖=1  

                      log𝐿𝐿(𝜇𝜇,𝜎𝜎2 ; 𝑥𝑥1, … . . , 𝑥𝑥𝑛𝑛) = −𝑛𝑛
2

log(2𝜋𝜋) − 𝑛𝑛
2

log(𝜎𝜎2) − 1
2𝜎𝜎2

∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1 , 

We observe that we may maximum by differentiation ln 𝐿𝐿(𝜇𝜇,𝜎𝜎2 ; 𝑥𝑥1, … . . , 𝑥𝑥𝑛𝑛) with respect to 𝜇𝜇 and 𝜎𝜎2. We have 
𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝜇𝜇

= 1
𝜎𝜎2
∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)𝑛𝑛
𝑖𝑖=1 , 

                 𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝜎𝜎2

= − 𝑛𝑛
2𝜎𝜎2

+ 1
2𝜎𝜎4

∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1 , 

If we equate these partial derivatives to zero and solve simultaneously the two equations thus obtained, the 
solutions for 𝜇𝜇 and 𝜎𝜎2 are found to be 

1
𝜎𝜎2
∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)𝑛𝑛
𝑖𝑖=1 = 0 ⇒ ∑ 𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1 = 0 ⇒ 𝜇̂𝜇 = 𝑋𝑋�, 

− 𝑛𝑛
2𝜎𝜎2

+ 1
2𝜎𝜎4

∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1 = 0 ⇒ ∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑛𝑛

𝑖𝑖=1 = 𝑛𝑛𝜎𝜎2, 
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⇒ 𝜎𝜎�2 = ∑ (𝑋𝑋𝑖𝑖−𝜇𝜇�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
= ∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�  )2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

. 

 

2. The method of moments estimators of 𝜇𝜇 and 𝜎𝜎2: 

Since we want to find MME for two parameters 𝜇𝜇 and 𝜎𝜎2, then we must equate first two population moments  

𝐸𝐸(𝑋𝑋) = 𝜇𝜇 , 𝐸𝐸(𝑋𝑋2) = 𝜎𝜎2 + 𝜇𝜇2 

with first two sample moments  

𝑀𝑀1 = ∑ 𝑋𝑋𝑖𝑖
𝑛𝑛

𝑛𝑛
𝑖𝑖=1 ,𝑀𝑀2 = ∑ 𝑋𝑋𝑖𝑖

2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1 , 

Then, we get  

𝜇𝜇� = 𝑋𝑋� , and 

𝜎𝜎2 + 𝜇𝜇2 = ∑ 𝑋𝑋𝑖𝑖
2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1  ⇒ 𝜎𝜎�2 = ∑ 𝑋𝑋𝑖𝑖

2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1 − �∑ 𝑋𝑋𝑖𝑖

𝑛𝑛
𝑛𝑛
𝑖𝑖=1 �

2
= ∑ (𝑋𝑋𝑖𝑖−𝑋𝑋� )2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 , 

3. Estimators properties: 

a) Unbiasedness: 
𝐸𝐸(𝜇̂𝜇) = 𝐸𝐸(𝑋𝑋�) = 𝜇𝜇 

Thus, the estimator 𝑋𝑋� is an unbiased estimator of 𝜇𝜇. 

𝐸𝐸(𝜎𝜎�2) = 𝐸𝐸 �1
𝑛𝑛
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 �, 

We know that the term ∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2 can be written  as 
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∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2 = ∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛

𝑖𝑖=1 − 𝑛𝑛(𝑋𝑋� − 𝜇𝜇)2, 
Then,  

  𝐸𝐸(𝜎𝜎�2) = 1
𝑛𝑛

[∑ 𝐸𝐸(𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1 − 𝑛𝑛𝐸𝐸(𝑋𝑋� − 𝜇𝜇)2], 

                                                                                 = 1
𝑛𝑛
�∑ 𝜎𝜎2𝑛𝑛

𝑖𝑖=1 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋�)� 

                                                                                 = 1
𝑛𝑛
�𝑛𝑛𝜎𝜎2 − 𝑛𝑛 𝜎𝜎2

𝑛𝑛
� = (𝑛𝑛−1)𝜎𝜎2

𝑛𝑛
 

Therefore, 𝜎𝜎�2 is biased estimator of 𝜎𝜎2.  

Note: The estimator 𝑆𝑆2 = 1
𝑛𝑛−1

∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1  is an unbiased estimator (Prove). 

b) Mean squared error: 

The MSE of 𝜇𝜇 and 𝜎𝜎2 are given, respectively, by 

𝑀𝑀𝑀𝑀𝑀𝑀( 𝜇̂𝜇) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋� ) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) =
𝜎𝜎2

𝑛𝑛  

     𝑀𝑀𝑀𝑀𝑀𝑀( 𝜎𝜎�2 ) = 𝑉𝑉𝑉𝑉𝑉𝑉( 𝜎𝜎�2 ) + 𝐸𝐸 ��𝜎𝜎2 − 𝐸𝐸( 𝜎𝜎�2)�2� 

We need to find the variance of  𝜎𝜎�2. From Theorem 2.8,   

∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2

𝜎𝜎2 ~χ𝑛𝑛−12  

Define 𝑆𝑆12 = 1
𝑛𝑛
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 , now since 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2), thus we can conclude that 
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𝑛𝑛 𝑆𝑆12

𝜎𝜎2 =
∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2

𝜎𝜎2 ~χ𝑛𝑛−12  

Therefore,  

𝑉𝑉𝑉𝑉𝑉𝑉 �
𝑛𝑛 𝑆𝑆12

𝜎𝜎2 �
= 2(𝑛𝑛 − 1) ⇒ 𝑉𝑉𝑉𝑉𝑉𝑉( 𝑆𝑆12) =

2(𝑛𝑛 − 1)𝜎𝜎4

𝑛𝑛2  

The MSE is, then given by 

𝑀𝑀𝑀𝑀𝑀𝑀( 𝜎𝜎�2 ) =
2(𝑛𝑛 − 1)𝜎𝜎4

𝑛𝑛2 + �𝜎𝜎2 −
(𝑛𝑛 − 1)𝜎𝜎2

𝑛𝑛 �
2

 

       = 2(𝑛𝑛−1)𝜎𝜎4

𝑛𝑛2
+ �𝜎𝜎

2

𝑛𝑛
�
2

= (2𝑛𝑛−1)𝜎𝜎4

𝑛𝑛2
 

b) Consistency: 

The estimator 𝑋𝑋� is a consistent estimator of 𝜇𝜇 because 

          1. It is an unbiased estimator of 𝜇𝜇. 

          2. lim
𝑛𝑛→∞

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋�) = lim
𝑛𝑛→∞

𝜎𝜎2

𝑛𝑛
= 0. 

The estimator  𝜎𝜎�2 of 𝜎𝜎2 is also consistent estimator because 

1. lim
𝑛𝑛→∞

𝐸𝐸( 𝜎𝜎�2) = lim
𝑛𝑛→∞

�(𝑛𝑛−1)𝜎𝜎2

𝑛𝑛
� = lim

𝑛𝑛→∞
�𝜎𝜎2 − 𝜎𝜎2

𝑛𝑛
� = 𝜎𝜎2 (asymptotically unbiased). 

          2. lim
𝑛𝑛→∞

𝑉𝑉𝑉𝑉𝑉𝑉( 𝜎𝜎�2) = lim
𝑛𝑛→∞

�2(𝑛𝑛−1)𝜎𝜎4

𝑛𝑛2
� = lim

𝑛𝑛→∞
�2𝜎𝜎

4

𝑛𝑛
− 2𝜎𝜎2

𝑛𝑛2
� = 0. 
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d) Sufficiency: 

     The likelihood function of 𝑁𝑁(𝜇𝜇,𝜎𝜎2) is obtained as 

 ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖;  𝜇𝜇,𝜎𝜎2)𝑛𝑛
𝑖𝑖=1 = �√2𝜋𝜋𝜎𝜎�

− 𝑛𝑛
 𝑒𝑒− 1

2𝜎𝜎2
∑ (𝑋𝑋𝑖𝑖−𝜇𝜇)2𝑛𝑛
𝑖𝑖=1  

                                              = �√2𝜋𝜋𝜎𝜎�
− 𝑛𝑛

 𝑒𝑒− 1
2𝜎𝜎2�∑ (𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 −𝑋𝑋�)2+𝑛𝑛(𝑋𝑋�−𝜇𝜇)2� 

                                  = �√2𝜋𝜋𝜎𝜎�
− 𝑛𝑛

 𝑒𝑒− 1
2𝜎𝜎2�𝑛𝑛𝑆𝑆1

2+𝑛𝑛(𝑋𝑋�−𝜇𝜇)2� 

Let 𝑇𝑇1 = 𝑋𝑋�,𝑇𝑇2 = 𝑆𝑆12. Then, we can write 

 ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖;  𝜇𝜇,𝜎𝜎2)𝑛𝑛
𝑖𝑖=1 = 𝐾𝐾1(𝑇𝑇1,𝑇𝑇2;  𝜇𝜇,𝜎𝜎2).𝐾𝐾2(𝑋𝑋) 

where 𝐾𝐾1(𝑇𝑇1,𝑇𝑇2, 𝜇𝜇,𝜎𝜎2) = �√2𝜋𝜋𝜎𝜎�
− 𝑛𝑛

 𝑒𝑒− 1
2𝜎𝜎2

[𝑛𝑛𝑇𝑇2+𝑛𝑛(𝑇𝑇1−𝜇𝜇)2] and 𝐾𝐾2(𝑋𝑋) = 1.  

Therefore, (𝑇𝑇1,𝑇𝑇2) are jointly sufficient statistic of (𝜇𝜇,𝜎𝜎2). 

 

Exponential Family: 

A probability distribution 𝑓𝑓(𝑥𝑥, 𝜃𝜃) is said to be a member of the exponential family if it can be written of the form 

𝑓𝑓(𝑥𝑥, 𝜃𝜃) = 𝑎𝑎(𝜃𝜃)𝑏𝑏(𝑥𝑥)𝑒𝑒𝑐𝑐(𝜃𝜃)𝑑𝑑(𝑥𝑥) 

where, 1. 𝑎𝑎(𝜃𝜃) and 𝑐𝑐(𝜃𝜃) are functions of parameter 𝜃𝜃. 

             2. 𝑏𝑏(𝑥𝑥) and 𝑑𝑑(𝑥𝑥) are functions of the random sample X. 
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Example 3.7: 

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a random sample, determine whether the following probability distribution are member of 
exponential family or not: 

1. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 �1
𝜃𝜃
�. 

2. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝). 

Solution: 

1. The pdf of the exponential distribution with parameter 1
𝜃𝜃

 is defined as 

𝑓𝑓(𝑥𝑥;𝜃𝜃) = 𝜃𝜃𝑒𝑒−𝜃𝜃𝜃𝜃,   𝑥𝑥 ≥ 0 

It is a member of exponential family where 𝑎𝑎(𝜃𝜃) = 𝜃𝜃, 𝑏𝑏(𝑥𝑥) = 1, 𝑐𝑐(𝜃𝜃) = −𝜃𝜃,𝑑𝑑(𝑥𝑥) = 𝑥𝑥. 

2. The pmf of Bernoulli distribution with parameter p is  

𝑓𝑓(𝑥𝑥;𝑝𝑝) = 𝑝𝑝𝑥𝑥𝑞𝑞1−𝑥𝑥, 𝑥𝑥 = 0, 1. 

which can be written as 

𝑓𝑓(𝑥𝑥;𝑝𝑝) = 𝑒𝑒𝑥𝑥 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒(1−𝑥𝑥) 𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑥𝑥 (𝐿𝐿𝐿𝐿𝐿𝐿−𝐿𝐿𝐿𝐿𝐿𝐿) 

Therefore, the Bernoulli distribution is a member of exponential family where 𝑎𝑎(𝑝𝑝) = 𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑏𝑏(𝑥𝑥) =
1, 𝑐𝑐(𝑝𝑝) = 𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿,𝑑𝑑(𝑥𝑥) = 𝑥𝑥. 

 

3.2.5 Minimal Sufficiency 

A sufficient statistic T is a minimal sufficient statistic if, for any other sufficient statistic U, T is a function of U. 
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Theorem 3.6: 

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛be random sample with probability distribution 𝑓𝑓(𝑥𝑥, 𝜃𝜃) and let 𝑇𝑇(𝑥𝑥) be a statistic of the random 
sample. Suppose for any random sample 𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑛𝑛 from probability distribution 𝑓𝑓(𝑦𝑦,𝜃𝜃) such that 𝑇𝑇(𝑦𝑦) is a 
statistic and the ratio 

∏ 𝑓𝑓(𝑥𝑥𝑖𝑖,𝜃𝜃)𝑛𝑛
𝑖𝑖=1

∏ 𝑓𝑓(𝑦𝑦𝑖𝑖,𝜃𝜃)𝑛𝑛
𝑖𝑖=1

 does not depend on 𝜃𝜃 if and only if 𝑇𝑇(𝑥𝑥) = 𝑇𝑇(𝑦𝑦). 

Then, 𝑇𝑇(𝑥𝑥) is a minimal sufficient statistic estimator of 𝜃𝜃. 

 

Example 3.8: 

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are independent identically random sample from 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃). Show that 𝑇𝑇 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a minimal 

sufficient statistic for 𝜃𝜃. 

Solution: 

The pmf of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃) is given as 

𝑓𝑓(𝑥𝑥,𝜃𝜃) =
𝑒𝑒−𝜃𝜃𝜃𝜃𝑥𝑥

𝑥𝑥! , 𝑥𝑥 = 0, 1, 2, …. 

Then, for any random sample 𝑌𝑌~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃) 

∏ 𝑓𝑓(𝑥𝑥𝑖𝑖,𝜃𝜃)𝑛𝑛
𝑖𝑖=1

∏ 𝑓𝑓(𝑦𝑦𝑖𝑖,𝜃𝜃)𝑛𝑛
𝑖𝑖=1

=
𝑒𝑒−𝑛𝑛 𝜃𝜃 𝜃𝜃∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 ∏ 𝑥𝑥𝑖𝑖!

𝑛𝑛
𝑖𝑖=1�

𝑒𝑒−𝑛𝑛 𝜃𝜃 𝜃𝜃∑ 𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ∏ 𝑦𝑦𝑖𝑖!

𝑛𝑛
𝑖𝑖=1�

=
 𝜃𝜃∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 −∑ 𝑦𝑦𝑖𝑖

𝑛𝑛
𝑖𝑖=1

∏ 𝑥𝑥𝑖𝑖!
𝑛𝑛
𝑖𝑖=1 ∏ 𝑦𝑦𝑖𝑖!

𝑛𝑛
𝑖𝑖=1⁄  , 
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which does not depend on 𝜃𝜃 iff ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 = ∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1 .This implies that 𝑇𝑇 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a minimal sufficient statistic for 

𝜃𝜃. 

Theorem 3.7:  

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛be random sample from exponential family, 

𝑓𝑓(𝑥𝑥, 𝜃𝜃) = 𝑎𝑎(𝜃𝜃)𝑏𝑏(𝑥𝑥)𝑒𝑒𝑐𝑐(𝜃𝜃)𝑑𝑑(𝑥𝑥) 

Then, 𝑇𝑇 = ∑ 𝑑𝑑(𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 ) is a minimal sufficient statistic estimator of 𝜃𝜃. 

Theorem 3.8: 

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from  

𝑓𝑓�𝑥𝑥, 𝜃́𝜃� = 𝑎𝑎�𝜃́𝜃�𝑏𝑏(𝑥𝑥)𝑒𝑒∑ 𝑐𝑐𝑗𝑗�𝜃́𝜃�𝑑𝑑𝑗𝑗(𝑥𝑥)𝑘𝑘
𝑗𝑗=1  

where 𝜃́𝜃  vector of parameters, 𝜃́𝜃 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑘𝑘). Then,  

𝑇𝑇𝑗𝑗 = ∑ 𝑑𝑑𝑗𝑗(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ,    𝑗𝑗 = 1, 2, … ,𝑘𝑘; 

are jointly minimal sufficient statistic estimators of 𝜃́𝜃 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑘𝑘). 

 

Example 3.9: 

Find a minimal sufficient statistic for the probability distribution in Example 3.7. 

Solution: 
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Since 𝑑𝑑(𝑥𝑥) = 𝑥𝑥 for the exponential and Bernoulli distributions, then the statistic 𝑇𝑇 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a minimal 

sufficient statistic for both distributions. 

