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Chapter 1: Introduction

This chapter introduce a brief review of some basic definitions and statistical distributions.

1.1 Definition and Basic Concept
In this chapter, we give some basic definitions and concepts.
Population:

e A population is the largest collection of elements or individuals in which we are interested in a particular
time and about which we want to make some statement or conclusion.

e The population values usually denoted by X = (X;, X5, ..., Xy ), where N is the number of elements in the
population, called the population size.

Sample:

e A sample is a subset of a population on which we collect data.
e The sample values usually denoted by x = (x4, x5, ..., X;,), where 7 is the number of elements in the sample,
called the sample size.

Parameter:

e A parameter is a measure (or number) obtained from the population values.
e Values of the parameters are unknown in general.

Statistic:

e A statistic is a measure (or number) obtained from the sample values.
e Values of the statistic are known in general.
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Random Variable:

e A random variable X is a function that associates a real number with each element in the sample space.
e Most of the time, statisticians deal with two special kinds of random variables, which are discrete and
continuous random variables.

Discrete Random Variable:
A random variable X is discrete if:

1. It can take on values from finite or countable infinite values.
2. It has a discrete distribution, called the probability mass function (pmf) of X if, for each possible outcome
X

fx(x) =20, X, fx(x)=1, and  fy(x)=PX =x).
Continuous Random Variable:

A random variable X is continuous if:

1. It can take on values from an interval or not countable values.
2. It has a continuous distribution, called the probability density function (pdf) for X, defined over the set of
real numbers, if

fx(x) =0 forallx € R, ffooo fx(x)dx =1, and Pa<X<b)= f: fx(x)dx .

Cumulative Distribution Function:

Fy(x) = P(X < x), for —o0o < x < o0,
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Random Sample:

A random sample is a sample that is chosen randomly. Random sample are used to avoid bias and other unwanted
effects.

Joint Probability distribution:
The function f(x, y) is a joint probability distribution of the random variables X and Y if:

1. f(x,y) =0, forall (x,y).
2. Yx2y f(x,y) = 1if Xand Y are discrete

fx fy f(x,y)dydx = 1 if Xand Y are continuous.

Independent Random Variables:

Let X;,X,,..,X, be a n random variables, discrete or continuous, with joint probability
distribution f (x4, X5, ..., X, ). The random variables X;, X, ..., X, are said to be mutually statistically independent
if and only if

[, %, 00, %) = fi () f2(x2) - fn(30)-
For all (x4, x5, ..., x,,) within their range.
Expectations and Moments:

The rth moment about the origin of the random variable X is given by

Z x" fx(x), If X is discrete,

wr =EX") =
fxr fx(x)dx, If X is continuous.
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The first moment (mean or expected value) and the second moment are given by (i, = u = E(X) and fi, =
E(X?), respectively.

The variance is defined as

Var(X) = 0% = i, — i} = E[(X — p)?] = EX?) - (E0)".

The standard deviation is the square root of the variance denoted as

o=vo? = JE(XZ) ~(E)”.
The rth central moment of X is defined as

Z(x — )" fx(x), If X is discrete,
E[X -] =
f(x —w)" fyx(x)dx, If X is continuous.

Remark:
IfY = aX £ b, then the mean and the variance of Y are given by
EY)=aEX)+bh and Var(Y) =a?*Var(X)
Example 1.1:
Let X be a continuous random variable whose probability density function is
f(x) =3x% for0<x<1.
Find:
1. Prove f(x)is a pdf.
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2. P(0.5<X<1).
3. The cdf of X.
4. E(X) and Var(X).

Solution:

1. Since f(x) = 0 forallx € (0,1) and
folf(x)dx = fol 3x2dx = x3]3 = 1. Thus, f(x) is a pdf.

2. P05 <X <1)=[ 3x’dx= x%]}5=1-05%=0.875.
3. F(x) = [7 3t2dt = t3]F =«°.

4. E(X) = fol 3x3dx = %x‘*]% = z.
E(XZ)—f13 i = > 5]1—3
= ) xtdx =gx°lg=¢.
3 /3\?
Var(X) = E(X?) — (E(X))Z =5 (Z) = 0.0375.

Moment-Generation Function:

The moment-generation function (mgf) of a random variable X is given by E(e'*) and is denoted by, My(t).
Hence, for t in a suitable range,

Y.e™f(x), ifXisdiscrete,

J,. e™ f(x)dx, if X is continuous

Mx(t) = E(e) = {

Some properties of the mgf:

10
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1. My q(t) = e My(t).
2. Max(t) = Mx(at).
3. The mgf characterizes the distribution

1.2 Discrete Probability Distributions
In this section, we present some commonly used distributions for the discrete random variable.
1.2.1 Bernoulli and Binomial Distribution

A Bernoulli trial can result in a success with probability p and a failure with probability g = 1 — p. Then the
probability of the binomial random variable X, the number of successes in # independent trials, 1s

flx;n,p) = (Z)pxq"‘x, x=0,1,2,..,n.

n!

where (;l) = oo

The mean, variance and mgf of the binomial distribution, Binomial(n, p), are
u=mnp, 0?2=npq and for all t real number M(t) = (pet + q)™.
Example 1.2:

The probability that a certain kind of component will survive a shock test is 0.75. Find the probability that exactly
2 of the next 4 components tested survive.

Solution:
Assuming that the tests are independent and p = 0.75 for each of the n = 4 tests, we obtain:
4
£(x; 4,0.75) = (x) (0.75)¥(0.25)4*, x = 0,1,2,3, 4.

11
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£(2;4,0.75) = (3)0.7520.25% = 0.2109

1.2.2 Poisson Distribution

The probability distribution of the Poisson random variable X with parameter A, Poisson(A1), representing the
number of outcomes occurring in a given time interval or specified region denoted by ¢, is

e -t (lt)x
|

fx; At) = , x=0,1,2,...

where A > 0 is the average number of outcomes per unit time, distance or area.
The mean and the variance of the Poisson distribution are
u=oc?=M.
Example 1.3:
Births in a hospital occur randomly at an average rate of 1.6 births per hour. Calculate:

The probability of observing 4 births in a given hour.

The probability of observing more than or equal to 2 births in a given hour.
The mean of births per hour.

The probability of observing 1 birth per 2 hours.

The variance of births per 30 minutes.

Nk =

Solution:

Let X be the number of births in a given hour and At = 1.6 per hour. The pdf of X is given as

12
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6_1'6(1.6)x
f(x; 16) = T, X = 0, 1, 2,

—-1.6 4
f(4:1.6) = =2 = 0.0551

PX>2)=1-P(X<2)=1-[f(1;1.6) + £(0;1.6)] = 0.4751
u=At =16
3.2)°1

at=(16)(2) =32 =f(1;32) =2
o2 = At = (1.6)(0.5) = 0.8,

= 0.1304

A

1.3 Continuous Probability Distributions

1.3.1 Uniform Distribution

The density function of the continuous uniform random variable X on the interval [a, b] is
f(x;a; b) =$, a<x<h.

The mean and the variance of the uniform distribution, Uniform(a, b), are

‘Ll = a_-l-b and 0'2 = (b_a)z
2 12

Example 1.4:

Suppose that a large conference room at a certain company can be reserved for no more than 4 hours. In fact, it can
be assumed that the length X of a conference has a uniform distribution on interval [0, 4].

(a) What is the probability density function?
(b) What is the probability that any given conference lasts at least 3 hours?

13
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Solution:
(a) The appropriate density function for the uniformly distributed random variable X in the situation is
f(x)=%, 0<x<4
(b)P[X = 3] f

1.3.2 Exponential Distribution

The pdf of the exponential distribution for a continuous random variable X with parameter 8 > 0, denoted as

Expnential (%), 1s given as
f(x;0)=0e7 %% x>0
The mean and the variance of this distribution are
1 1
E(X) —5 and V(X) _E'
The cdf and mgf obtained as

-1
F(x)=1—-e7% and M(t)=£=(1—%) ,t<0.