 

3.2.6 Completeness 

A sufficient statistic 𝑇𝑇(𝑥𝑥) of 𝜃𝜃 is called complete if for any function 𝑔𝑔(𝑇𝑇) such that  

𝐸𝐸�𝑔𝑔(𝑇𝑇)� = 0,  implies that 𝑔𝑔(𝑇𝑇) = 0. 

 

Theorem 3.9: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from 𝑓𝑓(𝑥𝑥,𝜃𝜃) such that 

𝑓𝑓(𝑥𝑥, 𝜃𝜃) = 𝑎𝑎(𝜃𝜃)𝑏𝑏(𝑥𝑥)𝑒𝑒𝑐𝑐(𝜃𝜃)𝑑𝑑(𝑥𝑥) 

Then, 𝑇𝑇 = ∑ 𝑑𝑑(𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 ) is complete minimal sufficient statistic of 𝜃𝜃. 

 

Examples 3.10: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  be a random sample from 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝). Show that 𝑇𝑇 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a complete sufficient statistic 

for 𝑝𝑝. 

Solution: 

From Example 3.7, we found that Bernoulli distribution is a member of exponential family with 𝑑𝑑(𝑥𝑥) = 𝑥𝑥. 
Therefore, by using Theorem 3.9, 𝑇𝑇 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1  is complete minimal sufficient statistic for 𝑝𝑝. 
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Now, we want to use the definition of completeness to get the same result: 

Since 𝑋𝑋~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝), then 

𝑀𝑀𝑇𝑇(𝑠𝑠) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑡𝑡) = 𝐸𝐸�𝑒𝑒𝑠𝑠∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 � = �𝑀𝑀𝑋𝑋1(𝑠𝑠)�

𝑛𝑛
= (𝑞𝑞 + 𝑝𝑝𝑒𝑒𝑡𝑡)𝑛𝑛, 

which is the mgf of 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝). Thus, the pdf of T is  

𝑓𝑓(𝑡𝑡) = �
𝑛𝑛
𝑡𝑡� 𝑝𝑝

𝑡𝑡𝑞𝑞𝑛𝑛−𝑡𝑡 , 𝑡𝑡 = 0, 1, … ,𝑛𝑛  

Suppose for any function of T , 𝑔𝑔(𝑇𝑇), that 

𝐸𝐸�𝑔𝑔(𝑇𝑇)� = ∑ 𝑔𝑔(𝑇𝑇)�𝑛𝑛𝑡𝑡�𝑝𝑝
𝑡𝑡𝑞𝑞𝑛𝑛−𝑡𝑡𝑛𝑛

𝑡𝑡=0 = 𝑞𝑞𝑛𝑛 ∑ 𝑔𝑔(𝑇𝑇)�𝑛𝑛𝑡𝑡� �
𝑝𝑝
𝑞𝑞
�
𝑡𝑡

𝑛𝑛
𝑡𝑡=0 = 0  

   ⇒𝑔𝑔(0)�𝑛𝑛0� �
𝑝𝑝
𝑞𝑞
�
0

+ 𝑔𝑔(1)�𝑛𝑛1� �
𝑝𝑝
𝑞𝑞
� + ⋯+ 𝑔𝑔(𝑛𝑛)�𝑛𝑛𝑛𝑛� �

𝑝𝑝
𝑞𝑞
�
𝑛𝑛

= 0 

 ⇒𝑔𝑔(0) = 𝑔𝑔(1) = ⋯ = 𝑔𝑔(𝑛𝑛) = 0 ⇒𝑔𝑔(𝑇𝑇) = 0. 

Thus, T is complete sufficient statistic for 𝑝𝑝. 

Example 3.11:  

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛~𝜃𝜃𝑒𝑒−𝜃𝜃𝜃𝜃, 𝑥𝑥 ≥ 0. Show that 𝑇𝑇 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a complete sufficient statistic for 𝜃𝜃. 

Solution: 

Since 𝑋𝑋~𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 �1
𝜃𝜃
�, then the distribution of 𝑇𝑇 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1  is given as  

𝑀𝑀𝑇𝑇(𝑠𝑠) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑡𝑡) = 𝐸𝐸�𝑒𝑒𝑠𝑠∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 � = �𝑀𝑀𝑋𝑋1(𝑠𝑠)�

𝑛𝑛
= � 𝜃𝜃

𝜃𝜃−𝑡𝑡
�
𝑛𝑛

, 
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Which is the mgf of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝑛𝑛, 1
𝜃𝜃
�. Thus, the pdf of T is 

𝑓𝑓𝑇𝑇(𝑡𝑡) =
𝜃𝜃𝑛𝑛

Γ(𝑛𝑛) 𝑡𝑡
𝑛𝑛−1𝑒𝑒−𝜃𝜃𝜃𝜃 , 𝑡𝑡 > 0 

Then,                                                            𝐸𝐸�𝑔𝑔(𝑇𝑇)� = ∫ 𝑔𝑔(𝑡𝑡) 𝜃𝜃𝑛𝑛

Γ(𝑛𝑛)
∞
0 𝑡𝑡𝑛𝑛−1𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑 = 0 

Only 𝑔𝑔(𝑡𝑡) 𝜃𝜃𝑛𝑛

Γ(𝑛𝑛)
𝑡𝑡𝑛𝑛−1 = 0 ⟺ 𝑔𝑔(𝑡𝑡) = 0, for all T. 

Therefore, T is complete sufficient statistic for 𝜃𝜃. 

 

Score Function 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from probability distribution 𝑓𝑓(𝑥𝑥,𝜃𝜃), then the score function, 𝑢𝑢(𝜃𝜃), is the 
derivative of the log-likelihood function with respect to the parameter 𝜃𝜃: 

𝑢𝑢( 𝜃𝜃) =
𝜕𝜕
𝜕𝜕𝜕𝜕 log𝐿𝐿(𝑥𝑥,𝜃𝜃) 

Properties of Score Function: 

1. Mean 
𝑬𝑬[𝒖𝒖( 𝜽𝜽)] = 𝟎𝟎 

Proof: 
   𝐸𝐸[𝑢𝑢( 𝜃𝜃)] = 𝐸𝐸 � 𝜕𝜕

𝜕𝜕𝜕𝜕
log𝐿𝐿(𝑥𝑥, 𝜃𝜃)� 
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                   = ∫ …∫ 𝐿𝐿(𝑥𝑥, 𝜃𝜃) � 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃)�  𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1𝑥𝑥𝑛𝑛𝑥𝑥1
 

                             = ∫ …∫ 𝐿𝐿(𝑥𝑥,𝜃𝜃)�
𝜕𝜕𝜕𝜕(𝑥𝑥,𝜃𝜃)
𝜕𝜕𝜕𝜕

𝐿𝐿(𝑥𝑥,𝜃𝜃)�  𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1𝑥𝑥𝑛𝑛𝑥𝑥1
 

                             = 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ …∫ 𝐿𝐿(𝑥𝑥,𝜃𝜃) 𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1𝑥𝑥𝑛𝑛𝑥𝑥1

= 𝜕𝜕
𝜕𝜕𝜕𝜕

(1) = 0 

 

 

2. Variance (Fisher Information) 

𝑽𝑽𝑽𝑽𝑽𝑽[𝒖𝒖( 𝜽𝜽)] = 𝑬𝑬 ��
𝝏𝝏
𝝏𝝏𝝏𝝏 𝐥𝐥𝐥𝐥𝐥𝐥𝑳𝑳

(𝒙𝒙,𝜽𝜽)�
𝟐𝟐

� 

 
Proof: 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑢𝑢( 𝜃𝜃)] = 𝐸𝐸 ��𝑢𝑢( 𝜃𝜃)�
2� − (𝐸𝐸[𝑢𝑢( 𝜃𝜃)])2 

Since 𝐸𝐸[𝑢𝑢( 𝜃𝜃)] = 0, then 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑢𝑢( 𝜃𝜃)] = 𝐸𝐸 ��𝑢𝑢( 𝜃𝜃)�
2� = 𝐸𝐸 ��

𝜕𝜕
𝜕𝜕𝜕𝜕 log𝐿𝐿(𝑥𝑥, 𝜃𝜃)�

2

� 

 

Fisher Information:  
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The Fisher information, 𝐼𝐼𝑋𝑋(𝜃𝜃) or 𝐼𝐼𝑛𝑛(𝜃𝜃), of a random sample 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 about 𝜃𝜃 is defined as  

𝐼𝐼𝑋𝑋(𝜃𝜃) = 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜕𝜕
𝜕𝜕𝜕𝜕 log𝐿𝐿(𝑥𝑥,𝜃𝜃)� = 𝐸𝐸 ��

𝜕𝜕
𝜕𝜕𝜕𝜕 log𝐿𝐿(𝑥𝑥,𝜃𝜃)�

2

� 

Properties of Fisher Information: 

1. 𝑰𝑰𝑿𝑿(𝜽𝜽) = −𝑬𝑬 � 𝝏𝝏
𝟐𝟐

𝝏𝝏𝜽𝜽𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥𝑳𝑳(𝒙𝒙,𝜽𝜽)� 

Proof: 

Let 𝐿𝐿 = 𝐿𝐿(𝑥𝑥,𝜃𝜃), 𝐿𝐿′ = 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐿𝐿(𝑥𝑥,𝜃𝜃) and 𝐿𝐿′′ = 𝜕𝜕2

𝜕𝜕𝜃𝜃2
𝐿𝐿(𝑥𝑥, 𝜃𝜃), then 

            𝜕𝜕
2

𝜕𝜕𝜃𝜃2
log𝐿𝐿(𝑥𝑥,𝜃𝜃) = 𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃)� = 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐿𝐿

′

𝐿𝐿
� 

                                     = 𝐿𝐿′′𝐿𝐿−(𝐿𝐿′)2

𝐿𝐿2
= 𝐿𝐿′′

𝐿𝐿
− (𝐿𝐿′)2

𝐿𝐿2
 

      𝐸𝐸 � 𝜕𝜕
2

𝜕𝜕𝜃𝜃2
log𝐿𝐿(𝑥𝑥,𝜃𝜃)� = 𝐸𝐸 �𝐿𝐿

′′

𝐿𝐿
− (𝐿𝐿′)2

𝐿𝐿2
� = 𝐸𝐸 �𝐿𝐿

′′

𝐿𝐿
� − 𝐸𝐸 ��𝐿𝐿′

𝐿𝐿
�
2
� 

The first term in the right side can be written as 

                           𝐸𝐸 �𝐿𝐿
′′

𝐿𝐿
� = ∫ …∫ 𝐿𝐿′′

𝐿𝐿
𝐿𝐿 𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1𝑥𝑥𝑛𝑛𝑥𝑥1

 

                                      = 𝜕𝜕2

𝜕𝜕𝜃𝜃2 ∫ …∫ 𝐿𝐿(𝑥𝑥,𝜃𝜃) 𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1𝑥𝑥𝑛𝑛
= 𝜕𝜕2

𝜕𝜕𝜃𝜃2
(1)𝑥𝑥1

= 0 

The second term is obtained as 

                      𝐸𝐸 ��𝐿𝐿′
𝐿𝐿
�
2
� = 𝐸𝐸 ��

𝜕𝜕
𝜕𝜕𝜕𝜕𝐿𝐿(𝑥𝑥,𝜃𝜃)

𝐿𝐿(𝑥𝑥,𝜃𝜃) �
2

� = 𝐸𝐸 �� 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃)�
2
�  

Then,  
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      𝐸𝐸 � 𝜕𝜕
2

𝜕𝜕𝜃𝜃2
log𝐿𝐿(𝑥𝑥,𝜃𝜃)� = 𝐸𝐸 �𝐿𝐿

′′

𝐿𝐿
� − 𝐸𝐸 ��𝐿𝐿

′

𝐿𝐿
�
2
� = 0 − 𝐸𝐸 �� 𝜕𝜕

𝜕𝜕𝜕𝜕
log𝐿𝐿(𝑥𝑥, 𝜃𝜃)�

2
� 

This implies that,  

                           𝐼𝐼𝑋𝑋(𝜃𝜃) = 𝐸𝐸 �� 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃)�
2
� = −𝐸𝐸 � 𝜕𝜕

2

𝜕𝜕𝜃𝜃2
log𝐿𝐿(𝑥𝑥,𝜃𝜃)� 

2. 𝑰𝑰𝑿𝑿(𝜽𝜽) = 𝒏𝒏 𝑰𝑰(𝜽𝜽) 
where 𝐼𝐼(𝜃𝜃) is the Fisher information at one observation defined as 

𝐼𝐼(𝜃𝜃) = 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝑓𝑓(𝑥𝑥;𝜃𝜃)� = 𝐸𝐸 ��
𝜕𝜕
𝜕𝜕𝜕𝜕

l𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝜃𝜃)�
2

� = −𝐸𝐸 �
𝜕𝜕2

𝜕𝜕𝜃𝜃2
l𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝜃𝜃)� 

 
Proof:  

𝐼𝐼𝑋𝑋(𝜃𝜃) = 𝑉𝑉𝑉𝑉𝑉𝑉 � 𝜕𝜕
𝜕𝜕𝜕𝜕

l𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥,𝜃𝜃)� = 𝑉𝑉𝑉𝑉𝑉𝑉 � 𝜕𝜕
𝜕𝜕𝜕𝜕
∑ log𝑓𝑓(𝑥𝑥𝑖𝑖;𝜃𝜃)𝑛𝑛
𝑖𝑖=1 � = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉 � 𝜕𝜕

𝜕𝜕𝜕𝜕
Log𝑓𝑓(𝑥𝑥𝑖𝑖;𝜃𝜃)�𝑛𝑛

𝑖𝑖=1 = 𝑛𝑛 𝐼𝐼(𝜃𝜃). 
 

3. If X and Y are two independent random samples from probability distributions 𝑓𝑓(𝑥𝑥,𝜃𝜃) and 𝑓𝑓(𝑦𝑦,𝜃𝜃), 
respectively, then 

𝑰𝑰𝑿𝑿,𝒀𝒀(𝜽𝜽) = 𝑰𝑰𝑿𝑿(𝜽𝜽) + 𝑰𝑰𝒀𝒀(𝜽𝜽) 
Proof: 

        𝐼𝐼𝑋𝑋,𝑌𝑌(𝜃𝜃) = 𝐸𝐸 �� 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝑦𝑦, 𝜃𝜃)�
2
�   

                     = 𝐸𝐸 �� 𝜕𝜕
𝜕𝜕𝜕𝜕

log�𝐿𝐿(𝑥𝑥,𝜃𝜃)𝐿𝐿(𝑦𝑦,𝜃𝜃)��
2
� (Since X and Y are independent) 
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           = 𝐸𝐸 �� 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃) + 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑦𝑦,𝜃𝜃)�
2
�   

           = 𝐸𝐸 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃)�
2

+ 𝐸𝐸 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑦𝑦, 𝜃𝜃)�
2

+ 2𝐸𝐸 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃)�𝐸𝐸 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑦𝑦,𝜃𝜃)�  

                      = 𝐸𝐸 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃)�
2

+ 𝐸𝐸 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑦𝑦, 𝜃𝜃)�
2
 

                      = 𝐼𝐼𝑋𝑋(𝜃𝜃) + 𝐼𝐼𝑌𝑌(𝜃𝜃) 

 

 

Examples 3.12: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from normal distribution with parameters 0 and 𝜃𝜃. Find the Fisher 
information of 𝜃𝜃, 𝐼𝐼𝑋𝑋(𝜃𝜃). 