1.3.3 Gamma Distribution

The continuous random variable X has a gamma distribution with parameters « and = 3 Gamma ( ) if its density

function is given by

14
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g L) = AL a-1,-px
f(x,a,ﬁ)—r(a)x e P*, x>0
where @ > 0,8 > 0 and I'(«) is a gamma function defined as

o}

MNa)=(a—1)! = f y*le ¥ dy
0

The mean, the variance and the mgf are

EOD =%, Vi) == and M) = (%)“ =(1-9) "t <.

Note:

1. The exponential distribution is a special case of gamma distribution with 3 parameter when a = 1.
')
B

2. fooo x*le=Prdx =

1.3.4 Weibull Distribution

The continuous random variable X has a Weibull distribution, with parameters a and %, if its pdf is given by

f (x; a,%) = aﬁxﬂ‘le‘“’“ﬁ, x>0

where ¢ > 0and § > 0.

The cumulative distribution function for the Weibull distribution is given by

F(x)=1—e "

15
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Note: For f = 1, the Weibull density reduces to the exponential density function.

1.3.5 Chi-Squared Distribution

The random variable X has a chi-squared distribution with v > 0 degrees of freedom, denoted as, X~y?(v), if its
pdf is given by

flv) =—m—xz""e7z, x>0
2@)r(2)

2

The mean and the variance are
E(X)=v and V(x)=2v.
The mgf of this distribution is M(t) = (1 — 2t) 2,t < %

N |-

Note: It is a special case of gamma distribution in which a = g and f =

Example 1.5:
Let X be a y2(10). Find:

1. Find P(X > 20.5).
2. a,if P(X > a) = 0.05.

Solution:
By y? Table (Table I) and v = 10, we get

1. P(X > 20.5) = 0.025
2. P(X > a) = 0.05, thus @ = 18.31.

16
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1.3.6 Normal Distribution

The most important continuous probability distribution in the entire field of statistics is the normal distribution.
Its graph, called the normal curve, is the bell-shaped curve of following figure, which approximately describes
many phenomena that occur in nature, industry, and research.

Jix)

H,

Definition:

The density of the normal random variable X, with mean u and variance 2, X~N (u, 02), is

1

e W(x—ﬂ)z

,—00 < x < 00

(x; p0) =

flx ovV2am
where —c0 < y < ocoando > 0.

The properties of the normal curves:

1. The mode = median = mean = .
2. The curve is symmetric about the mean .
3. The normal curve depends on the parameters p and o, its mean and standard deviation, respectively.

17
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4. The mean p and the variance o2 determine the location and the shape of the normal curve, respectively.
5. The total area under the curve and above the horizontal axis is equal to 1.

6. The mgf'is given by, for all real number t, M(t) = e

,ut+%02t2

1.3.7 Standard Normal Distribution

The distribution of a normal random variable with mean 0 and variance 1 is called a standard normal
distribution and defined as

72

(2) = L49_7,—00 <z < oo,
V2m

The properties of the standard normal curves:

BB =

The mode = median = mean = 0.
The curve is symmetric about the mean 0.
The total area under the curve and above the horizontal axis is equal to 1.

1
The mgfis given by M(t) = ezt

Application: we are able to transform all the observations of any normal random variable X into a new set of
observations of a normal random variable Z with mean 0 and variance 1. This can be done by mean of the
transformation i.e.

Example 1.6:

If X~N(u, 02), then Z = )%“ ~N(0,1).

Given a standard normal distribution, find the area under the curve that lies

18
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1. to the left of z = 1.84.
2. to theright of z = 1.84.
Solution: From Table II,

1. the area to the left of z = 1.84 is equal to,
P(Z < 1.84) = 0.9671.
2. the area to the right of z = 1.84 is equal to,
P(Z>184)=1-P(Z<184)=1-0.9671 = 0.0329.

Normal Approximation to the Binomial:

Theorem 1.1:

If X is a binomial random variable with mean y = np and variance 02 = npq, then the limiting form of the
distribution of

X—np

v pPq

7= ~N(0,1)

asn — oo,

1.3.8 7T-Distribution

A continuous random variable 7 is said to have a #-distribution with parameter v > 0 if its pdf defined as

19
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v+1 _y+1
(5

()

2

fEv) =

The properties of the standard normal curves:

1. The mode = median = mean = 0.
2. The curve is symmetric about the mean 0.
3. Compared to the standard normal distribution, the #-distribution is less peaked in the center and has higher

tails.

4. It depends on the degrees of freedom v.
5. T-distribution approaches the standard normal distribution as v — oo.

6. The total area under the curve and above the horizontal axis is equal to 1.
Example 1.7: Find:

1. P(T < 2.145) when v = 14.
2. t0'995 whenv = 7.

Solution: From Table III,

1. P(T < 2.145) = 0.975 when v = 14.
2. t0'995 = 3.499 whenv = 7.

1.3.9 F-Distribution

20
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If a random variable X has a F-distribution with parameters » and v, we write ~F(r,v) . Then the probability
density function for X is given by

r r+v)
2

_ I LA Y r (=
f(x'r'v)_—B(%‘%)(v) X2 (1+vx)

For real x = 0. Here is B(a,b) = fol y%1(1 — y)?~1dy is the beta function and 7, v > 0.

Theorem 1.2:

If E, (r, v) has F-distribution with » and v degrees of freedom, then

has F-distribution with v and » degrees of freedom.

1.4 Transformation of Variables

In standard statistical methods, the result of statistical hypotheses testing, estimation, or even statistical graphics
does not involve a single random variable but, rather, functions of one or more random variables. As a result,
statistical inference requires the distribution of these functions. In this section, we represent methods to find the
distribution of these functions.

1.4.1 Discrete Random Variable

1.4.1.1 One-to-One Transformation:

21
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Theorem 1.3:

Suppose that X is a discrete random variable with probability distribution f(x). Let Y = u(X) define a one-to-one
transformation between the values of X and Y so that the equation y = u(x) can be uniquely solved for x in terms
of y, say x = w(y). Then the probability distribution of Y is

g = flwl.
Example 1.8:

Let X be a discrete random variable with pmf as
X
flx) = 1 x=0,1,3.

Find the pmf of the random variable Y = X2,
Solution:

Since the value of X are all positive, the transformation defines a one-to-one correspondence between the x and y
values.

Hence,
Since x =0,1,3=y=0,1,9andy =x? = x =\/§.
Then, the pmf of Y is given by

I =f(y) =2 y=019

Similarly, for a two-dimension transformation.

22
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Theorem 1.4:

Suppose that X; and X, are discrete random variables with joint probability distribution f(x;,x,). Let Y; =
u, (Xy,X,) and Y, = u,(X;,X,) define a one-to-one transformation between the points (x;, x,) and (y;, y,) so that
the equations

y1 = ug(xq,%2) and y, = uy(xq, x5)

may be uniquely solved for x; and x, in terms of y; and y,, say x; = w;(y,,¥,) and x, = w,(y4,y,). Then the
joint probability distribution of ¥; and Y, is

9, y2) = fIwi(y1, ¥2), wa (71, ¥2)]

1.4.2 Continuous Random Variable

This section introduced three methods of transformation to find the distribution of continuous random variable.

1.4.2.1 One-to-One Transformation

Theorem 1.5:

Suppose that X is a continuous random variable with probability distribution f(x). Let Y = u(X) define a one-to-
one correspondence between the values of X and Y so that the equation y = u(x) can be uniquely solved for x in
terms of y, say x = w(y). Then the probability distribution of Y is

g = flwMI.

23




STAT 340 Theory of Statistics 1 Dr. Samah Alghamdi

where |J| = |[w'(y)| = |Z—;| and is called the Jacobian of the transformation.

Example 1.9:

Let X be a continuous random variable with probability distribution

X
—, 1<x<5
feo) = {12 *
0, elsewhere.
Find the probability distribution of the random variable Y = 2X — 3.

Solution:

The inverter solution of y = 2x — 3 yields x = (y + 3)/2, from which we obtain ] = w'(y) = Z—i = %

Therefore,

+3
1<x<5 = 1<yT<5=> 2<y+3<10=> —-1<y<7

Using Theorem 1.5, we find the density function of Y to be

(y+3)/ 1
2(1) _ y+3
gy) = 12 (2) 48’

0, elswhere

-1<y<7

Theorem 1.6:

Suppose that X; and X, are continuous random variable with joint probability distribution f(x,x,). Let ¥; =
u;, (X4, X,) and Y, = u,(X;, X,) define a one-to-one transformation between the points (x4, x,) and (y;, y,) so that

24
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the equations y; = u,(x4,x,) and y, = u, (x4, x,) may be uniquely solved for x; and x, in terms of y; and y,,
say x; = w; (y1,¥,) and x, = w, (¥4, ¥,). Then the joint probability distribution of ¥; and Y, is

91, y2) = fIwi (1, y2), wo (1, y2)1- 1|

where the Jacobian is 2 X 2 determinant as

ox1 0x
_ dy; 0y,
UI= oz, om|
dy1 0y,

1.4.2.2 Distribution Function Method (cdf Method):
The general method works as follows:
If X be an independent random variable with pdf fy (x) and Y = u(X) be a function of X. Then, find

Fy(x), cdf of X.

The region of Y.

Fr(y) =P <y) =PulX) <y) =PX =w(Y)) = Fx(w()).
The density function f,, (y) by differentiating Fy, (y).

N

Example 1.10:
Suppose the random variable X has a pdf

fx(x) =3x% 0<x<I.
Find the pdf of Y = 2X + 3.
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Solution:
From Example 1.3, we get Fy(x) = x3.

Since0<x<1=0<2x<2=3<y<5.

F,(y) = P(Y <y) = P2X+3 <y) = PQX <y —3) =P(XsyT_3>=FX(y;3>=<y;3>3.

Then, the pdf of Yis f, () = ‘“Z—;” =3(y-3)%, 3<y<s.

1.4.2.3 Moment-Generating Method:

Theorem 1.7: (uniqueness Theorem)

Let XandY be two random variables with moment-generating functions My (t) and My (t), respectively, if
My (t) = My (t) for all values of t, then X and Y have the same probability distribution.

Theorem 1.8:

It X1, Xy, e, Xy are independent random variable with moment-generating
functions My (t), My, (¢), ....., Mx_(t), respectively, and ¥ = X; + X, + ---. +X,,, then

My (t) = My, (t). My, (t) ... My (t).

Moreover, if My, (£), My, (£), ..., My, (t)are equals. Then, My (t) = (My, (£))
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Example 1.11:

If X1, X5, ....., X,, are independent, each with an exponential distribution with parameter > Show that Y = Y X;

e . 1
has a gamma distribution with parameters » and >

Solution:

Since that the mgf of expnential (%) is My(t) = ﬁ. Thus, the mgf of Y is given by

MY(t) = MZ?=1Xi(t) = MX1+X2+‘“-+Xn(t) = MXl (t)'MXZ (t) MXn(t) - (ﬁ)n

which is the mgf of Gamma (n, ).
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Chapter 2: Sampling Distribution

In a typical statistical problem, we have a random variable X of interest but its probability distribution f(x) is not
known. This problem can be classified in one of two ways:

1. f(x) is completely unknown (Sampling Distribution).
2. The form of f(x) is known but the parameter 6 is unknown (Statistical Inference).

In this chapter, we will discuss the first problem and introduce some solution methods. First, let us begin with
important definitions.

Random sample:

Let X;,X,, ..., X;, be a n independent random variables, each of which has the same probability distribution f(x).
Define X;, X5, ..., X, to be a random sample of size n from the population f(x) and write its joint probability
distribution as

f e xa, s x0) = f1(x) f2(x2) oo fru ().

Statistic:

Any function of the random sample and does not depend upon any unknown parameter is called a statistic.

Sampling Distribution:

The probability distribution of a statistic is called a sampling distribution.
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In this chapter, we studied several of the important sampling distributions of frequently used statistic. Applications
of these sampling distributions to problems of statistical inference are considered throughout most of the remaining
chapters.

In Chapter 1 we defined the two parameters p and o2, which measure the center of location and the variability of a
probability distribution, respectively. Here, we shall define some important statistics that describe corresponding
measures of a random sample. The most common statistics are the sample mean and variance.

Mean and Variance:

Let X;, X5, ..., X,, denote a random sample of size n from a given distribution. The statistic
= 1

is called the mean of the random sample, and the statistic

1 —
§2=—3%" . (X; —X)?,

n—-1
is called the variance of the random sample.

Now, we should view the sampling distribution of X and S? as the mechanisms from which we will be able to
make inference on the unknown parameters u and o2.

2.1 Sampling Distribution of X

Suppose that we have a population with mean u and variance o2 and let X, X, ..., X,, be a random sample of size n
from this population. Let the mean of the random sample be X. Now, consider the following theorems of different
cases of sampling distribution of X.
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Theorem 2.1:

Let X, ...., X,, be independent random variables such that, for i = 1, ...,n, X; has a N(y;, O'l-z) distribution. LetY =
Y, a; X;, where ay, ..., a, are constants. Then, the distribution of Y is N(XI, a; w;, Xieq a?o?).
Proof:
Using independent and the mgf of normal distribution, for t € R, the mgf of'Y is,
My (t) = E(e™) = E[etZim1 aiXi]
it a2 g2
= ?:1 E[etaiXi] = ?:1 eal”lt-l-zal i t2
2,242

1
— plizi@ipit+; 2, aj o]

which is the mgf ofa N(X7L; a;u;, Xivq afo?) distribution.

Example 2.1:
Let X;~N(3,2) independent of X,~N(2,1). Find the distribution of Y = 5X; — 2X,.

Solution:

Then, the distribution of Y 1s obtained as

Y~N(5(3) — 2(2),52(2) + 22(1)) = Y~N(11,54).
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Theorem 2.2:

If X1, X5, ..., X,, is a random sample from any distribution with mean u and variance o2; then

. 2 0'2
Uz = p and variance g; = —

Proof:
Since X4, X5, ..., X;, is a random sample, then

2 1 1 1
up = E(X) = E (L3, %) = ;S E(XK) = snp=p.

2

1 1 g
iz Var(X;) ==no? =—.

of =Var(X) =Var (% ?=1Xi) =1

Theorem 2.3:

Suppose that X;, X5, ..., X;, be a random sample of n observations are taken from a normal population with mean y
and variance o2, Each observation X;,i = 1,2, ...., n, has the same normal distribution. Hence, we conclude that

— 2 _ 2
1. X has a normal distribution with mean u and variance %, [i. e. X~N (u, %)]

_ X
2. 2=+ N(0,1).

Proof:

Since, we know X;, X5, ..., X;, are independent random variables and have the same normal distribution, then they
have the same mgf which is
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1 2.2
t+a02t? .
My (t) =e""27 " ,i=1,2,..,n

Now, by using the mgf transformation method (Theorem 1.8), we get

M)?(t) = E(e)?t) =F <e%21n=1xi t) = (e%(X1+XZ+...+Xn) t)
n
=F (eX1 ~+X;— + +Xn ) <MX1 (%)) , for any random variable X;

£+lo-zﬁ " t 02 tZ
=[en"2" n2 = eH +__ .

2
which is the mgf of the normal distribution with mean yu and variance %

Theorem 2.4: Central Limit Theorem:

If X;, X5, ..., X,, is a random sample of size n from any distribution with mean p and variance ¢2; if X is the mean
of the random sample, then as n — oo,

— 2 _ 2
1. X has approximately a normal distribution with mean u and variance %, [i. e. X~N (,u, %)]

Example 2.2:

An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed,
with mean equal to 800 hours and a standard deviation of 40 hours, find the probability that a random sample of 16
bulbs will have an average life of less than 775 hours.
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Solution:

The sampling distribution of X will be approximately normal, with uz = 800 and g7 = % = 10. Then,
P(X <775) =P (z < 7751‘08"") = P(Z < —2.5) = 0.0062.

Theorem 2.5:

Let X1, X, ..., X,, is a random sample of size n from a normal distribution with mean u and unknown variance o2,
then

— 2
1. X has a t-distribution with mean u, variance % and (n — 1) degrees of freedom.