Solution: 

We know that the normal distribution when 𝜇𝜇 = 0 and 𝜎𝜎2 = 𝜃𝜃 is given by 

𝑓𝑓(𝑥𝑥, 𝜃𝜃) =
1

√2𝜋𝜋𝜋𝜋
𝑒𝑒− 𝑥𝑥

2

2𝜃𝜃 ,−∞ < 𝑥𝑥 < ∞    

The likelihood and the log-likelihood functions are then obtained as 

𝐿𝐿( 𝑥𝑥,𝜃𝜃) = (2𝜋𝜋𝜋𝜋)− 𝑛𝑛2   𝑒𝑒− 12𝜃𝜃 ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1  

                    log 𝐿𝐿(𝑥𝑥, 𝜃𝜃) = −𝑛𝑛
2

log(2𝜋𝜋) − 𝑛𝑛
2

log(𝜃𝜃) − 1
2𝜃𝜃
∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1  
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1. 𝐼𝐼𝑋𝑋(𝜃𝜃) = 𝑉𝑉𝑉𝑉𝑉𝑉 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥, 𝜃𝜃)� 
From the log-likelihood function, we get the first partial derivative with respect to 𝜃𝜃 as 

𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥,𝜃𝜃) = − 𝑛𝑛
2𝜃𝜃

+ ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1
2𝜃𝜃2

  

𝐼𝐼𝑋𝑋(𝜃𝜃) = 𝑉𝑉𝑉𝑉𝑉𝑉 �− 𝑛𝑛
2𝜃𝜃

+ ∑ 𝑋𝑋𝑖𝑖2𝑛𝑛
𝑖𝑖=1
2𝜃𝜃2

� = 1
4𝜃𝜃2

𝑉𝑉𝑉𝑉𝑉𝑉 �∑ 𝑋𝑋𝑖𝑖2𝑛𝑛
𝑖𝑖=1
𝜃𝜃

�  

Note that:  ∑ 𝑋𝑋𝑖𝑖2𝑛𝑛
𝑖𝑖=1
𝜃𝜃

= ∑ 𝑍𝑍𝑖𝑖2𝑛𝑛
𝑖𝑖=1 ~𝜒𝜒𝑛𝑛2, then 𝑉𝑉𝑉𝑉𝑉𝑉 �∑ 𝑋𝑋𝑖𝑖2𝑛𝑛

𝑖𝑖=1
𝜃𝜃

� = 2𝑛𝑛, and this implies that 

𝐼𝐼𝑋𝑋(𝜃𝜃) = 2𝑛𝑛
4𝜃𝜃2

= 𝑛𝑛
2𝜃𝜃2

  

2. 𝐼𝐼𝑋𝑋(𝜃𝜃) = 𝑛𝑛𝑛𝑛(𝜃𝜃) 

log𝑓𝑓(𝑥𝑥, 𝜃𝜃) = −1
2

log(2𝜋𝜋) − 1
2

log(𝜃𝜃) − 𝑥𝑥2

2𝜃𝜃
  

𝜕𝜕
𝜕𝜕𝜕𝜕

log𝑓𝑓(𝑥𝑥,𝜃𝜃) = − 1
2𝜃𝜃

+ 𝑥𝑥2

2𝜃𝜃2
  

𝐼𝐼𝑋𝑋(𝜃𝜃) = 𝑛𝑛 𝐼𝐼(𝜃𝜃) = 𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 � 𝜕𝜕
𝜕𝜕𝜕𝜕

l𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝜃𝜃)� = 𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 �− 1
2𝜃𝜃

+ 𝑋𝑋2

2𝜃𝜃2
�  

= 𝑛𝑛
4𝜃𝜃2

 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑋𝑋
2

𝜃𝜃
�  

Since, 𝑋𝑋
2

𝜃𝜃
= 𝑍𝑍2~𝜒𝜒12, then 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑋𝑋

2

𝜃𝜃
� = 2, therefore we get 

𝐼𝐼𝑋𝑋(𝜃𝜃) = 𝑛𝑛
2𝜃𝜃2

  

3. 𝐼𝐼𝑋𝑋(𝜃𝜃) = −𝐸𝐸 � 𝜕𝜕
2

𝜕𝜕𝜃𝜃2
log𝐿𝐿(𝑥𝑥,𝜃𝜃)� 

First, we should find the second partial derivative of log-likelihood function with respect to 𝜃𝜃, which is equal 
to 
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𝜕𝜕2

𝜕𝜕𝜃𝜃2
log𝐿𝐿(𝑥𝑥,𝜃𝜃) = 𝑛𝑛

2𝜃𝜃2
− ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛

𝑖𝑖=1
𝜃𝜃3

   

𝐼𝐼𝑋𝑋(𝜃𝜃) = −𝐸𝐸 � 𝜕𝜕
2

𝜕𝜕𝜃𝜃2
log𝐿𝐿(𝑥𝑥,𝜃𝜃)� = −𝐸𝐸 � 𝑛𝑛

2𝜃𝜃2
− ∑ 𝑋𝑋𝑖𝑖2𝑛𝑛

𝑖𝑖=1
𝜃𝜃3

� = − 𝑛𝑛
2𝜃𝜃2

+ ∑ 𝐸𝐸(𝑋𝑋𝑖𝑖2)𝑛𝑛
𝑖𝑖=1

𝜃𝜃3
 

   From definition of variance,  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸(𝑋𝑋2) − �𝐸𝐸(𝑋𝑋)�2 ⇒ 𝐸𝐸(𝑋𝑋2) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) + �𝐸𝐸(𝑋𝑋)�2 = 𝜃𝜃 + 0 = 𝜃𝜃 

Then, 

𝐼𝐼𝑋𝑋(𝜃𝜃) = − 𝑛𝑛
2𝜃𝜃2

+ 𝑛𝑛𝑛𝑛
𝜃𝜃3

= 𝑛𝑛
2𝜃𝜃2

  

Regularity Conditions: 

(i) log𝐿𝐿(𝑥𝑥,𝜃𝜃) or log𝑓𝑓(𝑥𝑥,𝜃𝜃) is differentiable for all 𝜃𝜃. 

(ii) 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ …∫ 𝐿𝐿(𝑥𝑥;𝜃𝜃)𝑥𝑥𝑛𝑛𝑥𝑥1

𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1 = ∫ …∫ 𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑛𝑛𝑥𝑥1
𝐿𝐿(𝑥𝑥; 𝜃𝜃)𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1  

(iii) 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ …∫ 𝑡𝑡(𝑥𝑥1𝑥𝑥𝑛𝑛𝑥𝑥1

, … , 𝑥𝑥𝑛𝑛) 𝐿𝐿(𝑥𝑥;𝜃𝜃) 𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1 

                 = ∫ …∫ 𝑡𝑡(𝑥𝑥1𝑥𝑥𝑛𝑛𝑥𝑥1
, … , 𝑥𝑥𝑛𝑛) 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐿𝐿(𝑥𝑥;𝜃𝜃) 𝑑𝑑𝑥𝑥𝑛𝑛 …𝑑𝑑𝑥𝑥1  

(iv) 0 < 𝐸𝐸 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥;𝜃𝜃)�
2

< ∞ ,  for all 𝜃𝜃. 

 

3.2.7 Minimum Variance Unbiased Estimator (MVUE) 
If a statistic 𝑇𝑇 be an estimator for a parameter 𝜏𝜏(𝜃𝜃), is called to be a MVUE for 𝜏𝜏(𝜃𝜃)  if  

1. 𝐸𝐸(𝑇𝑇) = 𝜏𝜏(𝜃𝜃) unbiased estimator of 𝜏𝜏(𝜃𝜃). 
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2. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) has minimum variance compared to any other unbiased estimator. 

 

Theorem 3.10: Cramér-Rao Lower Bound (CRLB) 
Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be a random sample from 𝑓𝑓(𝑥𝑥,𝜃𝜃) and 𝑇𝑇(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) be an unbiased estimator of 𝜏𝜏(𝜃𝜃) such that 𝜏𝜏(𝜃𝜃) 
is differentiable function of 𝜃𝜃. Then, under the regularity conditions, the minimum variance of any unbiased 
estimator T is  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) ≥
�𝜏𝜏′(𝜃𝜃)�2

𝑛𝑛𝑛𝑛(𝜃𝜃)  

Proof: 

Since T is an unbiased estimator of 𝜏𝜏(𝜃𝜃) [i. e.𝐸𝐸(𝑇𝑇 ) = 𝜏𝜏(𝜃𝜃)]. Then, under the regularity conditions, we get 

 𝜏́𝜏(𝜃𝜃) = 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜏𝜏(𝜃𝜃) = 𝜕𝜕

𝜕𝜕𝜕𝜕
 𝐸𝐸(𝑇𝑇 ) = 𝜕𝜕

𝜕𝜕𝜕𝜕 ∫…∫ 𝑡𝑡(𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛)𝐿𝐿(𝑥𝑥;𝜃𝜃) 𝑑𝑑𝑥𝑥1 …𝑑𝑑𝑥𝑥𝑛𝑛  

           

 𝜏́𝜏(𝜃𝜃) = ∫…∫ 𝑡𝑡(𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛) 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐿𝐿(𝑥𝑥; 𝜃𝜃) 𝑑𝑑𝑥𝑥1 …𝑑𝑑𝑥𝑥𝑛𝑛  

          = ∫…∫ 𝑡𝑡(𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛) � 𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥; 𝜃𝜃)� 𝐿𝐿(𝑥𝑥; 𝜃𝜃)𝑑𝑑𝑥𝑥1 …𝑑𝑑𝑥𝑥𝑛𝑛 

          = ∫…∫ 𝑡𝑡(𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛) � 𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥; 𝜃𝜃)� 𝐿𝐿(𝑥𝑥; 𝜃𝜃)𝑑𝑑𝑥𝑥1 …𝑑𝑑𝑥𝑥𝑛𝑛 − ∫…∫ 𝜏𝜏(𝜃𝜃) � 𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥; 𝜃𝜃)� 𝐿𝐿(𝑥𝑥;𝜃𝜃)𝑑𝑑𝑥𝑥1 …𝑑𝑑𝑥𝑥𝑛𝑛 

          = ∫…∫[𝑡𝑡(𝑥𝑥1, … . , 𝑥𝑥𝑛𝑛) − 𝜏𝜏(𝜃𝜃)] � 𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥; 𝜃𝜃)� 𝐿𝐿(𝑥𝑥;𝜃𝜃)𝑑𝑑𝑥𝑥1 …𝑑𝑑𝑥𝑥𝑛𝑛 
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          = 𝐸𝐸 �[𝑡𝑡(𝑥𝑥1, … . , 𝑥𝑥𝑛𝑛) − 𝜏𝜏(𝜃𝜃)] � 𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥;𝜃𝜃)�� 

Now consider the covariance of T and score function as following 

𝐶𝐶𝐶𝐶𝐶𝐶 �𝑇𝑇, 𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥; 𝜃𝜃)� = 𝐸𝐸 �𝑇𝑇 𝜕𝜕
𝜕𝜕𝜕𝜕

log𝐿𝐿(𝑥𝑥;𝜃𝜃)� − 𝐸𝐸[𝑇𝑇]𝐸𝐸 � 𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥;𝜃𝜃)� = 𝜏́𝜏(𝜃𝜃)  

Now by the Cauchy-Schwarz inequality, we get 

�𝐶𝐶𝐶𝐶𝐶𝐶 �𝑇𝑇,
𝜕𝜕
𝜕𝜕𝜕𝜕 log 𝐿𝐿(𝑥𝑥;𝜃𝜃)��

2

≤ 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇]𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜕𝜕
𝜕𝜕𝜕𝜕

log 𝐿𝐿(𝑥𝑥; 𝜃𝜃)� 

Then, 

[𝜏́𝜏(𝜃𝜃)]2 ≤ 𝐸𝐸[𝑡𝑡(𝑥𝑥1, … . , 𝑥𝑥𝑛𝑛) − 𝜏𝜏(𝜃𝜃)]2 𝐸𝐸 �
𝜕𝜕
𝜕𝜕𝜕𝜕 log 𝐿𝐿(𝑥𝑥;𝜃𝜃)�

2

 

or                                                    𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] ≥ [𝜏́𝜏(𝜃𝜃)]2

𝑛𝑛𝑛𝑛(𝜃𝜃)
 

 
Remark: If there exists an unbiased estimator T of 𝜏𝜏(𝜃𝜃) that its variance attains the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = [𝜏́𝜏(𝜃𝜃)]2

𝑛𝑛𝑛𝑛(𝜃𝜃)
, then T is an 

MVUE estimator of 𝜏𝜏(𝜃𝜃). 
 
3.2.8 Efficiency 
An unbiased estimator T of 𝜏𝜏(𝜃𝜃) is called an efficient estimator of 𝜏𝜏(𝜃𝜃) if and only if  

𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) = 1 
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Theorem 3.11: 
If 𝑇𝑇1 and 𝑇𝑇2 are both unbiased estimators of 𝜏𝜏(𝜃𝜃), then the efficiency of 𝑇𝑇1 and 𝑇𝑇2 is defined as follows 

𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇1,𝑇𝑇2) =
𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇1)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇2) = �

> 1 ,    𝑇𝑇2 is more efficient than 𝑇𝑇1
1 ,  𝑇𝑇1 and 𝑇𝑇2 are equally efficient 
< 1 ,    𝑇𝑇1 is more efficient than 𝑇𝑇2

 

 

 

 

Asymptotic Efficiency  
An unbiased estimator T of 𝜏𝜏(𝜃𝜃) is called an asymptotically efficient estimator of 𝜏𝜏(𝜃𝜃) if  

lim
𝑛𝑛→∞

𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) = lim
𝑛𝑛→∞

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) = 1 

Example 3.13:  

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  has an exponential distribution with parameter 1
𝜆𝜆
. Let 𝑇𝑇1 and 𝑇𝑇2 are unbiased estimates of 𝜆𝜆 and 1

𝜆𝜆
, 

respectively. Find CRLB of 𝑇𝑇1 and 𝑇𝑇2. 

Solution:  

The pdf of the exponential distribution with parameter 1
𝜆𝜆
 is given by 

𝑓𝑓(𝑥𝑥, 𝜆𝜆) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆 , 𝑥𝑥 > 0 

Then, the likelihood and the log-likelihood functions are obtained as 
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𝐿𝐿(𝑥𝑥, 𝜆𝜆) = ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝜆𝜆)𝑛𝑛
𝑖𝑖=1 = 𝜆𝜆𝑛𝑛𝑒𝑒−𝜆𝜆∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1   

log 𝐿𝐿 (𝑥𝑥, 𝜆𝜆) = ∑ log𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝜆𝜆)𝑛𝑛
𝑖𝑖=1 = 𝑛𝑛 log 𝜆𝜆 − 𝜆𝜆∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1   

Taking the first and second partial derivatives of the log-likelihood function with respect to 𝜆𝜆, we get 

𝜕𝜕
𝜕𝜕𝜕𝜕 log𝐿𝐿(𝑥𝑥, 𝜆𝜆) =

𝑛𝑛
𝜆𝜆 −�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝜕𝜕2

𝜕𝜕𝜆𝜆2 log𝐿𝐿(𝑥𝑥, 𝜆𝜆) = −
𝑛𝑛
𝜆𝜆2 

Then, the Fisher information of 𝜆𝜆 is derived as  

𝐼𝐼𝑋𝑋(𝜆𝜆) = −𝐸𝐸 �
𝜕𝜕2

𝜕𝜕𝜆𝜆2 log𝐿𝐿(𝑥𝑥, 𝜆𝜆)� =
𝑛𝑛
𝜆𝜆2 

Now, we want to find the CRLB for 𝑇𝑇1 and 𝑇𝑇2 of the two cases when 𝜏𝜏(𝜆𝜆) = 𝜆𝜆 and when 𝜏𝜏(𝜆𝜆) = 1
𝜆𝜆
.  

The case when 𝜏𝜏(𝜆𝜆) = 𝜆𝜆 ⇒ 𝜏𝜏′(𝜆𝜆) = 1, then the CRLB for 𝑇𝑇1 is 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇1) =
�𝜏𝜏′(𝜆𝜆)�2

𝐼𝐼𝑋𝑋(𝜆𝜆) =
1

𝑛𝑛 𝜆𝜆2⁄ =
𝜆𝜆2

𝑛𝑛  

The second case, when 𝜏𝜏(𝜆𝜆) = 1
𝜆𝜆
⇒ 𝜏𝜏′(𝜆𝜆) = − 1

𝜆𝜆2
, then the CRLB for 𝑇𝑇2 is  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇2) =
�𝜏𝜏′(𝜆𝜆)�2

𝐼𝐼𝑋𝑋(𝜆𝜆) =
(−1 𝜆𝜆2⁄ )2

𝑛𝑛 𝜆𝜆2⁄ =
1
𝑛𝑛𝜆𝜆2 

Note that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇2) < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇1) and 
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𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) =
∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛2 =
1
𝑛𝑛2

𝑛𝑛
𝜆𝜆2 =

1
𝑛𝑛𝜆𝜆2 

Then, 𝑋𝑋�  is an efficient estimator of 1
𝜆𝜆
 such that 

𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋� ) =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋� )
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� )

= 1 

Remark: 𝑋𝑋�  is the MLE of 1
𝜆𝜆
. 

Example 3.14:  

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆). Find CRLB of the MLE of 𝜆𝜆 and prove it is an efficient estimator. 