_ X-u
2. T —_— S/_\/H’Vt(n_l).

Example 2.3:

A sample of 16 ten-year-old girls had a standard deviation of 12 pounds. Assume the population is normal
distribution with mean weight 70 pounds. Find P(X > 74).

Solution:
We have, u = 70, S = 12 and n = 16. Then, X has a t-distribution with n — 1 = 15 degree of freedom. Thus,

74 — 70
12/4/16

P(X>74)=1—P(T< >=1—P(T<1.333)=1—0.9=0.1
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2.2 Sampling Distributions from the Normal and Chi-Squared Distributions

In this section we introduce some sampling distributions of some important and useful random variables.

Theorem 2.6:

_ A2
Let Z~N(0,1). Then, U = Z? = (%) follows the chi-squared distribution with 1 degree of freedom i.e. Z%~y%.
Proof:

1
We know that the pdf of Z is f(z) = \/%6_522. Now, to find the distribution of U, use the cdf transformation

method as following:
Fy(w) =P(U <u) =P(Z? <u) = P(—Vu < Z <Vu) = F;(Vu) — F;(—Vu).

Therefore,

fo(u) = fz(\/—)_ - fz( \/—)E

1 1 =L 1 1 1 1 1 _u
=—u2—ez+u2—ez= u e 2
V2T V2T 1

which is the pdf of chi-squared distribution with 1 degree of freedom.

Corollary 2.1:

Let X;, X5, ..., X;, be a random sample of size n from a normal population with mean u and variance ¢2. If the mean

— — 2
of the random sample is X, where X~N (,u, (; ) and — ~N (0,1), then

(5/_\/‘%) ~Xi-
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Proof:
Left as an exercise.

Theorem 2.7:
Let Z,,Z,, ....., Z, be independent random variables with Z; = %~N(O, 1), where X;~N(u;, g;) for each i =

i\ 2
1,2, nIfY=3Yr z2=3", (%) then Y follows the chi-squared distribution with n degrees of freedom.

We write Y = Y1, z2 ~X3.
Proof:
Since Z4, Z,, ..., Z, are independent, then

My (t) = MZ?=1ZL'2 (t) = E(e(zf+zzz+-~-+z,%)t)
= E(e?tt).E(e%") ... E(e%it)
= Moz (6) Mz (6) o Mo3(0)

1
From Theorem 2.6, each Z? follows x? and therefore it has mgf equal to (1 — 2t) 2. Conclusion:

My (t) = (sz (t))n —(1—2t)"7, for t >%

This is the mgf of chi-squared distribution with n degrees of freedom.

Corollary 2.2:
N2
Let X1, X5, ..., X, is a random sample from N (u, 02), then Y, (X%‘”) ~XZ.
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Theorem 2.8:
Ifs2 =1 ™ ,(X; —X)? is the sample variance of a random sample from a normal distribution with mean u and

variance o2, then

(n—-1s*
= T"'Xn—l
Proof:
Since §% = ni m,(X;—=X)?, where X = =Y, X;; then we can redefine U as
B (Tl - 1§? YL (X —X)?
02 o2
Now, let
X X2 =Y - — (X — w]?
(X —w)? = 20X — WX — ) + (X — p)?]
=X (X —w? = 2(nX — ) (X — W +n(X — p)?
=Y (X — w? = 2n(X — w?+n(X — p)?
=Y (X —w? —nX — w2,
Then,

U :%[ n X - -nX - w?=Y" 1(Xi;M)2 _(f/_\/%)z'

Use the mgf transformation method to find the distribution of U as follows

Xl X .
My(t) =E(UY) =E [2 ol a/J%)]
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N2 o N2
Since, Y-, (%) and (:/—\/P%) are independent random variables (Prove it), we can get

o T2 E<eZ?=1(Xi;M)2t> M_, - 2(t)
My () = E(eza(%) t)E(e—(W) ) _ A=

X— Zt M 5 z(t)
E<e(a/ l;) ) (;_(/—J%)

From Corollary 2.1 and Corollary 2.2, we found that

w28 a2 and (ZA) 2

o
1.e.,
n 1
n xen2@® =@Q—=2t) 2 and M 5_ 2(t) = (1—2t) 2
= (75) Grm)
Then,
_n
(1-2t) 2 _(n-1)
My(t) =——=(1-2t) 2
(1-2t) 2
which is the mgf of chi-squared distribution with n — 1 degrees of freedom. Thus,
(n—-1s*
T g2 An-1
Theorem 2.9:
Let X~x2, Y~y2,.1f X,Y are independent then X + Y~y2, ..
Proof:

Left as an exercise.
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Theorem 2.10:
Let Z denote a random variable that is Z~N(0,1); let U denote a random variable that is U~y?2 and let Z and U are

independent. Then,

Z
T = Ntk

JU/k
Proof:

Since are Z and U independent, the joint density of Z and U is given by

fZ,U(Z: u) = fz(2). fy(w)

1 _122 1 E—l u
=—¢e 2 uz e 2
L
k4 _12_ u
:k;uz 172772, u>0—0<z< o
B

The one-to-one transformation will be used to obtain the pdf of 7. Define the random variables

z
T = NOI and Y =U
Then, we can write
_ty _
zZ="7z and u=y

Therefore, the Jacobian is
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% a_Z \/7 t
at d =
U= |5 on| = [ 20| =
at dy 0 1
Thus, the joint pdf of 7"and Y is given by
t\Jy 1 k_y _v2 vy
fT,Y(t:y)sz,U<T\/k_;y>-|]|= Nk y2 e 2 Z—k’Y>0’—°°<t<°°
z(i)r(—)m
2
The marginal pdf of 7'is then
o 1 w Kkt X( f)
fr@ =Jf; fry&y)dy =mz———J, vz e 2\ Hdy
2 2 15 vk
By using gamma function, ngz) = Ooo x* e B * dx, then we get
k+1 k+1 k+1
1 r(== r(== £2\" "2
fT(t)z k+1 (22_'_1:1_‘(&)3%(1 +?) g ;o —oo < t < oo,

2

22 TGV ( +£>T
k

And this is the pdf of t-distribution with k£ degrees of freedom.
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Theorem 2.11:

Let X;, X5, ..., X,, be a random sample of size n from a N(u, 02), where a2 is unknown. Then,
X—u
Ao

Proof:

Since §% = ni L (X, —X)?, write

X—u_X-p/(a/Vn)
SIm \/ (X —X)?
(

n—1)o?

From Theorem 2.3 and Theorem 2.8, we obtain

N_ ~N(0,1) and 211(—1)0 ~¥2_,

Then, from Theorem 2.10, we conclude that
X—u .
S/'\/ﬁ (n_l)

Theorem 2.12:

Let U and V are two independent random variables such that U~y2 and V~y2, . Then,
U/n
——~Fum
V/m &

where n and m are the degrees of freedom of F-distribution.
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2.3 Sampling Distribution of S>

The sample variance S? is given by

n—1

n
1 _
5% = E (X; —X)?
i=1

From Theorem 2.8, we found that the distribution of S? is

(n—1)5?
o2
By using this conclusion, we can calculate the mean and the variance of S? as follows

g ((n —1)52

2
X1

— >=n—1 = E(S?) = ¢?

204

n—1

Var ((n—a—;l)SZ> =2(n—-1) = Var(5?) =

Corollary 2.3:
The general derivation of the mean and the variance of the sample variance S? that does not assume normality are
given by
2y — 2 2y _ Ha _ 0*(n-3)
E(S4) = 0% and Var(54) = T D)

where p, = E[(X — u)*] is the fourth central moment of X.
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2.4 Sampling Distribution of Order Statistics
In this section, the concept of order statistic will be defined and some of their properties.
Order Statistic:

Let X;, X5, ..., X, be a random sample of size n from a cumulative distribution function F(x). Then, ¥; < Y, <
- <Y,, where Y; are the X; arranged in order of increasing degrees and are defined to be the order statistics
corresponding to the random sample X, X,, ..., X;,.