Solution:  

From Example 3.1 and Example 3.4, we get the MLE of 𝜆𝜆 is 𝑇𝑇 = 𝑋𝑋� and it is an unbiased estimator of 𝜆𝜆 where 

𝜏𝜏(𝜆𝜆) = λ ⇒ 𝜏𝜏′(𝜆𝜆) = 1 

The pdf of Poisson distribution with parameter 𝜆𝜆 is defined as 

𝑓𝑓(𝑥𝑥, 𝜆𝜆) =
𝑒𝑒−𝜆𝜆 𝜆𝜆𝑥𝑥

𝑥𝑥! , 𝑥𝑥 = 0, 1, 2, … 

The logarithm function of the pdf and the derivatives are  

log𝑓𝑓(𝑥𝑥, 𝜆𝜆) = 𝑥𝑥 log 𝜆𝜆 − 𝜆𝜆 − log𝑥𝑥! 

𝜕𝜕 log𝑓𝑓(𝑥𝑥, 𝜆𝜆)
𝜕𝜕𝜕𝜕

=
𝑥𝑥
𝜆𝜆 − 1 

𝜕𝜕2 log𝑓𝑓(𝑥𝑥, 𝜆𝜆)
𝜕𝜕𝜆𝜆2

= −
𝑥𝑥
𝜆𝜆2 
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Then, the Fisher information is given as 

𝐼𝐼𝑋𝑋(𝜆𝜆) = 𝑛𝑛𝑛𝑛(𝜆𝜆) = −𝑛𝑛𝑛𝑛 �
𝜕𝜕2 log𝑓𝑓(𝑥𝑥, 𝜆𝜆)

𝜕𝜕𝜆𝜆2 � = 𝑛𝑛𝑛𝑛 �
𝑋𝑋
𝜆𝜆2�

=
𝑛𝑛
𝜆𝜆 

where 𝐸𝐸(𝑋𝑋) = 𝜆𝜆. Therefore, the CRLB is equal to 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
�𝜏𝜏′(𝜆𝜆)�2

𝐼𝐼𝑋𝑋(𝜆𝜆) =
1
𝑛𝑛
𝜆𝜆

=
𝜆𝜆
𝑛𝑛 

Note that 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋�) = 𝜆𝜆
𝑛𝑛

  and thus the variance of the MLE equals to the CRLB. Therefore, the MLE,𝑋𝑋�, is an 
efficient estimator of 𝜆𝜆. 

 

Example 3.15:  

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from 𝑁𝑁(𝜇𝜇,𝜎𝜎2). Show that,  

(i) 𝑋𝑋� is an efficient estimator of 𝜇𝜇. 
(ii) 𝑆𝑆2 = 1

𝑛𝑛−1
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1  is an asymptotically efficient of 𝜎𝜎2. 

(iii) 𝑆𝑆22 = 1
𝑛𝑛
∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1  is an efficient estimator of 𝜎𝜎2 if 𝜇𝜇 is known. 

Solution: 

The pdf of the 𝑁𝑁(𝜇𝜇,𝜎𝜎2), the likelihood and the log-likelihood functions are  

                               𝑓𝑓(𝑥𝑥,𝜇𝜇,𝜎𝜎2) = 1
√2𝜋𝜋𝜎𝜎

𝑒𝑒− 1
2𝜎𝜎2 (𝑥𝑥−𝜇𝜇)2, 𝑥𝑥 > 0 



STAT 340                                               Theory of Statistics 1                               Dr. Samah Alghamdi 
 

 
 

 
   84 
 

                                   𝐿𝐿(𝜇𝜇,𝜎𝜎2) = (2𝜋𝜋)− 𝑛𝑛2  (𝜎𝜎2)− 𝑛𝑛2  𝑒𝑒− 1
2𝜎𝜎2

∑ (𝑥𝑥𝑖𝑖−𝜇𝜇)2𝑛𝑛
𝑖𝑖=1   

                             log 𝐿𝐿(𝜇𝜇,𝜎𝜎2) = −𝑛𝑛
2

log(2𝜋𝜋) − 𝑛𝑛
2

log(𝜎𝜎2)− 1
2𝜎𝜎2

∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1 , 

The first and second partial derivatives with respect to 𝜇𝜇 and 𝜎𝜎2 are  
𝜕𝜕 log 𝐿𝐿
𝜕𝜕𝜇𝜇

= 1
𝜎𝜎2
∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)𝑛𝑛
𝑖𝑖=1 ,       𝜕𝜕 log 𝐿𝐿

𝜕𝜕𝜎𝜎2
= − 𝑛𝑛

2𝜎𝜎2
+ 1

2𝜎𝜎4
∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1   

𝜕𝜕2 log 𝐿𝐿
𝜕𝜕𝜇𝜇2

= − 𝑛𝑛
𝜎𝜎2

 ,                   𝜕𝜕
2 log 𝐿𝐿
𝜕𝜕𝜎𝜎4

= 𝑛𝑛
2𝜎𝜎4

− 1
𝜎𝜎6
∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1  

Now, to study the efficiency, we need to determine the unbiasedness, CRLB and the variance: 

(i) The efficiency of 𝑋𝑋�:  

From Example 3.6, we get  

𝐸𝐸(𝑋𝑋�) = 𝜇𝜇 and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� ) = 𝜎𝜎2

𝑛𝑛
 

i.e. 𝑋𝑋� is an unbiased estimator of 𝜇𝜇. Now, the Fisher information of 𝜇𝜇 is given as 

𝐼𝐼𝑋𝑋(𝜇𝜇) = −𝐸𝐸 �
𝜕𝜕2

𝜕𝜕𝜇𝜇2 log𝐿𝐿(𝜇𝜇,𝜎𝜎2)� =
𝑛𝑛
𝜎𝜎2 

Thus, the CRLB of 𝑋𝑋� is 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋�) =
�𝜏𝜏′(𝜇𝜇)�2

𝐼𝐼𝑋𝑋(𝜇𝜇) =
𝜎𝜎2

𝑛𝑛  

which is equal to the variance of 𝑋𝑋�, then we conclude that the estimator 𝑋𝑋� is an efficient of 𝜇𝜇. Notice that, 𝑋𝑋� is 
the MLE of 𝜇𝜇. 
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(ii) The efficiency of 𝑆𝑆2 = 1
𝑛𝑛−1

∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 : 

𝐸𝐸( 𝑆𝑆2) = 𝐸𝐸 �
1

𝑛𝑛 − 1�
(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2

𝑛𝑛

𝑖𝑖=1

� 

We know from Section 2.3, when 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇,𝜎𝜎2), 𝑖𝑖 = 1,2, . . ,𝑛𝑛, then 

(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2 =
∑ (𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 −𝑋𝑋�)2

𝜎𝜎2 ~𝑋𝑋𝑛𝑛−12  

and 𝐸𝐸(𝑆𝑆2) = 𝜎𝜎2, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆2) = 2𝜎𝜎4

𝑛𝑛−1
. Thus, 𝑆𝑆2 is an unbiased estimator of 𝜎𝜎2. The Fisher information of 𝜎𝜎2 is 

given by 

𝐼𝐼𝑋𝑋(𝜎𝜎2) = −𝐸𝐸 �
𝜕𝜕2

𝜕𝜕𝜎𝜎4 log𝐿𝐿(𝜇𝜇,𝜎𝜎2)� = −
𝑛𝑛

2𝜎𝜎4 +
1
𝜎𝜎6�𝐸𝐸(𝑋𝑋𝑖𝑖 − 𝜇𝜇)2

𝑛𝑛

𝑖𝑖=1

 

From Corollary 2.2, when 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇,𝜎𝜎2), 𝑖𝑖 = 1,2, . . ,𝑛𝑛, then  

∑ �𝑋𝑋𝑖𝑖−𝜇𝜇
𝜎𝜎
�
2

𝑛𝑛
𝑖𝑖=1 ~𝜒𝜒𝑛𝑛2   and  𝐸𝐸 �∑ �𝑋𝑋𝑖𝑖−𝜇𝜇

𝜎𝜎
�
2

𝑛𝑛
𝑖𝑖=1 � = 𝑛𝑛. 

Therefore,  

𝐼𝐼𝑋𝑋(𝜎𝜎2) = −
𝑛𝑛

2𝜎𝜎4 +
𝑛𝑛
𝜎𝜎4 =

𝑛𝑛
2𝜎𝜎4 

Now, the CRLB is obtained as 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶( 𝑆𝑆2) =
�𝜏𝜏′(𝜎𝜎2)�2

𝐼𝐼𝑋𝑋(𝜎𝜎2) =
1

𝑛𝑛 2𝜎𝜎4⁄ =
2𝜎𝜎4

𝑛𝑛  
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𝑒𝑒𝑒𝑒𝑒𝑒( 𝑆𝑆2) =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆2)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆2) =

2𝜎𝜎4 𝑛𝑛⁄
2𝜎𝜎4 𝑛𝑛 − 1⁄ =

𝑛𝑛 − 1
𝑛𝑛  

lim
𝑛𝑛→∞

𝑒𝑒𝑒𝑒𝑒𝑒 (𝑆𝑆2) = lim
𝑛𝑛→∞

𝑛𝑛 − 1
𝑛𝑛 = lim

𝑛𝑛→∞
�1 −

1
𝑛𝑛� = 1 

Then, 𝑆𝑆2 is asymptotically efficient of 𝜎𝜎2. 

(iii) The efficiency of 𝑆𝑆22 = 1
𝑛𝑛
∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1 : 

From Corollary 2.2, when 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇,𝜎𝜎2), 𝑖𝑖 = 1,2, . . ,𝑛𝑛, then  

∑ �𝑋𝑋𝑖𝑖−𝜇𝜇
𝜎𝜎
�
2

𝑛𝑛
𝑖𝑖=1 ~𝜒𝜒𝑛𝑛2   

Therefore, the mean and the variance of 𝑆𝑆22 are calculated as follows 

𝐸𝐸 ���
𝑋𝑋𝑖𝑖 − 𝜇𝜇
𝜎𝜎 �

2𝑛𝑛

𝑖𝑖=1

� = 𝑛𝑛 ⇒ 𝐸𝐸 �
𝑛𝑛𝑆𝑆22

𝜎𝜎2 �
= 𝑛𝑛 ⇒

𝑛𝑛
𝜎𝜎2 𝐸𝐸

(𝑆𝑆22) = 𝑛𝑛 ⟹ 𝐸𝐸(𝑆𝑆22) = 𝜎𝜎2 

𝑉𝑉𝑉𝑉𝑉𝑉 ���
𝑋𝑋𝑖𝑖 − 𝜇𝜇
𝜎𝜎 �

2𝑛𝑛

𝑖𝑖=1

� = 2𝑛𝑛 ⟹ 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝑛𝑛𝑆𝑆22

𝜎𝜎2 �
= 2𝑛𝑛 ⟹

𝑛𝑛2

𝜎𝜎4 𝑉𝑉𝑉𝑉𝑉𝑉
[𝑆𝑆22] = 2𝑛𝑛 ⟹ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆22) =

2𝜎𝜎4

𝑛𝑛  

Now, the CRLD and the efficiency of  𝑆𝑆22 are  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶( 𝑆𝑆22) =
�𝜏𝜏′(𝜎𝜎2)�2

𝐼𝐼𝑋𝑋(𝜎𝜎2) =
1

𝑛𝑛 2𝜎𝜎4⁄ =
2𝜎𝜎4

𝑛𝑛  

𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆22) =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶( 𝑆𝑆22)
𝑉𝑉𝑉𝑉𝑉𝑉( 𝑆𝑆22) =

2𝜎𝜎4 𝑛𝑛⁄
2𝜎𝜎4 𝑛𝑛⁄ = 1 
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Thus, 𝑆𝑆22 is an efficient estimator of 𝜎𝜎2. 

 

Theorem 3.12: (Rao-Blackwell Theorem) 
Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be a random sample from 𝑓𝑓(𝑥𝑥,𝜃𝜃),𝜃𝜃 may be a vector of parameters; and let 𝑆𝑆1 =
𝑠𝑠1(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛), … , 𝑆𝑆𝑘𝑘 = 𝑠𝑠𝑘𝑘(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) be a set of jointly sufficient statistics. Let the statistic 𝑇𝑇 = 𝑡𝑡(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) be an 
unbiased estimator of 𝜏𝜏(𝜃𝜃). Define,  

𝑇𝑇′ = 𝐸𝐸(𝑇𝑇|𝑆𝑆1, … , 𝑆𝑆𝑘𝑘)  

Then, 

1. 𝑇𝑇′ is a statistic and it is a function of the sufficient statistics 𝑆𝑆1, … , 𝑆𝑆𝑘𝑘. Write 𝑇𝑇′ = 𝑡𝑡′(𝑆𝑆1, … , 𝑆𝑆𝑘𝑘) . 
2. 𝑇𝑇′ is an unbiased estimator of 𝜏𝜏(𝜃𝜃); 𝐸𝐸(𝑇𝑇′) = 𝜏𝜏(𝜃𝜃).  
3. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇′) ≤ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) for all 𝜃𝜃, and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇′) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) iff 𝑇𝑇′ = 𝑇𝑇. 

Proof: 

1. 𝑆𝑆1, … . , 𝑆𝑆𝑘𝑘 are sufficient statistics; so, the conditional distribution of any statistic 𝑇𝑇, given 𝑆𝑆1, … . , 𝑆𝑆𝑘𝑘 is 
independent of 𝜃𝜃, hence 𝑇𝑇′ = 𝐸𝐸[𝑇𝑇|𝑆𝑆1, … . , 𝑆𝑆𝑘𝑘] is independent of 𝜃𝜃, and so 𝑇𝑇′ is a statistic which is obviously a 
function of 𝑆𝑆1, … . , 𝑆𝑆𝑘𝑘.  

2.  𝐸𝐸[𝑇𝑇′] = 𝐸𝐸�𝐸𝐸[𝑇𝑇|𝑆𝑆1, … . , 𝑆𝑆𝑘𝑘]� = 𝐸𝐸[𝑇𝑇] = 𝜏𝜏(𝜃𝜃) [using 𝐸𝐸[𝑌𝑌] = 𝐸𝐸�𝐸𝐸[𝑌𝑌|𝑋𝑋]�].  

3.  we can write 

𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] = 𝐸𝐸[(𝑇𝑇 − 𝐸𝐸[𝑇𝑇′])2] = 𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′ + 𝑇𝑇′ − 𝐸𝐸[𝑇𝑇′])2] 

                                                          = 𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)2] + 2𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)(𝑇𝑇′ − 𝐸𝐸[𝑇𝑇′])] + 𝐸𝐸[(𝑇𝑇′ − 𝐸𝐸[𝑇𝑇′])2] 

                                                          = 𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)2] + 2𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)(𝑇𝑇′ − 𝐸𝐸[𝑇𝑇′])] + 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇′] 
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But 

                   𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)(𝑇𝑇′ − 𝐸𝐸[𝑇𝑇′])] = 𝐸𝐸�𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)(𝑇𝑇′ − 𝐸𝐸[𝑇𝑇′])|𝑆𝑆1, … . , 𝑆𝑆𝑘𝑘]� 

and 

𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)(𝑇𝑇′ − 𝐸𝐸[𝑇𝑇′])|𝑆𝑆1 = 𝑠𝑠1; … ; 𝑆𝑆𝑘𝑘 = 𝑠𝑠𝑘𝑘] = {𝑡𝑡′(𝑠𝑠1, … . , 𝑠𝑠𝑘𝑘) − 𝐸𝐸[𝑇𝑇′]}𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)|𝑆𝑆1 = 𝑠𝑠1; … . ;  𝑆𝑆𝑘𝑘 = 𝑠𝑠𝑘𝑘] 

                                                              = {𝑡𝑡′(𝑠𝑠1, … . , 𝑠𝑠𝑘𝑘) − 𝐸𝐸[𝑇𝑇′]}(𝐸𝐸[𝑇𝑇|𝑆𝑆1 = 𝑠𝑠1; … ; 𝑆𝑆𝑘𝑘 = 𝑠𝑠𝑘𝑘]  − 𝐸𝐸[𝑇𝑇′|𝑆𝑆1 =
𝑠𝑠1; … ; 𝑆𝑆𝑘𝑘 = 𝑠𝑠𝑘𝑘]) 

                                                              = {𝑡𝑡′(𝑠𝑠1, … . , 𝑠𝑠𝑘𝑘) − 𝐸𝐸[𝑇𝑇′]}[𝑡𝑡′(𝑠𝑠1, … , 𝑠𝑠𝑘𝑘) − 𝑡𝑡′(𝑠𝑠1, … , 𝑠𝑠𝑘𝑘)] = 0 

and therefore 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] = 𝐸𝐸[(𝑇𝑇 − 𝑇𝑇′)2] + 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇′] ≥ 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇′] 

Note that 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] > 𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇′] unless 𝑇𝑇 equals 𝑇𝑇′ with probability 1. 

 

Example 3.16: 

Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be a random sample from the Bernoulli(𝑝𝑝)  

𝑓𝑓(𝑥𝑥;𝑝𝑝) = 𝑝𝑝𝑥𝑥𝑞𝑞1−𝑥𝑥, 𝑥𝑥 = 0 or 1 

and let 𝑇𝑇 = 𝑋𝑋1 be an unbiased estimate of 𝑝𝑝. Find a MVUE of 𝑝𝑝. 

Solution: 

Since, 𝑇𝑇 = 𝑋𝑋1 is an unbiased estimator such that 𝐸𝐸(𝑇𝑇) = 𝐸𝐸(𝑋𝑋1) = 𝑝𝑝. From Example 3.9, we get 𝑆𝑆 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a 

sufficient statistic. According to the Rao-Blackwell Theorem 
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𝑇𝑇′ = 𝐸𝐸(𝑇𝑇|𝑆𝑆) = 𝐸𝐸(𝑋𝑋1|∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 ) = � 𝑋𝑋1 𝑃𝑃(𝑋𝑋1|∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 )
1

𝑥𝑥1=0

 

                                                                           = (0)𝑃𝑃(𝑋𝑋1 = 0|∑ 𝑋𝑋𝑖𝑖 = 𝑆𝑆𝑛𝑛
𝑖𝑖=1 ) + (1)𝑃𝑃(𝑋𝑋1 = 1|∑ 𝑋𝑋𝑖𝑖 = 𝑆𝑆𝑛𝑛

𝑖𝑖=1 ) 

                                                                           = 𝑃𝑃�𝑋𝑋1=1,∑ 𝑋𝑋𝑖𝑖=𝑆𝑆𝑛𝑛
𝑖𝑖=1 �

𝑃𝑃�∑ 𝑋𝑋𝑖𝑖=𝑆𝑆𝑛𝑛
𝑖𝑖=1 �

  = 𝑃𝑃(𝑋𝑋1=1)𝑃𝑃�∑ 𝑋𝑋𝑖𝑖=𝑆𝑆−1𝑛𝑛
𝑖𝑖=2 �

𝑃𝑃�∑ 𝑋𝑋𝑖𝑖=𝑆𝑆𝑛𝑛
𝑖𝑖=1 �

 

                                                                          = 𝑝𝑝 �𝑛𝑛−1𝑆𝑆−1� 𝑝𝑝𝑆𝑆−1 𝑞𝑞𝑛𝑛−𝑆𝑆

�𝑛𝑛𝑆𝑆� 𝑝𝑝𝑆𝑆 𝑞𝑞𝑛𝑛−𝑆𝑆
   = (𝑛𝑛−1)!

(𝑆𝑆−1)!(𝑛𝑛−𝑆𝑆)!
𝑆𝑆!(𝑛𝑛−𝑆𝑆)!

𝑛𝑛!
  = 𝑆𝑆

𝑛𝑛
= 𝑋𝑋� 

Thus, 𝑇𝑇′ = 𝑋𝑋� is a statistic and a function of a sufficient statistic S and an unbiased estimator of p where 𝐸𝐸(𝑇𝑇′) =
𝐸𝐸(𝑋𝑋�) = 𝑝𝑝. Therefore, 𝑇𝑇′ = 𝑋𝑋� is a MVUE of 𝑝𝑝 with minimum variance such that 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇′) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋�) = 𝑉𝑉𝑉𝑉𝑉𝑉 �
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛 � =

1
𝑛𝑛2 𝑛𝑛𝑛𝑛𝑛𝑛 =

𝑝𝑝𝑝𝑝
𝑛𝑛  

While,                                                  𝑉𝑉(𝑇𝑇) = 𝑉𝑉(𝑋𝑋1) = 𝑝𝑝𝑝𝑝 

Thus,                                                   𝑉𝑉(𝑇𝑇′) < 𝑉𝑉(𝑇𝑇) 

 

Theorem 3.13: (Lehman-Scheffé Theorem) 
Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be a random sample from 𝑓𝑓(𝑥𝑥,𝜃𝜃), 𝜃𝜃 may be a vector of parameters (𝜃𝜃1, … ,𝜃𝜃𝑘𝑘). If 𝑆𝑆 = 𝑠𝑠(𝑆𝑆1, … , 𝑆𝑆𝑘𝑘) is 
a complete sufficient statistic and if 𝑇𝑇∗ = 𝑡𝑡∗(𝑆𝑆) a function of S, is an unbiased estimator of 𝜏𝜏(𝜃𝜃). Then, 𝑇𝑇∗is 
UMVUE of 𝜏𝜏(𝜃𝜃). 

Proof: 
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Let 𝑇𝑇′ be any unbiased estimator of 𝜏𝜏(𝜃𝜃) which is a function of 𝑆𝑆;  that is, 𝑇𝑇′ = 𝑡𝑡′(𝑆𝑆). Then 𝐸𝐸[𝑇𝑇∗ − 𝑇𝑇′] = 0 for all 
𝜃𝜃 ∈ ∅, and 𝑇𝑇∗ − 𝑇𝑇′ is a function of 𝑆𝑆; so by completeness of 𝑆𝑆,𝑃𝑃[𝑡𝑡∗(𝑆𝑆) = 𝑡𝑡′(𝑆𝑆)] = 1 for all 𝜃𝜃 ∈ ∅. Hence there is 
only one unbiased estimator of 𝜏𝜏(𝜃𝜃) that is function of 𝑆𝑆. Now let 𝑇𝑇 be any unbiased estimator of 𝜏𝜏(𝜃𝜃). 𝑇𝑇∗ must be 
equal to 𝐸𝐸[𝑇𝑇|𝑆𝑆] since 𝐸𝐸[𝑇𝑇|𝑆𝑆] is an unbiased estimator of 𝜏𝜏(𝜃𝜃) depending on 𝑆𝑆. By Theorem 3.11,  𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇∗] ≤
𝑉𝑉𝑉𝑉𝑉𝑉[𝑇𝑇] for all 𝜃𝜃 ∈ ∅; so 𝑇𝑇∗is an UMVUE. 

 

 

Example 3.17:  

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸( 𝛽𝛽),  

𝑓𝑓(𝑥𝑥,𝛽𝛽) =
1
𝛽𝛽 𝑒𝑒

−𝑥𝑥/𝛽𝛽 ,   𝑥𝑥 > 0 

Find UMVUE of  𝛽𝛽 and 1
𝛽𝛽

. 

Solution: 

Since the exponential distribution is a member of the exponential family, then 𝑆𝑆 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a complete sufficient 

statistic. Thus, we need to derive two functions of S that are unbiased estimators of 𝛽𝛽 and 1
𝛽𝛽

. 

1. Put 𝑇𝑇1∗ = 𝑐𝑐𝑐𝑐, c is a constant such that 
𝐸𝐸(𝑇𝑇1∗) = 𝛽𝛽 ⇒ 𝐸𝐸(𝑐𝑐𝑐𝑐) = 𝛽𝛽 ⇒ 𝑐𝑐 𝐸𝐸(∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 ) = 𝛽𝛽 ⇒ 𝑐𝑐 𝑛𝑛𝑛𝑛 = 𝛽𝛽 ⇒ 𝑐𝑐 = 1
𝑛𝑛
  

Thus, 𝑇𝑇1∗ = 𝑐𝑐𝑐𝑐 = 𝑋𝑋�  is a UMVUE of 𝛽𝛽. 
2. Put 𝑇𝑇2∗ = 𝐶𝐶

𝑆𝑆
 , c is a constant such that 



STAT 340                                               Theory of Statistics 1                               Dr. Samah Alghamdi 
 

 
 

 
   91 
 

𝐸𝐸(𝑇𝑇2∗) = 𝐸𝐸 �𝑐𝑐
𝑆𝑆
� = 𝑐𝑐 𝐸𝐸 � 1

∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1

� = 1
𝛽𝛽

  

Since, 𝑆𝑆 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝑛𝑛,𝛽𝛽), then  

𝐸𝐸 �
1
𝑆𝑆�

= �
1
𝑠𝑠

1
Γ(𝑛𝑛)𝛽𝛽𝑛𝑛 𝑠𝑠

𝑛𝑛−1𝑒𝑒−𝑠𝑠 𝛽𝛽⁄
∞

0
𝑑𝑑𝑑𝑑 =

Γ(𝑛𝑛 − 1)𝛽𝛽𝑛𝑛−1

Γ(𝑛𝑛)𝛽𝛽𝑛𝑛 =
1

(𝑛𝑛 − 1)𝛽𝛽 

Thus,     

𝐸𝐸(𝑇𝑇2∗) = 𝑐𝑐 𝐸𝐸 �
1
𝑆𝑆�

= 𝑐𝑐
1

(𝑛𝑛 − 1)𝛽𝛽 =
1
𝛽𝛽 ⇒ 𝑐𝑐 = 𝑛𝑛 − 1 

Therefore, 𝑇𝑇2∗ = 𝐶𝐶
𝑆𝑆

= 𝑛𝑛−1
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1

  is a UMVUE of 1
𝛽𝛽

. 

 

3.3 Properties of Maximum Likelihood Estimators  

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample with probability distribution 𝑓𝑓(𝑥𝑥, 𝜃𝜃). If 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜃𝜃� of 𝜃𝜃 and under certain 
regularity conditions, then 𝜃𝜃� satisfies the following properties: 

1. Invariance: Let ℎ(𝜃𝜃) be a function of 𝜃𝜃. Then, 𝑇𝑇 = ℎ�𝜃𝜃�� is the MLE of ℎ(𝜃𝜃). 
2. Sufficiency: If a sufficient statistic exists for 𝜃𝜃, the MLE of 𝜃𝜃 must be a function of it. 
3. Asymptotically unbiased: lim

𝑛𝑛→∞
𝐸𝐸�𝜃𝜃�� = 𝜃𝜃 

4. Consistency: lim
𝑛𝑛→∞

𝑃𝑃��𝜃𝜃� − 𝜃𝜃� ≥ 𝜀𝜀� = 0 , ∀𝜃𝜃 

5. Asymptotic efficiency: If a most efficient unbiased estimator T of θ exists (i.e. T is unbiased and its variance 
is equal to the CRLB). Then, the maximum likelihood method of estimation will produce it. 

6. Asymptotic normality: The MLE 𝜃𝜃� of 𝜃𝜃 has asymptotic normal distribution such that 

√𝑛𝑛�𝜃𝜃� − 𝜃𝜃�
𝑑𝑑
→ 𝑁𝑁 �0, 1

𝐼𝐼(𝜃𝜃)� ,𝑛𝑛 → ∞  where 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃�� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝜃𝜃�� = 1
𝑛𝑛𝑛𝑛(𝜃𝜃)

. 
In general, if 𝜏̂𝜏(𝜃𝜃) be the MLE of 𝜏𝜏(𝜃𝜃), then 𝜏̂𝜏(𝜃𝜃) has distribution as 
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√𝑛𝑛�𝜏̂𝜏(𝜃𝜃) − 𝜏𝜏(𝜃𝜃)�
𝑑𝑑
→ 𝑁𝑁 �0, �𝜏𝜏′(𝜃𝜃)�2

𝐼𝐼(𝜃𝜃) �  or  𝜏̂𝜏(𝜃𝜃)
𝑑𝑑
→ 𝑁𝑁 �𝜏𝜏(𝜃𝜃), �𝜏𝜏′(𝜃𝜃)�2

𝑛𝑛𝑛𝑛(𝜃𝜃) �. 

 

3.4 Location and Scale Invariance  

3.4.1 Location Invariance: 
Location Parameter: 

Let 𝑓𝑓(𝑥𝑥) be any pdf. The family of pdfs 𝑓𝑓(𝑥𝑥 − 𝜇𝜇) indexed by parameter 𝜇𝜇 is called the location family with 
standard pdf 𝑓𝑓(𝑥𝑥) and 𝜇𝜇 is the location parameter for the family. 

Equivalently, 𝜇𝜇 is a location parameter for 𝑓𝑓(𝑥𝑥) iff the distribution 𝑓𝑓(𝑥𝑥 − 𝜇𝜇) does not depend on 𝜇𝜇.  

Location Invariant: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of a distribution with pdf (or pmf); 𝑓𝑓(𝑥𝑥,𝜇𝜇); 𝜇𝜇 ∈ Ω.  

• An estimator 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is defined to be a location equivariant iff 

𝑡𝑡(𝑥𝑥1 + 𝑐𝑐, … , 𝑥𝑥𝑛𝑛 + 𝑐𝑐) = 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) + 𝑐𝑐 for all values c. 

• An estimator 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is defined to be a location invariant iff 
𝑡𝑡(𝑥𝑥1 + 𝑐𝑐, … , 𝑥𝑥𝑛𝑛 + 𝑐𝑐) = 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for all values c. 

Example 3.18: 

• If 𝑋𝑋~𝑁𝑁(𝜃𝜃, 1), then the distribution of  𝑋𝑋 − 𝜃𝜃 ~𝑁𝑁(0,1) is independent of 𝜃𝜃 ⟶ 𝜃𝜃 is a location parameter. 

•  Let 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑋𝑋�. Then,  
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𝑡𝑡(𝑥𝑥1 + 𝑐𝑐, … , 𝑥𝑥𝑛𝑛 + 𝑐𝑐) = 𝑥𝑥1+𝑐𝑐+⋯+𝑥𝑥𝑛𝑛+𝑐𝑐
𝑛𝑛

= 𝑥𝑥1+⋯+𝑥𝑥𝑛𝑛+𝑛𝑛𝑛𝑛
𝑛𝑛

  

                                   = 𝑋𝑋� + 𝑐𝑐 = 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) + 𝑐𝑐  

⟶  𝑋𝑋� is location equivariant. 

• Let 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑆𝑆2 = 1
𝑛𝑛−1

∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 . Then,  

𝑡𝑡(𝑥𝑥1 + 𝑐𝑐, … , 𝑥𝑥𝑛𝑛 + 𝑐𝑐) = 1
𝑛𝑛−1

∑ �𝑋𝑋𝑖𝑖 + 𝑐𝑐 − (𝑋𝑋� + 𝑐𝑐)�
2𝑛𝑛

𝑖𝑖=1  = 𝑆𝑆2 = 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)  

⟶  𝑆𝑆2 location invariant. 

 

3.4.2 Scale Invariant: 
Scale Parameter: 

Let 𝑓𝑓(𝑥𝑥) be any pdf. The family of pdfs 1
𝜎𝜎
𝑓𝑓 �𝑥𝑥

𝜎𝜎
� for 𝜎𝜎 > 0, indexed by parameter 𝜎𝜎 is called the scale family with 

standard pdf 𝑓𝑓(𝑥𝑥) and 𝜎𝜎 is the scale parameter for the family. 

Equivalently, 𝜎𝜎 is a scale parameter for 𝑓𝑓(𝑥𝑥) iff the distribution 1
𝜎𝜎
𝑓𝑓 �𝑥𝑥

𝜎𝜎
� does not depend on 𝜎𝜎.  

Scale Invariant: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of a distribution with pdf (or pmf); 𝑓𝑓(𝑥𝑥,𝜎𝜎); 𝜎𝜎 ∈ Ω.  

• An estimator 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is defined to be a scale equivariant iff 

𝑡𝑡(𝑐𝑐 𝑥𝑥1, … , 𝑐𝑐 𝑥𝑥𝑛𝑛) = 𝑐𝑐 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for all values c. 

• An estimator 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is defined to be a scale invariant iff 
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𝑡𝑡(𝑐𝑐 𝑥𝑥1, … , 𝑐𝑐 𝑥𝑥𝑛𝑛) = 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for all values c. 

Example 3.19: 

• If 𝑋𝑋~𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 �1
𝜃𝜃
�, then the distribution 1

𝜃𝜃
𝑓𝑓 �𝑥𝑥

𝜃𝜃
�  is independent of 𝜃𝜃 ⟶ 𝜃𝜃 is a scale parameter. 

•  Let 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑋𝑋�. Then,  

𝑡𝑡(𝑐𝑐 𝑥𝑥1, … , 𝑐𝑐 𝑥𝑥𝑛𝑛) = 𝑐𝑐 (𝑥𝑥1+⋯+𝑥𝑥𝑛𝑛)
𝑛𝑛

= 𝑐𝑐 𝑋𝑋� = 𝑐𝑐 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)  

⟶  𝑋𝑋� is scale equivariant. 