Theorem 2.13:

Let X;, X5, ..., X;, be a random sample of size n from a continuous cdf F(x) and pdf f(x);lety; < ¥, <+ <Y, be
the order statistics of this random sample. Then, the marginal pdf of any order statistic of order £, say Y;, is given

by

fr, k) = m[ L= F)" *f (), fora <y, <b.

Corollary 2.4:

As a result of Theorem 2.13, the marginal pdf of Y; = min[X;, X,,...,X,,] and the marginal pdf of Y, =
max|[Xy, X5, ..., X, are, respectively, given by

fr,y1) =n[1=F@)I" ' f(y1), fora<y; <b
fr, ) = n[Fy)1" ' f (), fora <y, <b.
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Theorem 2.14:

Let V; <Y, <-- <Y, be the order statistics based on the random sample X;,X>,...,X, from a continuous
distribution with pdf f (x) and support (a, b). Then, the joint pdf of the order statistics is given by,

fOuLY2 ) = fD)f ) . fn), fora<y, < y, <<y, <b.

Theorem 2.15:

LetY, < Y, <.+ <Y, be the order statistics based on the random sample X;, X5, ..., X,,. Then, the joint pdf of any
two order statistics, say Y, < Y}, is expressed in terms of cdf F(x) and pdf f (x) as follows

n! -1 -r-1
frie Ve Vi) = - DIk—r— Dl [F )] [F ) — F(y)]*

[1=FOI" " *f O f ), a<y <y <b
Example 2.4:

LetY, <Y, <Y; <Y, denote the order statistics of a random sample of size 4 from a distribution having pdf
f(x) = 2x, 0<x<1
Compute:
1
1. P (E < Yg).
2. The joint distribution of ¥; and Y5.

Solution:
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Here F(x) = x?2, provided that 0 < x < 1, so that

4!
L fr3) = 55 (L =y (2y3) = 24(y3 -7 ), 0<ys <1

Thus,

243

1 1 1
P (E < Y3) = f% fY3 (y3) dys = f% 24(3’5 - yg)dy3 = Jse
4!
2. fi3 ) = oo il [vd — vt (1= v31" 2y 25

=96y, y; i—yfl [1—-y3] ,, 0<y;<y;<1
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Chapter 3: Point Estimation

In this chapter, we begin by formally outlining the purpose of statistical inference. We follow this by discussing the
problem of point estimation of population parameters. We confine our formal developments of specific estimation
procedures to problems involving one sample.

Statistical Inference:

Statistical inference consists of those methods by which one makes inferences or generalizations about a
population. There are two types of methods, the classic method of estimating a population parameter, whereby
inferences are based strictly on information obtained from a random sample selected from the population, and the
Bayesian method, which utilizes prior subjective knowledge about the probability distribution of the unknown
parameters in conjunction with the information provided by the sample data. Throughout of this chapter and the
next, we shall use classical methods to estimate unknown population parameters such as the mean and the variance
by computing statistics from random samples and applying the theory of sampling distributions, much of which
was covered in Chapter 2. Bayesian estimation will be discussed in Chapter 4.

Statistical inference may be divided into two major areas: estimation and tests of hypotheses, see Figure 3.1. We
treat only estimation area in this course. Estimation methods divide into two parts, point estimation which we will

1
Statistical Inference

] ]
L Estimation L Test of Hypotheses

Figure 3.1

) )
L Point Estimation L Interval Estimation
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discuss it in this chapter and interval estimation.
Point Estimate and Estimator:

A point estimate of some population parameter 8 is a single value 8 of an estimator which is a statistic T. For
example, the value X of the estimator (statistic) X, computed from a sample of size n is a point estimate of the
population mean .

3.1 Point Estimation Methods

This section introduced two different methods to derive the point estimator that are, method of moments estimator
(MME) and maximum likelihood estimator (MLE).

3.1.1 Method of Moments Estimation

Let X;,X5,...,X, be random sample of size n from a distribution with probability distribution
f(x; 64,05, .....,0,),(04, ...,0,) € Q. The expectation uj, = E(X¥) is frequently called the kth moment of the
k
distribution, k = 1,2,3,.... The sum M, = ?21%‘ is the kth moment of the sample, k =1,2,3, ..... The
method of moments estimators, 6,,0,, ....., 6, are then the solution of the following rth equations,
ui = M;

fOI’ 91, 92, ey 97«, [ = 1, 2, v, I
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3.1.2 Maximum Likelihood Estimation

Maximum likelihood estimation is one of the most important approaches to estimation in all of statistical inference.
In this section we develop statistical inference (point estimation) based on likelihood methods. We show that this
procedure are asymptotically optimal under certain conditions (regularity conditions).

Likelihood Function

Suppose that X;, ...., X,, are independent identically distributed (iid) random variables with common probability
density function (continuous case) or probability mass function (discrete case), f(x;68). Then, the likelihood
function is given by,

L(G;x) =11, f(x;;0),6 € Q.

where x = (x4, ... ... , X ). Because we will treat L as a function of 8 in this section, we will often write it as L(60).
Actually, the log or In of this function is usually more convenient to work with mathematically. Denote the
log L(6) by

logL(0) =Y logf(x;;6),0 € Q.

Note that there is no loss of information in using log L(6) because the log is a one-to-one function. In this section,
we will generally consider X as a random variable.
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Maximum Likelihood Estimator:

Given independent observations Xy, X,, ...., X, from a probability distribution f(x; 84,6,,.....,6,),(04, ...,0,) €

Q, the maximum likelihood estimators 6;,8,,.....,0, are that which maximizes the likelihood function
L(84,0,,.....,0,;x).

To determine the MLE, we use the following estimating equations (EE). Then, if the function
L(64,0,, .....,0,; x) is differentiable, the MLE is the solution of these equations

dL(B;x) —0 or dlog L(6;x)

=0, i=12,..r
26; 20; ) yey iy

There is no guarantee that the MLE exists or if it does whether it is unique.

Example 3.1:

Consider a Poisson distribution with probability mas function

e Hu*

flx,u) = x=0,12,...

x!
Supposed that a random sample X, X5, ..., X,, is taken from the distribution. Find:

1. The method of moments estimator of p.
2. The maximum likelihood estimator of .

Solution:
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1. Since the Poisson distribution has one parameter, then we will derive only the first moment of the
distribution and the first moment of the sample, as following

X
E(X) = pand M; = ¥,

Solving the equation, E(X) = M,, then the MME is obtained as

Zn Xl X.

2. The likelihood function is
n e—nuuz?nxi
L(xl,xz,....xn;,u) = i=1f(xiill) =W

Now consider

log L(xy, Xz, oo Xps ) = —npt + XLy x; log p —log [TiLy x; L,

0log L(x1,%X2,..wXn;1t) — —n+ Zr'l= Xi _ 0,
Oy
Solving for fi, the maximum likelihood estimator is given by
Xl

=y Mg,

The second derivative of the log-likelihood function is negative, which implies that the solution above indeed
1s maximum. Since u is the mean of the Poisson distribution (Chapter 1), the sample average would certainly
seem like a reasonable estimator.

49




STAT 340 Theory of Statistics 1 Dr. Samah Alghamdi

Example 3.2:

Suppose 10 rats are used in a biomedical study where they are injected with cancer cells and then given a cancer
drug that is designed to increase their survival rate. The survival times, in months, are 14, 17, 27, 18, 12, 8§, 22, 13,
19, and 12. Assume that the exponential distribution applies.

fu ) = {%e_x/ﬁ, x>0

0, elsewhere
Drive the method of moments and the maximum likelihood estimates of the mean survival time.

Solution:

To find the method of moments estimate we need to calculate the following moments
E(X) =f and My = %10,
By equating these moments, we get the MME as
F=3"=X=162
Now, the log-likelihood function for the date, given n = 10, is
log L(xy, X3, ..., X109; ) = —10log B — %2321 X,

Setting
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1
iz

10
i=1

dlog L
8- _ X, =

B

10
B

Applies that
5 o1
Bp=X= 52321)(1' =16.2.