• Let 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑋𝑋1
𝑋𝑋1+𝑋𝑋2

. Then,  

𝑡𝑡(𝑐𝑐 𝑥𝑥1, … , 𝑐𝑐 𝑥𝑥𝑛𝑛) = 𝑐𝑐 𝑋𝑋1
𝑐𝑐 𝑋𝑋1+𝑐𝑐 𝑋𝑋2

= 𝑋𝑋1
𝑋𝑋1+𝑋𝑋2

=  𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)  

⟶  𝑋𝑋1
𝑋𝑋1+𝑋𝑋2

 is scale invariant. 

 
 

3.4.3 Location-Scale Invariant: 
Location-Scale Parameter: 

Let 𝑓𝑓(𝑥𝑥) be any pdf. The family of pdfs 1
𝜎𝜎
𝑓𝑓 �𝑥𝑥−𝜇𝜇

𝜎𝜎
� for 𝜎𝜎 > 0, indexed by parameter (𝜇𝜇,𝜎𝜎) is called the location-

scale family with standard pdf 𝑓𝑓(𝑥𝑥) and 𝜇𝜇 is a location parameter and 𝜎𝜎 is the scale parameter for the family. 
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Equivalently, 𝜇𝜇 is a location parameter and 𝜎𝜎 is a scale parameter for 𝑓𝑓(𝑥𝑥) iff the distribution 1
𝜎𝜎
𝑓𝑓 �𝑥𝑥−𝜇𝜇

𝜎𝜎
� does not 

depend on 𝜇𝜇 and 𝜎𝜎.  

 

Location-Scale Invariant: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample of a distribution with pdf (or pmf); 𝑓𝑓(𝑥𝑥,𝜎𝜎); 𝜎𝜎 ∈ Ω.  

• An estimator 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is defined to be a location-scale equivariant iff 

𝑡𝑡(𝑐𝑐 𝑥𝑥1 + 𝑑𝑑, … , 𝑐𝑐 𝑥𝑥𝑛𝑛 + 𝑑𝑑) = 𝑐𝑐 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) + 𝑑𝑑 for all values 𝑐𝑐 > 0 and d. 

• An estimator 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is defined to be a location-scale invariant iff 
𝑡𝑡(𝑐𝑐 𝑥𝑥1 + 𝑑𝑑, … , 𝑐𝑐 𝑥𝑥𝑛𝑛 + 𝑑𝑑) = 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for all values 𝑐𝑐 > 0 and d. 

 

Example 3.20: 

• If 𝑋𝑋~𝑁𝑁(𝜇𝜇.𝜎𝜎2), then the distribution of 𝑌𝑌 = 𝑋𝑋−𝜇𝜇
𝜎𝜎

 ~𝑁𝑁(0,1) is independent of 𝜇𝜇 and 𝜎𝜎2 ⟶ 𝜇𝜇 and 𝜎𝜎2 are 
location-scale parameters. 

• Let 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑋𝑋�. Then,  

𝑡𝑡(𝑐𝑐𝑥𝑥1 + 𝑑𝑑, … , 𝑐𝑐𝑥𝑥𝑛𝑛 + 𝑑𝑑) = 𝑐𝑐(𝑥𝑥1+⋯+𝑥𝑥𝑛𝑛)+𝑛𝑛𝑛𝑛
𝑛𝑛

= 𝑐𝑐𝑋𝑋� + 𝑑𝑑 = 𝑐𝑐 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) + 𝑑𝑑  

⟶  𝑋𝑋� is location-scale equivariant. 

• Let 𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑌𝑌𝑛𝑛−𝑌𝑌1
𝑆𝑆

. Then,  
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𝑡𝑡(𝑐𝑐 𝑥𝑥1 + 𝑑𝑑, … , 𝑐𝑐 𝑥𝑥𝑛𝑛 + 𝑑𝑑) = (𝑐𝑐𝑌𝑌𝑛𝑛+𝑑𝑑)−(𝑐𝑐𝑌𝑌1+𝑑𝑑)
𝑐𝑐𝑐𝑐+𝑑𝑑

  = 𝑐𝑐𝑌𝑌𝑛𝑛−𝑐𝑐𝑌𝑌1
𝑐𝑐𝑐𝑐

= 𝑌𝑌𝑛𝑛−𝑌𝑌1
𝑆𝑆

=  𝑡𝑡(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)  

⟶  𝑌𝑌𝑛𝑛−𝑌𝑌1
𝑆𝑆

 is location-scale invariant. 
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Chapter 4: Interval Estimation 

 

Chapter 3 dealt with the point estimation of a parameter or made the inference of estimating the true value of the 
parameter to be a point. In this chapter, we might make the inference of estimating that true value of the parameter 
is contained in some interval that is called interval estimation.  

 

Confidence Interval: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from 𝑓𝑓(𝑥𝑥, 𝜃𝜃). Let 𝑇𝑇1 = 𝑡𝑡1(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) and  𝑇𝑇2 = 𝑡𝑡2(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) be two 
statistics satisfying 𝑇𝑇1 < 𝑇𝑇2 for which 𝑃𝑃(𝑇𝑇1 < 𝜏𝜏(𝜃𝜃) < 𝑇𝑇2) = 1 − 𝛼𝛼, where 𝛼𝛼 does not depend on 𝜃𝜃, then the 
random interval (𝑇𝑇1,𝑇𝑇2) is called 100 (1 − 𝛼𝛼)% confidence interval for 𝜏𝜏(𝜃𝜃), 𝛼𝛼 is called the confidence 
coefficient and 𝑇𝑇1 and 𝑇𝑇2 are called the lower and upper confidence limits, respectively, for 𝜏𝜏(𝜃𝜃). 

 

4.1 Confidence Intervals from Normal Distribution 
In this section, we derive confidence intervals for the mean 𝜇𝜇 and the variance 𝜎𝜎2 when the random sample 
𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 has normal distribution. 

 

4.1.1 Confidence Interval for the Mean  
There are two cases to consider depending on whether or not 𝜎𝜎2 is known.  

First Case (𝝈𝝈𝟐𝟐 is known): 
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If the sample is selected from a normal population or, if n is large enough, (Theorem 2.3 and Theorem 2.4) the 
sampling distribution of the sample mean 𝑋𝑋� when 𝜎𝜎2 is known is given by 

𝑋𝑋� − 𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

~𝑁𝑁(0,1) 

Then, we establish a 100 (1− 𝛼𝛼)% confidence interval for 𝜇𝜇 when 𝜎𝜎2 is known as following: 

𝑃𝑃 �−𝑧𝑧1− 𝛼𝛼2
< 𝑋𝑋�−𝜇𝜇

𝜎𝜎 √𝑛𝑛⁄
< 𝑧𝑧1− 𝛼𝛼2

� = 1 − 𝛼𝛼  

𝑃𝑃 �𝑋𝑋� − 𝑧𝑧1− 𝛼𝛼2

𝜎𝜎
√𝑛𝑛

< 𝜇𝜇 < 𝑋𝑋� + 𝑧𝑧1− 𝛼𝛼2

𝜎𝜎
√𝑛𝑛
� = 1 − 𝛼𝛼  

where 𝑧𝑧1− 𝛼𝛼2
  is a value from z-table. 

 

Second Case (𝝈𝝈𝟐𝟐 is unknown and n<30): 

Now, we turn to the problem of finding a confidence interval for the mean 𝜇𝜇 of a normal distribution when we are 
not known the variance 𝜎𝜎2 and the sample size n is small. In Theorem 2.11 we found that   

𝑋𝑋�−𝜇𝜇
𝑆𝑆 √𝑛𝑛⁄

~𝑡𝑡(𝑛𝑛−1)  

where 𝑆𝑆 is the sample standard deviation. Then, we can find 100 (1 − 𝛼𝛼)% confidence interval for 𝜇𝜇 when 𝜎𝜎2 is 
unknown as following: 

𝑃𝑃 �−𝑡𝑡(1− 𝛼𝛼2 ,𝑛𝑛−1) < 𝑋𝑋�−𝜇𝜇
𝑆𝑆 √𝑛𝑛⁄

< 𝑡𝑡(1− 𝛼𝛼2 ,𝑛𝑛−1)� = 1 − 𝛼𝛼  

𝑃𝑃 �𝑋𝑋� − 𝑡𝑡(1− 𝛼𝛼2 ,𝑛𝑛−1)
𝑆𝑆
√𝑛𝑛

< 𝜇𝜇 < 𝑋𝑋� + 𝑡𝑡(1− 𝛼𝛼2 ,𝑛𝑛−1)
𝑆𝑆
√𝑛𝑛
� = 1 − 𝛼𝛼  
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where 𝑡𝑡(1− 𝛼𝛼2 ,𝑛𝑛−1) is a value from t-table with 𝑛𝑛 − 1 degrees of freedom.  

 

Example 4.1: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋10 be a random sample from 𝑁𝑁(𝜇𝜇, 16) and let the sample mean 𝑋𝑋� be 3.67. Find 95% confidence 
interval for the population mean 𝜇𝜇. 

Solution: 

Since population variance is known, 𝜎𝜎2 = 16, and 𝑋𝑋� = 3.67, 𝑛𝑛 = 10; then 95% confidence interval for the 
population mean 𝜇𝜇 is 

3.67 ± 𝑧𝑧1− 𝛼𝛼2

4
√10

 

where, the value of z-table 𝑧𝑧1− 𝛼𝛼2
 is found as 

1 − 𝛼𝛼 = 0.95 ⟹ 𝛼𝛼 = 0.05 ⟹  
𝛼𝛼
2 = 0.025 ⟹ 1 −

𝛼𝛼
2 = 0.975 

⟹ 𝑧𝑧1− 𝛼𝛼2
= 𝑧𝑧0.975 = 1.96 

Then,                                           3.67 ± 1.96 4
√10

⟹ 3.67 ± 2.4792 

⟹ 𝜇𝜇 ∈ (1.1908, 6.1492) 

4.1.2 Confidence Interval for the Variance 
Let the random variable X be 𝑁𝑁(𝜇𝜇,𝜎𝜎2). We shall discuss the problem of finding a confidence interval for 𝜎𝜎2. Our 
discussion will consist of two parts: the first when 𝜇𝜇 is a know number, and second when 𝜇𝜇 is unknown. 
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First Case (𝝁𝝁 is known): 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 denote a random sample of size n from distribution that is 𝑁𝑁(𝜇𝜇,𝜎𝜎2), where 𝜇𝜇 is known. From 
Corollary 2.2, we got that  

∑ (𝑋𝑋𝑖𝑖−𝜇𝜇)2𝑛𝑛
𝑖𝑖=1

𝜎𝜎2
~χ𝑛𝑛2   

Let us select a probability, say 1 − 𝛼𝛼,  then 100 (1− 𝛼𝛼)% confidence interval for 𝜎𝜎2 when 𝜇𝜇 is known is given by 

𝑃𝑃 �χ(1− 𝛼𝛼2 ,𝑛𝑛)
2 < ∑ (𝑋𝑋𝑖𝑖−𝜇𝜇)2𝑛𝑛

𝑖𝑖=1
𝜎𝜎2

< χ( 𝛼𝛼2,𝑛𝑛)
2 � = 1 − 𝛼𝛼  

𝑃𝑃 �∑ (𝑋𝑋𝑖𝑖−𝜇𝜇)2𝑛𝑛
𝑖𝑖=1
χ

( 𝛼𝛼2,𝑛𝑛)
2 < 𝜎𝜎2 < ∑ (𝑋𝑋𝑖𝑖−𝜇𝜇)2𝑛𝑛

𝑖𝑖=1
χ

(1− 𝛼𝛼2 ,𝑛𝑛)
2 � = 1 − 𝛼𝛼  

where χ( 𝛼𝛼2,𝑛𝑛)
2  and χ(1− 𝛼𝛼2 ,𝑛𝑛)

2  are χ2 values with 𝑛𝑛 degrees of freedom. 

Second Case (𝝁𝝁 is unknown): 

Now, we discuss the case when 𝜇𝜇 is not known. This case can be handled by making use of the facts from Theorem 
2.8 that  

(𝑛𝑛−1)𝑆𝑆2

𝜎𝜎2
~χ𝑛𝑛−12      or    ∑ (𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 −𝑋𝑋�)2

𝜎𝜎2
~χ𝑛𝑛−12  

when the sample variance 𝑠𝑠2 is computed. Then, for a fixed positive integer 𝑛𝑛 ≥ 2, we can find a 100 (1− 𝛼𝛼)% 
confidence interval for 𝜎𝜎2 as 

𝑃𝑃 �χ(1− 𝛼𝛼2,𝑛𝑛−1)
2 < (𝑛𝑛−1)𝑆𝑆2

𝜎𝜎2
< χ (𝛼𝛼2,𝑛𝑛−1)

2 � = 1 − 𝛼𝛼  
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𝑃𝑃 �(𝑛𝑛−1)𝑆𝑆2

χ
( 𝛼𝛼2,𝑛𝑛−1)
2 < 𝜎𝜎2 < (𝑛𝑛−1)𝑆𝑆2

χ
(1− 𝛼𝛼2,𝑛𝑛−1)
2 � = 1 − 𝛼𝛼  

where χ( 𝛼𝛼2,𝑛𝑛−1)
2  and χ(1− 𝛼𝛼2,𝑛𝑛−1)

2  are χ2 values with 𝑛𝑛 − 1 degrees of freedom. 

 
Example 4.2: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋25 be a random sample from normal distribution when the sample variance is equal to 2.3. Find 
90% confidence interval for the population variance  𝜎𝜎2. 

Solution: 

We want to construct a confidence interval for 𝜎𝜎2 when the population is normal with unknown mean, thus we 
should use the following case 

𝑃𝑃 �24(2.3) 
χ

( 𝛼𝛼2,24)
2 < 𝜎𝜎2 < 24(2.3)

χ
(1− 𝛼𝛼2,24)
2 � = 0.9  

𝑃𝑃 � 55.2 
χ

( 𝛼𝛼2,24)
2 < 𝜎𝜎2 < 55.2

χ
(1− 𝛼𝛼2,24)
2 � = 0.9  

1 − 𝛼𝛼 = 0.9 ⟹ 𝛼𝛼 = 0.1 ⟹  
𝛼𝛼
2 = 0.05 ⟹ 1 −

𝛼𝛼
2 = 0.95 

⟹ χ( 0.05,24)
2 = 36.42     and    χ( 0.95,24)

2 = 13.85 

⟹ 𝜎𝜎2 ∈ �
55.2 
36.42 ,

55.2
13.85� ⟹ 𝜎𝜎2 ∈ (1.5157, 3.9856) 
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4.2 Pivotal Quantity Method 
Pivotal Quantity: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from 𝑓𝑓(𝑥𝑥, 𝜃𝜃). Let 𝑄𝑄 = 𝑞𝑞(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛;  𝜃𝜃) be a function of 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 and 𝜃𝜃. If 𝑄𝑄 
has a distribution that does not depend on 𝜃𝜃, then 𝑄𝑄 is defined to be a pivotal quantity. 

 

Example 4.4: 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be a random sample from 𝑁𝑁( 𝜃𝜃, 9). Then,  

1. 𝑋𝑋� −  𝜃𝜃~𝑁𝑁 �0, 9
𝑛𝑛
� and 𝑋𝑋

�− 𝜃𝜃
3 √𝑛𝑛⁄

~𝑁𝑁(0, 1) are pivotal quantities. 

2. 𝑋𝑋� − 2𝜃𝜃~𝑁𝑁 �−𝜃𝜃, 9
𝑛𝑛
� is not pivotal quantity. 