As a result, the estimator of the parameter 8, the population mean, is the sample average X.

3.2 Properties of the Estimators

In this section, we will study several measures of the quality of an estimator, so that we can choose the best. Some
of these measures tell us the quality of the estimator with small samples, while other measures tell us the quality of
the estimator with large samples. The last are also known as asymptotic properties of estimators.

Small-sample Properties:
(n finite or infinite)

Large-sample Properties:
(n—0)

Unbiasedness (mean).

Asymptotic unbiasedness

Sufficiency

Consistency.

Complete

Asymptotic efficiency

Efficiency (variance).

Asymptotic normality.

3.2.1 Unbiasedness
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Let X, ...., X,, be a random sample from the probability distribution f(x; 8); and let T denote an estimator of 6.
We say that a statistic 7"is an unbiased estimator of 6 if

E(T)=6.
If T is not unbiased (that is, E(T ) # 6), we say that T is a biased estimator of 6.
3.2.2 Mean Squared Error

Let X5, ...., X,, be a random sample from the probability distribution f (x; 8). Let a statistic T is an estimator of 6.
Then, the mean squared error of T, MSE, is given by

MSE(T) = E[(T - 6)*] = Var(T) + (6 - E(T ))2

The term (0 -E (T)) 1s called the bias of the estimator T . Note That if T is an unbiased estimator of 8, then the
MSE is

MSE(T) = Var(T)

Proof:
MSE() = B[ - 0] = £ [((r - E(T)) - (0~ ET))) |
=E|(r-EM))" —2(r-ET))(0-ET)) + (0 - ET))’|
= E(r - E(T))" = 2E(1— E(T))(6 - E(T)) + E(6 - E(T))’

=Var(r) +[(6 - E(D)’|
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Definition 3.1:

If T, and T, are two estimators of 0, then T; is better estimator than T, if
MSE(T,) < MSE(T,).

3.2.3 Consistency

Definition 3.2:

Any estimator (statistic) T,, that converges to a parameter 6 is called a consistent estimator of that parameter 9, i.e.

lim P(|T,— 0| =¢)=0.
n—-oco

Theorem 3.2:

An estimator T,, based on a sample of size 7 is consistent for 6 if

1. lim E(T,) = 6 (asymptotically unbiased) and
n—oo

2. lim Var(T,) = 0.
n—->00

3.2.4 Sufficiency

Let X4, X5, ...., X, denote a random sample of size n from a distribution f(x; 8),0 € Q. Let T(x) be a statistic
whose distribution is f(t; 0). Then, T is a sufficient statistic of 8 if and only if
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H?:l f(xii 9)
fr(t0)

does not depend on 6.
Theorem 3.3: (Factorization Theorem)

Let X4, X5, ...., X, denote a random sample from a distribution f(x; 8),8 € Q. The statistic T(x) is a sufficient
statistic of @ if and only if we can find two nonnegative functions, K; and K, such that

P f i 0) = Ky(6,0). Ky (X1, Xy oo %),

where K, (x4, x5, ...., x,) does not depend upon 6.

Theorem 3.4:

Let X4, X5, ...., X, denote a random sample from a distribution that has probability distribution f(x; 8).0 € Q. If a
sufficient statistic T (x) of 6 exist and if a maximum likelihood estimator 8 of @ also exists uniquely, then 8 is a
function of T (x).

Example 3.3:

Let X;, X5, ...., X,, be a random sample has exponential distribution with parameter  as following:

f(x,B) = %e‘x/ﬁ, x>0
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Show that the estimator X is an unbiased, consistent and sufficient statistic estimator, then find the mean squared
error of X.

Solution:
We know that the mean and the variance of X are
E(X) =p and Var(X) = B
Then,
EX)=EX) =8.
Thus, the statistic X is an unbiased estimator of 5. Now, we will find the variance of X as

Var(X) _ p?

Var(X) =

n

Thus,

lim Var(X ) = lim (B—Z) =0,

n—-oo n-ooo \n
Therefore, since X is an unbiased estimator of f and lim Var(X ) = 0, from Theorem 3.2, the estimator X is a
n—>0o

consistent estimator.

Now, we need to derived the distribution of 7" which can be found by using the mgf transformation method as
= i X A\ -n
w5 0 -8

which is the mgf of Gamma (n, %), thus the pdf of X is (let T = X)
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n _n
fr (t; n,ﬁ) = ﬁnz( )tn_le £, t>0,
n n

?=1f(xi; B) =11 le_xi/ﬁ = ie_z?zﬂi/ﬁ

=1 ﬁ ‘Bn 2
1 Ny xi/B
Lifsp) e _ I f1-n
B T oa T
fT(t, Tl,n) Bn’;(n)tn—le B n

which does not depend on S, thus we conclude that T = X is a sufficient statistic estimator.

The MSE of X is given by
— — 2 —
MSE(X) =Var(X) = % (since X is an unbiased estimator).

Thus, the estimator X is unbiased, consistent and sufficient statistic estimator of 8. Notice that the estimator X is
the MME and the MLE of .

Example 3.4:

Let X1, X5, ...., X,, be a random sample with Poisson pmf and parameter u, i.e.

e Hu*
flx,u) = o ,x=0,1,2, ...

Show that the MLE of u is an unbiased, consistent and sufficient statistic estimator then find the mean squared
error of u.

Solution:
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From example 3.1, the MLE of u is X and we know that the mean and the variance of Poisson distribution with
parameter u are given by

EX)=Var(X)=u
Then,

E(R) =B (B=5) = 130 EC) = 5 () = .

which conclude that the MLE of u is an unbiased estimator. Thus,

_ _ D AR 1 u
MSE(Y) = Var(%) = Var (=254 ) = FZ Var(x) = — () ==
1=

lim Var(X) = lim (ﬁ) =0,
n—-oo n—-oo \n
Therefore, the estimator X is a consistent estimator of p.
Now,

no,. B -
X e—nuﬂzi=1xl _ eTnHynx

—U,, X
n f(x ) _Tm &4

P i M = P = =
=1 ! =1 x;! ?zlxl-! H?zlxi!

Thus, [T, f(x;, 1) can be written by a product of two functions K;(t,0) = e ™ u™ which depends on the

parameter 4 and the MLE, T = X and K,(x;, Xy, ..., X,) = =—— which depends only on the random sample.

i=1%i:

Therefore, we conclude that T = X is a sufficient statistic estimator.

Thus, the MLE, X is unbiased, consistent and sufficient statistic estimator of p.
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Theorem 3.5:

Let X4, X,, ...., X;; denote a random sample from a distribution f(x; é),é = (0,,0,, ...,0;). Then, statistic T =
(T, Ty, ..., Ty,) are joint sufficient statistic of 8 = (64, 6,, ..., 8;) if and only if

L(x; 9) = ?=1f(xii 9) = K1(fy é)-Kz(xpxz; e Xp),

where K, (x4, x5, ...., X,,) does not depend on 6.

Example 3.5:

Let X;,X,,...,X,, be a random sample drawn from continuous uniform distribution when x € (0,8). Find the
following:

(a) The MLE of 6.

(b) Prove that Y,, = Maximum(X,, X, ..., X,,) is a sufficient statistic, asymptotically unbiased and consistent
estimator of 6.

(c) An unbiased estimator of 6.

Solution:

(a) The pmf and cdf of the uniform distribution of x € (0, 8) are defined as

X

f(,0) == and F(x) =3

and the likelihood function is given by
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L(xq, %9, ., Xp; 0) = 0<x; <6

on
Then, the maximum of such functions cannot be found by differentiation but by selecting 8 as small as

possible. Now, each x; < 0, in particular Y,, < 6. Thus, the likelihood function attains to the maximum value
when

1
()"

L(xl,xz, e X3 é) =

or 8 =Y, is the MLE for 6.