 

Pivotal Quantity Method: 

If 𝑄𝑄 = 𝑞𝑞(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛;  𝜃𝜃) is apivotal quantity and has a probability distribution, then for any fixed 0 < 𝛼𝛼 < 1 there 
will exist 𝑞𝑞1 and 𝑞𝑞2 such that 𝑞𝑞1 < 𝑞𝑞2 and  𝑃𝑃(𝑞𝑞1 < 𝑄𝑄 < 𝑞𝑞2) = 1 − 𝛼𝛼 

Therefore, we can find 100 (1− 𝛼𝛼)% confidence interval for 𝜏𝜏(𝜃𝜃) as 

𝑃𝑃(𝑡𝑡1(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) < 𝜏𝜏(𝜃𝜃) < 𝑡𝑡2(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)) = 1 − 𝛼𝛼 

where 𝑡𝑡1 and 𝑡𝑡2 are functions of the random sample does not depend on 𝜃𝜃. 
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Remark: 

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a random sample from 𝑓𝑓(𝑥𝑥, 𝜃𝜃), and the corresponding cumulative distribution function 𝐹𝐹(𝑥𝑥,𝜃𝜃) is 
continuous in x. Then, a pivotal quantity can be given as  

𝑄𝑄 = −2∑ log𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝜃𝜃)𝑛𝑛
𝑖𝑖=1 ~ χ2𝑛𝑛2   

Then, the (1 − 𝛼𝛼)100 % confidence interval for 𝜏𝜏(𝜃𝜃) is given as 

𝑃𝑃 �χ(1− 𝛼𝛼2,2𝑛𝑛)
2 < 𝑄𝑄 < χ

( 𝛼𝛼2,2𝑛𝑛)
2 � = 1 − 𝛼𝛼 

 

Example 4.5: 

If 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be a random sample from the density function 

𝑓𝑓(𝑥𝑥) = 𝜃𝜃 𝑥𝑥𝜃𝜃−1,    0 < 𝑥𝑥 < 1 

Find a pivotal quantity for 𝜃𝜃 and use it to construct 100(1 − 𝛼𝛼)% confidence interval for 𝜃𝜃. 

Solution: 

The CDF of x is given by 

𝐹𝐹(𝑥𝑥) = ∫ 𝜃𝜃 𝑥𝑥𝜃𝜃−1𝑑𝑑𝑑𝑑𝑥𝑥
0 = 𝑥𝑥𝜃𝜃,   0 < 𝑥𝑥 < 1 

So, the pivotal quantity can be of the form 

𝑄𝑄 = −2∑ log𝑥𝑥𝑖𝑖𝜃𝜃𝑛𝑛
𝑖𝑖=1 = −2𝜃𝜃∑ log 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1   

where 𝑄𝑄~ χ2𝑛𝑛2 , then one can construct 100(1− 𝛼𝛼)% confidence interval for 𝜃𝜃 as 
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𝑃𝑃 �χ(1− 𝛼𝛼2,2𝑛𝑛)
2 < 𝑄𝑄 < χ

( 𝛼𝛼2,2𝑛𝑛)
2 � = 1 − 𝛼𝛼 

𝑃𝑃 �χ
(1− 𝛼𝛼2,2𝑛𝑛)
2 < −2𝜃𝜃� log 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

< χ
( 𝛼𝛼2,2𝑛𝑛)
2 � = 1 − 𝛼𝛼 

𝑃𝑃�
− χ

( 𝛼𝛼2,2𝑛𝑛)
2

2∑ log𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

< 𝜃𝜃 <
− χ

( 1− 𝛼𝛼2,2𝑛𝑛)
2

2∑ log𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

� = 1 − 𝛼𝛼 

 

4.3 Large Sample Confidence Interval  

From Section 3.3, the MLE 𝜃𝜃� of 𝜃𝜃, has an asymptotic normal distribution when n is large which is given by  

√𝑛𝑛�𝜃𝜃� − 𝜃𝜃�
𝑑𝑑
→ 𝑁𝑁 �0, 1

𝐼𝐼(𝜃𝜃)�   or  𝜃𝜃�
𝑑𝑑
→ 𝑁𝑁 �𝜃𝜃, 1

𝑛𝑛𝑛𝑛(𝜃𝜃)� 

Thus, we can write 

𝜃𝜃� − 𝜃𝜃

1 �𝑛𝑛𝑛𝑛(𝜃𝜃)⁄
~ 𝑁𝑁(0,1) 

Use the distribution of the MLE 𝜃𝜃� to construct 100(1 − 𝛼𝛼)% confidence interval for the parameter 𝜃𝜃 as following: 

𝑃𝑃(−𝑧𝑧1− 𝛼𝛼2
<

𝜃𝜃� − 𝜃𝜃

1 �𝑛𝑛𝑛𝑛(𝜃𝜃)⁄
< 𝑧𝑧1− 𝛼𝛼2

) = 1 − 𝛼𝛼 
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𝑃𝑃 �𝜃𝜃� − 𝑧𝑧1− 𝛼𝛼2

1

�𝑛𝑛𝑛𝑛(𝜃𝜃)
< 𝜃𝜃 < 𝜃𝜃� + 𝑧𝑧1− 𝛼𝛼2

1

�𝑛𝑛𝑛𝑛(𝜃𝜃)
� = 1 − 𝛼𝛼 

In General: 

Since the MLE 𝜏̂𝜏(𝜃𝜃) of 𝜏𝜏(𝜃𝜃), has an asymptotic normal distribution when n is large as following:  

𝜏̂𝜏(𝜃𝜃)
𝑑𝑑
→ 𝑁𝑁�𝜏𝜏(𝜃𝜃),

�𝜏́𝜏(𝜃𝜃)�2

𝑛𝑛𝑛𝑛(𝜃𝜃) � 

⇒  
𝜏̂𝜏(𝜃𝜃)− 𝜏𝜏(𝜃𝜃)

𝜏́𝜏(𝜃𝜃) �𝑛𝑛𝑛𝑛(𝜃𝜃)⁄
~ 𝑁𝑁(0,1) 

Then, 100(1 − 𝛼𝛼)% confidence interval for the parameter 𝜏𝜏(𝜃𝜃) is given by 

𝑃𝑃(−𝑧𝑧1− 𝛼𝛼2
<

𝜏̂𝜏(𝜃𝜃) − 𝜏𝜏(𝜃𝜃)

𝜏́𝜏(𝜃𝜃) �𝑛𝑛𝑛𝑛(𝜃𝜃)⁄
< 𝑧𝑧1− 𝛼𝛼2

) = 1 − 𝛼𝛼 

𝑃𝑃 �𝜏̂𝜏(𝜃𝜃) − 𝑧𝑧1− 𝛼𝛼2

𝜏́𝜏(𝜃𝜃)

�𝑛𝑛𝑛𝑛(𝜃𝜃)
< 𝜏𝜏(𝜃𝜃) < 𝜏̂𝜏(𝜃𝜃) + 𝑧𝑧1− 𝛼𝛼2

𝜏́𝜏(𝜃𝜃)

�𝑛𝑛𝑛𝑛(𝜃𝜃)
� = 1 − 𝛼𝛼 

 

Example 4.6: 

Let 𝑋𝑋~𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝛽𝛽) with large sample size. Construct 100(1 − 𝛼𝛼)% confidence interval for 𝛽𝛽. 

Solution: 

The pdf of the exponential distribution with parameter 𝛽𝛽 is defined as 
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𝑓𝑓(𝑥𝑥,𝛽𝛽) =
1
𝛽𝛽 𝑒𝑒

−𝑥𝑥/𝛽𝛽 ,   𝑥𝑥 > 0 

We found from Example 3.2 and Example 3.3 that the MLE of 𝛽𝛽 is 𝑋𝑋� and it is an unbiased estimator (i.e. 𝐸𝐸(𝑋𝑋� ) =
𝛽𝛽). Thus, 𝑋𝑋�  has an asymptotic normal distribution that is 

𝑋𝑋� ~ 𝑁𝑁 � 𝛽𝛽,
1

𝑛𝑛𝑛𝑛(𝜃𝜃)� 

Now we need to derive the Fisher information, 𝐼𝐼(𝜃𝜃): 

log𝑓𝑓(𝑥𝑥;𝜃𝜃) = − log𝛽𝛽 −
𝑥𝑥
𝛽𝛽 

𝜕𝜕
𝜕𝜕𝜕𝜕 log𝑓𝑓(𝑥𝑥; 𝜃𝜃) = −

1
𝛽𝛽 +

𝑥𝑥
𝛽𝛽2 

𝐼𝐼(𝜃𝜃) = 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝜕𝜕
𝜕𝜕𝜕𝜕 log𝑓𝑓(𝑥𝑥;𝜃𝜃)� = 𝑉𝑉𝑎𝑎𝑎𝑎 �−

1
𝛽𝛽 +

𝑋𝑋
𝛽𝛽2� =

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)
𝛽𝛽4 =

1
𝛽𝛽2 

The asymptotic normal distribution of the MLE is 

𝑋𝑋� ~ 𝑁𝑁 � 𝛽𝛽, 𝛽𝛽
2

𝑛𝑛
�   or   𝑋𝑋

�− 𝛽𝛽
𝛽𝛽 √𝑛𝑛⁄

= √𝑛𝑛 �𝑋𝑋
�

𝛽𝛽
− 1�~𝑁𝑁(0,1) 

Thus, 100(1− 𝛼𝛼)% confidence interval for 𝛽𝛽 is obtained as 

𝑃𝑃(−𝑧𝑧1− 𝛼𝛼2
< √𝑛𝑛�

𝑋𝑋�
𝛽𝛽 − 1� < 𝑧𝑧1− 𝛼𝛼2

) = 1 − 𝛼𝛼 

⇒  −
𝑧𝑧1− 𝛼𝛼2

√𝑛𝑛
<
𝑋𝑋�
𝛽𝛽 − 1 <

𝑧𝑧1− 𝛼𝛼2

√𝑛𝑛
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⇒  1 −
𝑧𝑧1− 𝛼𝛼2

√𝑛𝑛
<
𝑋𝑋�
𝛽𝛽 < 1 +

𝑧𝑧1− 𝛼𝛼2

√𝑛𝑛
 

⇒  
𝑋𝑋� √𝑛𝑛

√𝑛𝑛 + 𝑧𝑧1− 𝛼𝛼2

< 𝛽𝛽 <
𝑋𝑋� √𝑛𝑛

√𝑛𝑛 − 𝑧𝑧1− 𝛼𝛼2
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Chapter 5: Bayesian Estimation 

 

In the last two Chapters 3 and 4, we assumed the random sample came from some known probability distribution 
𝑓𝑓(𝑥𝑥,𝜃𝜃) and we used the classic method to estimate the unknown parameter 𝜃𝜃 which was some fixed. In this 
Chapter, we will estimate 𝜃𝜃 using the Bayesian method which is define the unknown parameter 𝜃𝜃 as a random 
variable and has a distribution depending on previous information called prior distribution. 

 
Prior and Posterior Distributions 

Consider a random variable 𝑋𝑋 that has a distribution of probability that depends upon the symbol 𝜃𝜃, where 𝜃𝜃 is an 
element of a well-defined set Ω. Let us now introduce a random variable Θ that has a distribution of probability 
over the set Ω. The probability distribution ℎ(𝜃𝜃) is called the prior distribution of Θ. Moreover, we now denote 
the probability distribution of 𝑋𝑋 by 𝑓𝑓(𝑥𝑥|𝜃𝜃) since we think of it as a conditional distribution of 𝑋𝑋, given Θ = θ. For 
clarity in this chapter, we will use the following summary of this model: 

𝑋𝑋|𝜃𝜃  ~  𝑓𝑓(𝑥𝑥|𝜃𝜃) 

Θ  ~ ℎ(𝜃𝜃) 

Thus, we can write the joint conditional distribution of 𝑋𝑋, given Θ = θ, as 

𝐿𝐿(𝑥𝑥|𝜃𝜃) = 𝑓𝑓(𝑥𝑥1|𝜃𝜃)𝑓𝑓(𝑥𝑥2|𝜃𝜃) …𝑓𝑓(𝑥𝑥𝑛𝑛|𝜃𝜃) 

Thus, the joint distribution of 𝑋𝑋 and Θ is   

𝑔𝑔(𝑥𝑥, 𝜃𝜃) = 𝐿𝐿(𝑥𝑥|𝜃𝜃)ℎ(𝜃𝜃)                                                                               (5.1) 

The marginal distribution of 𝑋𝑋 is given by 
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𝑔𝑔1(𝑥𝑥) = � ∫
𝑔𝑔(𝑥𝑥, 𝜃𝜃)𝑑𝑑𝑑𝑑, if Θ is a continuous  𝜃𝜃

∑ 𝑔𝑔(𝑥𝑥,𝜃𝜃)𝜃𝜃 ,       if Θ is a discrete         
  

In either case the conditional distribution of Θ, given the sample 𝑋𝑋, is 

𝑘𝑘(𝜃𝜃|𝑥𝑥) = 𝑔𝑔(𝑥𝑥,𝜃𝜃)
𝑔𝑔1(𝑥𝑥)

= 𝐿𝐿�𝑥𝑥�𝜃𝜃�ℎ(𝜃𝜃)
𝑔𝑔1(𝑥𝑥)

                                                                         (5.2) 

The distribution defined by this conditional distribution is called the posterior distribution. The prior distribution 
reflects the subjective belief of Θ before the sample is drawn while the posterior distribution is the conditional 
distribution of Θ after the sample is drawn. Further discussion on these distributions follows an illustrative 
example. 

 

Example 5.1:  

Consider the model 

𝑋𝑋𝑖𝑖|𝜃𝜃  ~ iid 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝜃𝜃) 

Θ  ~  Γ(𝛼𝛼,𝛽𝛽), 𝛼𝛼 and 𝛽𝛽 are known 

Hence, the random sample is drawn from a Poisson distribution with mean 𝜃𝜃 and the prior distribution is Γ(𝛼𝛼,𝛽𝛽) 
distribution. Thus, in this case, the joint conditional pdf of 𝑋𝑋, given Θ = θ, is 

𝐿𝐿(𝑥𝑥|𝜃𝜃) =
𝜃𝜃𝑥𝑥1𝑒𝑒−𝜃𝜃

𝑥𝑥1! … .
𝜃𝜃𝑥𝑥𝑛𝑛𝑒𝑒−𝜃𝜃

𝑥𝑥𝑛𝑛! , 𝑥𝑥𝑖𝑖 = 0, 1, 2, … , 𝑖𝑖 = 1, 2, … . ,𝑛𝑛, 

and the prior pdf is 
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ℎ(𝜃𝜃) =
𝜃𝜃𝛼𝛼−1𝑒𝑒− 𝜃𝜃𝛽𝛽

Γ(𝛼𝛼)𝛽𝛽𝛼𝛼 , 0 < 𝜃𝜃 < ∞ 

Hence, the joint mixed continuous discrete pdf is given by 

𝑔𝑔(𝑥𝑥, 𝜃𝜃) = 𝐿𝐿(𝑥𝑥|𝜃𝜃)ℎ(𝜃𝜃) = �
𝜃𝜃𝑥𝑥1𝑒𝑒−𝜃𝜃

𝑥𝑥1! …
𝜃𝜃𝑥𝑥𝑛𝑛𝑒𝑒−𝜃𝜃

𝑥𝑥𝑛𝑛! � �
𝜃𝜃𝛼𝛼−1𝑒𝑒− 𝜃𝜃𝛽𝛽

Γ(𝛼𝛼)𝛽𝛽𝛼𝛼 �
 

=
𝜃𝜃∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 +𝛼𝛼−1𝑒𝑒−�
𝑛𝑛𝑛𝑛+1
𝛽𝛽 �𝜃𝜃

∏ 𝑥𝑥𝑖𝑖!𝑛𝑛
𝑖𝑖=1 Γ(𝛼𝛼)𝛽𝛽𝛼𝛼  

Provided that 𝑥𝑥𝑖𝑖 = 0, 1, 2, 3, … . , 𝑖𝑖 = 1, 2, … ,𝑛𝑛 and 0 < 𝜃𝜃 < ∞. Then, the marginal distribution of the sample, is 

𝑔𝑔1(𝑥𝑥) = �
𝜃𝜃∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 +𝛼𝛼−1𝑒𝑒−�
𝑛𝑛𝑛𝑛+1
𝛽𝛽 �𝜃𝜃

∏ 𝑥𝑥𝑖𝑖!𝑛𝑛
𝑖𝑖=1 Γ(𝛼𝛼)𝛽𝛽𝛼𝛼

∞

0
𝑑𝑑𝑑𝑑 =

Γ(∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝛼𝛼)

∏ 𝑥𝑥𝑖𝑖!𝑛𝑛
𝑖𝑖=1 Γ(𝛼𝛼)𝛽𝛽𝛼𝛼 �𝑛𝑛𝑛𝑛 + 1

𝛽𝛽 �
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 +𝛼𝛼 

Finally, the posterior pdf of Θ, given 𝑋𝑋 = 𝑥𝑥, is 

𝑘𝑘(𝜃𝜃|𝑥𝑥) =
𝑔𝑔(𝑥𝑥,𝜃𝜃)
𝑔𝑔1(𝑥𝑥) =

𝜃𝜃∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 +𝛼𝛼−1𝑒𝑒

− 𝜃𝜃

� 𝛽𝛽
𝑛𝑛𝑛𝑛+1�

Γ�∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝛼𝛼� � 𝛽𝛽

𝑛𝑛𝑛𝑛 + 1�
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 +𝛼𝛼 

Provided that 0 < 𝜃𝜃 < ∞. This conditional pdf is one of the gamma type with parameters 𝛼𝛼∗ = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝛼𝛼 and 