(b) To find the properties of the estimator Y,,, we should first derive the distribution of it as:
n
fOm ) =amyi™, 0<y, <6

Thus,

n . n
1_[lzfl(f (:)l 2= (n /Z)g = ny1n_1 dose not depend on 6

The estimator Y,, 1s sufficient statistic for 8. Now, the mean and the variance of are given by

E(Y,) jgn ndy =] P
), e T ) | T (1)
0 0 2
n n neo
EYZ :j_n+1d — n+2 —
(¥2) o 0 T g2 | T+ 2)
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n 6> n? 6 n 62

T +2) m+1)2 (n+2)(n+1)?

Var(v,) = E(Y?) — (E (Yn))z

Thus,
lim E(Y, ) = —lim 2y
oo T k1) mow (1)
lim Var(Y, ) = li n 6’ —0
Jim Var(Y,) = lim o a2

Therefore, Y,, is asymptotically unbiased and consistent estimator of 6.

(c) Since E(Y,) =

0 . . . .
(n+1), thus we can choose T = (n:l) Y,, which is an unbiased estimator for 6 such that
n

E(T) = E ((”:1) Yn) — 0.

Example 3.6:

Let X, X5, ....,X,, denote a random sample from a distribution that is N(u, 0%), —0 < u < o, g2 > 0. Find the
following:

1. Maximum likelihood estimators of u and 2.
2. Method of moments estimators of u and o2.
3. Properties of MLE and MME of u and o2.
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Solution:

1. Maximum likelihood estimators of u and o2:

The pdf of the N (u, 02) is

f(x, i, 0.2) — \/ﬁae 202(x M)z, >0

The likelihood and the logarithm of the likelihood function may be written in the form

- __1 ym 112
L(H.Uz;xl,.....,xn) = (\/27‘[0‘) ne 752 Zi=1(Xi—H)

n n 1 «n
= (2n) 2 (c?) 2 o~ 202 Lz (=)’

log L(, 02; %y, ..., Xy) = —2log(2m) — 2log(0?) — =5 T1L, (x; — w2,

We observe that we may maximum by differentiation In L(u, 62 ; x4, ....., x;,) with respect to u and 2. We have

dlogL 1
a‘u _§ n 1(xl M)’

dloglL n 1 «n 2
oz = 502 T oo 2= (i — )%,

If we equate these partial derivatives to zero and solve simultaneously the two equations thus obtained, the
solutions for u and o2 are found to be

1 -
;Z?ﬂ(xi_.“) =0=>) ., x—nu=0=>0=2X,

— Ty — )% = 03 T, (x — W) =no?,
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n n

2. The method of moments estimators of u and o2:

Since we want to find MME for two parameters u and o2, then we must equate first two population moments
EX)=u,EX? = 0%+ u?

with first two sample moments

2
n  Xi n Xj

M, = Zi=1;;M2 = Zi=1 O
Then, we get

fi=X,and

2 2 2 n 7 \2

2 2 n Xi ~2 n X n Xi i=1(Xi—X)
o + — S — D 0f = E . —=— = (E . — - -
H =15 =1 5 =14 n ’

3. Estimators properties:
a) Unbiasedness:
E(p) =EX) =p
Thus, the estimator X is an unbiased estimator of u.
A 1 >
E(6%) = E (21, (X, — D)),

We know that the term Y1, (X; —X)? can be written as
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X=X =3 (X — w? —n(X — w3,
Then,
A 1 _
E(6?) = —[Xi, E(X; —w?*—nEX — w2,

= %(Z?zl o2 —nVar(X))

1 o2 n—-1)c?
=—(n02—n—)—( )
n n n

Therefore, 62 is biased estimator of ¢ 2.
Note: The estimator S2 = — ¥, (X; — X)? is an unbiased estimator (Prove).
n—-1

b) Mean squared error:

The MSE of u and ¢ are given, respectively, by

02

MSE( i) = MSE(X) = Var(X) =—

MSE(82%) = Var(6%)+E [(02 _E( 62))2]

We need to find the variance of 2. From Theorem 2.8,

(X —X)?
o2 -

2
Xn—l

Define §2 = % " (X; — X)?, now since X~N (u, %), thus we can conclude that
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nSt T &i-X*

= ~X _
0_2 0_2 n—-1

Therefore,

2(n—1)c*
nz

02

n S?
Var< 1> =2(n—1) = Var(S?) =
The MSE is, then given by

MSE(6?%) = — ~

2(n—1)o* N <02 ~ (n— 1)02>2

b) Consistency:
The estimator X is a consistent estimator of u because

1. It is an unbiased estimator of .

2. lim Var(X) = lim < _o,

n—-oo n—-oo N

The estimator 62 of g2 is also consistent estimator because

I.lim E(6?) = lim [

n—oo n—oo

(n i)d ] — lim [02 — %] = ¢2 (asymptotically unbiased).

n—oo

. A2N s 2(11—1)0’4 RT E_E _
Z.YILI_I)I.}OVaT(O')—rlll_I)EIO[ n? ]_1lll—>nolo[n nz]_o'
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d) Sufficiency:
The likelihood function of N(u, 62) is obtained as

L f wo?) = (V2mo) e 707 LK1k
= (VZro) " el D )
_ (\/—0_) e — o [nsZ+n(X-w)?]
Let T; = X, T, = SZ. Then, we can write
i1 f (s w0?) = Ki(Ty, Tys w,0%). Ko (X)
where K, (T, Ty, 4, 0%) = (\/ﬁa)_n e_#[nTZJ’n(Tl_“)Z] and K,(X) = 1.

Therefore, (T, T,) are jointly sufficient statistic of (u, o2).

Exponential Family:

A probability distribution f(x, 8) is said to be a member of the exponential family if it can be written of the form
f(x,0) = a(8)b(x)ec@ax)

where, 1. a(0) and c(0) are functions of parameter 6.

2. b(x) and d(x) are functions of the random sample X.
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Example 3.7:

If X;,X,,...,X, 1s a random sample, determine whether the following probability distribution are member of
exponential family or not:

1. Expnential (%)
2. Bernoulli(p).

Solution:

1. The pdf of the exponential distribution with parameter % is defined as
f(x;0)=0e % x>0
It is a member of exponential family where a(6) = 6,b(x) = 1,c(0) = —0,d(x) = x.
2. The pmf of Bernoulli distribution with parameter p is
fOsp) =p*q"™, x=0,1.
which can be written as

f(x; p) = ¥ ane(l—x) Ing — plng+x (Lnp-Lnq)

Therefore, the Bernoulli distribution is a member of exponential family where a(p) = e!™,b(x) =
1,c(p) = Lnp — Lng,d(x) = x.

3.2.5 Minimal Sufficiency

A sufficient statistic 7' is a minimal sufficient statistic if, for any other sufficient statistic U, T is a function of U.
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Theorem 3.6:

If X;,X,, ..., X;,be random sample with probability distribution f(x,8) and let T(x) be a statistic of the random
sample. Suppose for any random sample Y;,Y,, ..., Y, from probability distribution f(y,8) such that T(y) is a
statistic and the ratio

?:1 f(xlie)

o) does not depend on @ if and only if T (x) = T (y).

Then, T'(x) is a minimal sufficient statistic estimator of 6.

Example 3.8:

If X3, X, ..., X;, are independent identically random sample from Poisson(8). Show that T = )i, X; is a minimal
sufficient statistic for 6.

Solution:

The pmf of Poisson(6) is given as

6_9 x
f@0) =——x=012..

Then, for any random sample Y ~Poisson(60)

L fG8)  emfgiisivi/[IL kO R
[, f»u0) b 92?=1yi/]_[?=1yi! | JEREAV] | (AR
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which does not depend on 6 1iff Y1~ ; x; = »'I-; ;. This implies that T = Y[~ X;
0.

Theorem 3.7:
If X;, X5, ..., X;,be random sample from exponential family,
f(x,0) = a(6)b(x)ec®*™)

Then, T = )., d(x;) is a minimal sufficient statistic estimator of 6.
Theorem 3.8:
If X;, X,, ..., X,, be a random sample from

£(x,8) = a(6)b(x)eZi=14@)a()
where 8 vector of parameters, 8 = (604, 6,, ..., 8;). Then,

T =Xt.di(x), j=1,2,..,k;

are jointly minimal sufficient statistic estimators of 8 = (64,0,, ..., 6;,).