𝛽𝛽∗ = 𝛽𝛽
𝑛𝑛𝑛𝑛+1

. Notice that the posterior pdf reflects both prior information (𝛼𝛼,𝛽𝛽) and sample information (∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 ). 
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𝜃𝜃|𝑋𝑋𝑖𝑖   ~Γ��𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝛼𝛼 ,
𝛽𝛽

𝑛𝑛𝑛𝑛 + 1� 

Remarks: 

1. In Example 5.1 notice that it is not really necessary to determine the marginal pdf 𝑔𝑔1(𝑥𝑥) to find the posterior pdf 
𝑘𝑘(𝜃𝜃|𝑥𝑥). If we divide 𝐿𝐿(𝑥𝑥|𝜃𝜃)ℎ(𝜃𝜃) by 𝑔𝑔1(𝑥𝑥), we must get the product of a factor, which depend upon 𝑥𝑥 but does not 
depend upon 𝜃𝜃, say 𝑐𝑐(𝑥𝑥), That is, 

𝑘𝑘(𝜃𝜃|𝑥𝑥) = 𝑐𝑐(𝑥𝑥) 𝜃𝜃∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 +𝛼𝛼−1 𝑒𝑒

− 𝜃𝜃

� 𝛽𝛽
𝑛𝑛𝑛𝑛+1� 

Provided that 0 < 𝜃𝜃 < ∞, and 𝑥𝑥𝑖𝑖 = 0, 1, 2, 3, … . , 𝑖𝑖 = 1, 2, … ,𝑛𝑛. However, 𝑐𝑐(𝑥𝑥) must be that “constant” needed to 
make 𝑘𝑘(𝜃𝜃|𝑥𝑥) a pdf, namely 

𝑐𝑐(𝑥𝑥) =
1

Γ�∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝛼𝛼� � 𝛽𝛽

𝑛𝑛𝑛𝑛 + 1�
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 +𝛼𝛼 

Accordingly, we frequently write that 𝑘𝑘(𝜃𝜃|𝑥𝑥) is proportional to 𝐿𝐿(𝑥𝑥|𝜃𝜃)ℎ(𝜃𝜃); that is, the posterior pdf can be 
written as 

𝑘𝑘(𝜃𝜃|𝑥𝑥)  ∝  𝐿𝐿(𝑥𝑥|𝜃𝜃)ℎ(𝜃𝜃)                                                                        (5.3) 

Note that in the right-hand member of this expression all factors involving constants and 𝑥𝑥 alone (not 𝜃𝜃) can be 
dropped. For illustration, in solving the problem presented in Example 5.1, we simply write 

𝑘𝑘(𝜃𝜃|𝑥𝑥) ∝  𝜃𝜃∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 +𝛼𝛼−1𝑒𝑒

− 𝜃𝜃

� 𝛽𝛽
𝑛𝑛𝑛𝑛+1� 
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0 < 𝜃𝜃 < ∞. Clearly, 𝑘𝑘(𝜃𝜃|𝑥𝑥) must be gamma pdf with parameter 𝛼𝛼∗ = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝛼𝛼 and 𝛽𝛽∗ = 𝛽𝛽

𝑛𝑛𝑛𝑛+1
. 

2. There is another observation that can be made at this point. Suppose that there exists a sufficient statistic 𝑇𝑇 =
𝑡𝑡(𝑋𝑋) for the parameter so that 

𝐿𝐿(𝑥𝑥|𝜃𝜃) = 𝑓𝑓𝑇𝑇(𝑡𝑡 | 𝜃𝜃).𝑘𝑘(𝑋𝑋), 

where now 𝑓𝑓𝑇𝑇(𝑡𝑡 | 𝜃𝜃) is the pdf of 𝑇𝑇, given Θ = θ. Then we note that  

𝑘𝑘(𝜃𝜃|𝑥𝑥)  ∝  𝑓𝑓𝑇𝑇(𝑡𝑡 | 𝜃𝜃) ℎ(𝜃𝜃)                                                                     (5.4) 

 

5.1 Bayesian Point Estimation 
Suppose we want a point estimator of 𝜃𝜃. From the Bayesian viewpoint, this really amounts to selecting a decision 
function 𝛿𝛿, so that 𝛿𝛿(𝑥𝑥) is a predicted value of 𝜃𝜃 (an experimental value of the random variable Θ) when both the 
computed value 𝑥𝑥 and the conditional pdf 𝑘𝑘(𝜃𝜃|𝑥𝑥) are known. Now, in general, how would we predict an 
experimental value of any random variable, say 𝑊𝑊, if we want our prediction to be “reasonably close” to the value 
to be observed?. Many statisticians would predict the mean, 𝐸𝐸(𝑊𝑊), of the distribution of 𝑊𝑊; others would predict a 
median (perhaps unique) of the distribution of 𝑊𝑊, and some would have other predictions. However, it seems 
desirable that the choice of the decision function should depend upon a loss function ℒ[𝜃𝜃, 𝛿𝛿(𝑥𝑥)]. One way in which 
this dependence upon the loss function can be reflected is to select the decision function 𝛿𝛿 in such a way that the 
conditional expectation of the loss is minimum. A Bayes’ estimate is a decision function 𝛿𝛿 that minimizes the 
expectation of the loss function 𝐸𝐸{ℒ[Θ, 𝛿𝛿(𝑥𝑥)]|𝑋𝑋 = 𝑥𝑥} and then 

                        𝛿𝛿(𝑥𝑥) = 𝐸𝐸{ℒ[Θ, 𝛿𝛿(𝑥𝑥)]|𝑋𝑋 = 𝑥𝑥} = � ∫
ℒ[𝜃𝜃, 𝛿𝛿(𝑥𝑥)]𝑘𝑘(𝜃𝜃|𝑥𝑥)𝜃𝜃 𝑑𝑑𝑑𝑑,   if Θ is a continuous    

∑ ℒ[𝜃𝜃, 𝛿𝛿(𝑥𝑥)]𝑘𝑘(𝜃𝜃|𝑥𝑥)𝜃𝜃 ,         if Θ is a continuous     
                        

(5.5) 
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is called Bayes’ estimator of 𝜃𝜃.  

 

Some Possible Loss Functions: 

1. Squared Error Loss Function: 
The squared error loss function is given by 

ℒ[θ, 𝛿𝛿(𝑥𝑥)] = [𝜃𝜃 − 𝛿𝛿(𝑥𝑥)]2 
Then, the Bayes’ estimate is the mean of the conditional distribution of Θ, given 𝑋𝑋 = 𝑥𝑥 

𝛿𝛿(𝑥𝑥) = 𝐸𝐸(Θ|𝑥𝑥) 
2. Absolute Error Loss Function: 

The absolute error loss function is given by  
ℒ[θ, 𝛿𝛿(𝑥𝑥)] =  |𝜃𝜃 − 𝛿𝛿(𝑥𝑥)| 

Then, a median of the conditional distribution of Θ, given 𝑋𝑋 = 𝑥𝑥, is the Bayes’ solution  
𝛿𝛿(𝑥𝑥) = Median of Θ 

where the median, m, is the solution of  

� 𝑘𝑘(𝜃𝜃|𝑥𝑥)𝑑𝑑𝑑𝑑
𝑚𝑚

−∞
=

1
2 

It is easy to generalize this to estimate a function of 𝜃𝜃, for a specified function 𝜏𝜏(𝜃𝜃). For the loss function 
ℒ[θ, 𝛿𝛿(𝑥𝑥)], a Bayes estimate of 𝜏𝜏(𝜃𝜃) is a decision function 𝛿𝛿 that minimizes  

𝐸𝐸{ℒ[𝜏𝜏(Θ),𝛿𝛿(𝑥𝑥)]|𝑋𝑋 = 𝑥𝑥} = ∫ ℒ[𝜏𝜏(𝜃𝜃),𝛿𝛿(𝑥𝑥)]∞
−∞ 𝑘𝑘(𝜃𝜃|𝑥𝑥)𝑑𝑑𝑑𝑑                                         (5.6) 

The random variable 𝛿𝛿(𝑋𝑋) is called Bayes’ estimator of 𝜏𝜏(𝜃𝜃). 

 

 



STAT 340                                               Theory of Statistics 1                               Dr. Samah Alghamdi 
 

 
 

 
   114 
 

Example 5.2:  

Consider the model 

• 𝑋𝑋𝑖𝑖|𝜃𝜃 ~ iid 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (1,𝜃𝜃) 

Θ ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼,𝛽𝛽) , 𝛼𝛼 and 𝛽𝛽 are known 

That is, the prior pdf is 

ℎ(𝜃𝜃) =
Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)𝜃𝜃

𝛼𝛼−1(1 − 𝜃𝜃)𝛽𝛽−1 , 0 < 𝜃𝜃 < 1  

when 𝛼𝛼 and 𝛽𝛽 are assigned positive constants. We seek a decision function 𝛿𝛿 that is a Bayes’ solution. The 
sufficient statistic is 𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛

1 , which has a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑛𝑛, 𝜃𝜃) distribution. Thus, the conditional pdf of 𝑌𝑌 given 
Θ = 𝜃𝜃 is 

𝑔𝑔(𝑦𝑦|𝜃𝜃) = �
𝑛𝑛
𝑦𝑦� 𝜃𝜃

𝑦𝑦(1− 𝜃𝜃)𝑛𝑛−𝑦𝑦   𝑦𝑦 = 0, 1, . . . ,𝑛𝑛 

Thus by Equation (5.4), the conditional posterior pdf of Θ, given 𝑌𝑌 = 𝑦𝑦 at positive probability density, is 

𝑘𝑘(𝜃𝜃|𝑦𝑦)  ∝  𝜃𝜃𝑦𝑦(1− 𝜃𝜃)𝑛𝑛−𝑦𝑦 𝜃𝜃𝛼𝛼−1(1 − 𝜃𝜃)𝛽𝛽−1, 0 < 𝜃𝜃 < 1 

That is  

𝑘𝑘(𝜃𝜃|𝑦𝑦) =
Γ(𝛼𝛼 + 𝛽𝛽 + 𝑛𝑛)

Γ(𝛼𝛼 + 𝑦𝑦)Γ(𝛽𝛽 + 𝑛𝑛 − 𝑦𝑦)𝜃𝜃
𝛼𝛼+𝑦𝑦−1(1 − 𝜃𝜃)𝛽𝛽+𝑛𝑛−𝑦𝑦−1, 0 < 𝜃𝜃 < 1 

and 𝑦𝑦 = 0, 1, … . ,𝑛𝑛. Hence, the posterior pdf is a beta density function with parameters (𝛼𝛼 + 𝑦𝑦,𝛽𝛽 + 𝑛𝑛 − 𝑦𝑦). We 
take squared error loss, i.e., ℒ[𝜃𝜃, 𝛿𝛿(𝑦𝑦)] = [𝜃𝜃 − 𝛿𝛿(𝑦𝑦)]2, as the loss function. Then, the Bayesian point estimate of 𝜃𝜃 
is the mean of this beta pdf which is 
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𝛿𝛿(𝑦𝑦) =  
𝛼𝛼 + 𝑦𝑦

𝛼𝛼 + 𝛽𝛽 + 𝑛𝑛 

 

5.2 Bayesian Interval Estimation 
For fixed 𝛼𝛼, we can find two functions 𝑢𝑢(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) so that the conditional probability 

𝑃𝑃(𝑢𝑢(𝑥𝑥) < Θ < 𝑣𝑣(𝑥𝑥)|𝑋𝑋 = 𝑥𝑥) = � 𝑘𝑘(𝜃𝜃|𝑥𝑥)
𝑣𝑣(𝑥𝑥)

𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑑𝑑 = 1 − 𝛼𝛼 

which is defined to be 100(1 − 𝛼𝛼)% Bayesian interval estimates of 𝜃𝜃. This interval is often called credible 
interval, so as not to confuse them with confidence interval. 

 

Example 5.3:  

Recall Example 5.1 where 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a random sample from a Poisson distribution with mean 𝜃𝜃 and a Γ(𝛼𝛼,𝛽𝛽) 
prior, with 𝛼𝛼 and 𝛽𝛽 known, is considered. As given, the posterior pdf is a Γ �𝑦𝑦 + 𝛼𝛼, 𝛽𝛽

𝑛𝑛𝑛𝑛+1
� pdf, where 𝑦𝑦 = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 , 

i.e.  

𝜃𝜃|𝑋𝑋𝑖𝑖   ~Γ �𝑦𝑦 + 𝛼𝛼 ,
𝛽𝛽

𝑛𝑛𝑛𝑛 + 1� 

Find:  

a) Bayes’ point estimator of Θ using the squared error loss function. 
b) Bayes’ point estimator of Θ using the absolute error loss function. 
c) (1 − 𝜉𝜉)100% credible interval for Θ. 
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d) a and c when, 𝛼𝛼 = 2,𝛽𝛽 = 4,𝑛𝑛 = 12,𝑦𝑦 = 8, 𝜉𝜉 = 0.05. 

Solution: 

a) If we use the squared error loss function, the Bayes’ point estimate of Θ is the mean of the posterior 

𝛿𝛿(𝑦𝑦) =
𝛽𝛽(𝑦𝑦 + 𝛼𝛼)
𝑛𝑛𝑛𝑛 + 1  

b) If we use the absolute error loss function, the Bayes’ point estimate of Θ is the median of the posterior or it is 
the solution, m, of the following equation: 

�
(𝑛𝑛𝑛𝑛 + 1)𝑦𝑦+𝛼𝛼 𝜃𝜃𝑦𝑦+𝛼𝛼−1𝑒𝑒− (𝑛𝑛𝑛𝑛+1)𝜃𝜃

𝛽𝛽

Γ(𝑦𝑦 + 𝛼𝛼)𝛽𝛽𝑦𝑦+𝛼𝛼
𝑚𝑚

0
𝑑𝑑𝜃𝜃 =

1
2 

c) To obtain a credible interval, from that the posterior distribution of Θ we get that 

2(𝑛𝑛𝑛𝑛 + 1)
𝛽𝛽 Θ ~ Γ(𝑦𝑦 + 𝛼𝛼, 2) ⇔

2(𝑛𝑛𝑛𝑛 + 1)
𝛽𝛽 Θ ~ 𝜒𝜒(2(𝑦𝑦+𝛼𝛼))

2  

Based on this, the following interval is a (1 − 𝜉𝜉)100% credible interval for Θ 

𝑃𝑃 �χ
(1− 𝜉𝜉2,2(𝑦𝑦+𝛼𝛼))
2 < 2(𝑛𝑛𝑛𝑛+1)

𝛽𝛽
Θ < χ

( 𝜉𝜉2,2(𝑦𝑦+𝛼𝛼))
2 � = 1 − 𝛼𝛼  

or                                            Θ ∈ � 𝛽𝛽
2(𝑛𝑛𝑛𝑛+1)

χ
(1− 𝜉𝜉2,2(𝑦𝑦+𝛼𝛼))
2 , 𝛽𝛽

2(𝑛𝑛𝑛𝑛+1)
χ

( 𝜉𝜉2,2(𝑦𝑦+𝛼𝛼))
2 � 

where χ
(1− 𝜉𝜉2,2(𝑦𝑦+𝛼𝛼))
2  and χ

( 𝜉𝜉2,2(𝑦𝑦+𝛼𝛼))
2  are the lower and upper χ2 quantiles for a χ2 distribution with 2(𝑦𝑦 + 𝛼𝛼) 

degrees of freedom. 
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d) If 𝛼𝛼 = 2,𝛽𝛽 = 4,𝑛𝑛 = 12,𝑦𝑦 = 8, 𝜉𝜉 = 0.05, then the point estimator is 

𝛿𝛿(𝑦𝑦) =
4(8 + 2)
48 + 1 = 0.8163 

and the 95% credible interval for Θ is  

Θ ∈ �
4

2(48 + 1) χ(0.975,20)
2 ,

4
2(48 + 1) χ(0.025 ,20)

2 � 

 From χ2  distribution Table:  χ(0.025 ,20)
2 = 34.17,   χ(0.975,20)

2 = 9.59, thus 
Θ ∈ (0.3914, 1.3947) 
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Exponential and Gamma Distributions 

 

  Exponential Distribution  Gamma Distribution 
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