Example 3.9:
Find a minimal sufficient statistic for the probability distribution in Example 3.7.

Solution:
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Since d(x) = x for the exponential and Bernoulli distributions, then the statistic T = };j=; X; is a minimal
sufficient statistic for both distributions.

3.2.6 Completeness
A sufficient statistic T'(x) of 8 is called complete if for any function g(T) such that

E(g(T)) = 0, implies that g(T) = 0.

Theorem 3.9:
Let X4, X5, ..., X;, be a random sample from f (x, 8) such that
f(x,0) = a(8)b(x)e @4

Then, T = )", d(x;) is complete minimal sufficient statistic of 6.

Examples 3.10:

Let X1, X5, ..., X;, be a random sample from Bernoulli(p). Show that T = )7, X; is a complete sufficient statistic
for p.

Solution:

From Example 3.7, we found that Bernoulli distribution is a member of exponential family with d(x) = x.
Therefore, by using Theorem 3.9, T = Y[, X; is complete minimal sufficient statistic for p.
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Now, we want to use the definition of completeness to get the same result:

Since X~Bernoulli(p), then
n n
My(s) = E(e®) = E(e°ZimXt) = (My, (s)) = (q +pe")",
which is the mgf of Binomial(n, p). Thus, the pdf of T'is
— n t n—t —
f@) = (t)p " 5t=0,1,..,n

Suppose for any function of 7', g(T'), that

E(9(1) = Si0 g(DIp'a™™ = 4" Sio g(M() () =0
=g () + 9 2+ +gm@) (2) =0
=g0)=g1) = =gn) =0=g(T) =0.

Thus, T 1s complete sufficient statistic for p.

Example 3.11:

Let X1, X, ..., Xp,~0e =%, x > 0. Show that T = ', X; is a complete sufficient statistic for 6.

Solution:

Since X~Exponential (%), then the distribution of T = })[-; X; is given as

Mr(s) = E(e®) = E(e¥7) = (My, () = (55) .

0-t
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Which is the mgf of Gammma (n, ). Thus, the pdf of T'is

gn
fr(t) = o) t"le 9t >0
0 on 1 —
Then, E(g(M) = J, 90 r5t" e dt =0

Only g(t)%;t"_1 =0 g(t)=0,forall T.

Therefore, T is complete sufficient statistic for 6.

Score Function

Let X;,X,, ..., X;, be a random sample from probability distribution f(x,8), then the score function, u(8), is the
derivative of the log-likelihood function with respect to the parameter 6:

u(9) = ilogL(x, 6)

a0
Properties of Score Function:
1. Mean
E[u(0)]=0
Proof:

E[u(9)] = E [:—elogL(x, 9)]
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2
= fxl ...fan(x, 9) (%logL(x, 9)) dx,, ...dx,

dL(x,0)
= fx1 f L(x,0) (L( 9)> dx, ...dx;
F) F)
=) ...fan(x, 0) dx,, ...dx; = %(1) =0

2. Variance (Fisher Information)

2
Var[u(8)] =E <aae logL(x, 0))

Proof:

Var[u(6)] = [(u( 6)) ] — (E[u()]?

Since E[u( 8)] = 0, then

Var[u(8)] = E [(u( 6)) ] E <6 logL(x, 9))

Fisher Information:
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The Fisher information, Iy (8) or I,,(6), of a random sample X, X, ..., X,, about @ is defined as

2
d 0
Ix(8) =Var %logL(x, 9)] =E (69 logL(x, 9))

Properties of Fisher Information:

1. 1y(0) = —E[
Proof:

LetL = L(x,0),L = iL(x 0) and L = aezL(x 9), then
a‘9210gL(x 0) = —[—logL(x 9)] [f]

_L”L (LI)2 L” (Lr)2

27 logL(x, 0)]

2 - -o[]
062
The first term in the right 31de can be written as
E[—] anL dx,, ...dx,
a
=5 ). ...fan(x, 0) dx,, ...dx; = 692 (1) =0

The second term is obtained as

E [(%)2] —F l(%—?)z —E [(:—elogL(x, 9))2]

Then,
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E [aezlogL(x 9)] E [—] E[ ] — [(:—BlogL(x, 9))2]
This implies that,
Iy(6) =E [(:—elogL(x, 9))2] —E [692 logL(x, 9)]
. Ix(0) =nlI(0)

where 1(0) is the Fisher information at one observation defined as

0
1(0) =Var <%logf(x 9))

0
—log f(x; 9)] =F =—FE [agzlogf(x, 9)]

5
Proof:
) 9 «n n d
1(0) =Var [ﬁlogL(x, 9)] = Var [5 ieq log f(x;; 9)] =i Var [£Logf(xi; 9)] =nl(6).

. If X and Y are two independent random samples from probability distributions f(x,0) and f(y,0),
respectively, then

Ixy(0) = Ix(0) + Iy(0)
Proof:

Iyy(6) =E :(%logL(x, Y, 9))2]

I 2
=F (;—elog(L(x, 0)L(y, 9))) ] (Since X and Y are independent)
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2
d 0
=E [(ﬁlogL(x, 0) + %logL(y, 9)) ]
—E(il L( 9))2 +E(il L( 9))2 +25(il L( 9))15(11 L( 9))
— 20 08LLX, 00 08LLY, 20 08LLX, 00 08LLY,

9 2 9 2
=E <£logL(x, 9)) +E (ﬁlogL(y, 9))

= Ix(6) + Iy (6)

Examples 3.12:

Let X;,X,,...,X,, be a random sample from normal distribution with parameters 0 and 6. Find the Fisher
information of 6, Iy (6).

Solution:

We know that the normal distribution when = 0 and 62 = 0 is given by
xZ
e 20,—00 < x <

f(X, 9) =

V2r6
The likelihood and the log-likelihood functions are then obtained as

_n _Llen 2
L(x,0)=(2n0) 2 e 20~=1""

log L(x, 6) = — 7 log(2m) — 7log(6) — 5, Tk, x,”
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1. Iy(6) =Var [:—BlogL(x, 9)]
From the log-likelihood function, we get the first partial derivative with respect to 8 as

2 logL(x,0) = — = +ZZT"
1= Xl ? i
IX(H)_Var[__+224192 ]_462V [Z 7 ]

Z‘):l_ X.Z 2 Tl_ X-z . e .
Note that: % =Y, Zf ~xZ, then Var [%] = 2n, and this implies that

n

IX(Q) =2 =2

402 202

2. Ix(6) =nl(0)
log f(x,0) = _llog(Zn) — %k,g(g) _ ;c_g
%logf(x 0) = _E-l_ﬁ
Ix(0) =nI1(0) =nVar [—Ing(x 0)] —nVar [__ 4 2):2]

X2
=5z Var ?]

2 2
Since, X? = Z?%~x2, then Var [X?] = 2, therefore we get

Ix(0) = o

3. 1,(8) = —E [ 2 logL(x, 9)]
First, we should find the second partial derivative of log-likelihood function with respect to 8, which is equal

to

76




STAT 340 Theory of Statistics 1 Dr. Samah Alghamdi

9% _n 3hx?
TP logL(x,0) = Y TR
92 X2 Y E(Xi%)
Ix(6) = —E [-251ogL(x, 0)] = —E [ - BeXe] = _ 24 T PO

From definition of variance,

Var(X) = E(X?) — (E(X))" = E(X?) = Var(X) + (EX)) =6 +0=10
Then,

n no n
() = =55z + 5 = 562

Regularity Conditions:
(1) logL(x,8) or log f (x, 0) is differentiable for all 6.

.. 0 3
(i) 5/, ...fan(x; 0)dx, ..dx, = fxl ...fxngL(x; 0)dx,, ...dx;
2

(i) =5 f, - fxn t(xy, .., %) L(x;0) dx,, ...dx;
3
= fxl ...fxn E(x1, s Xn) 55 L(x; 0) dxy ... dxy

2
(iv) 0<E|>logL(x;8)| < oo, forall6.

3.2.7 Minimum Variance Unbiased Estimator (MVUE)
If a statistic T be an estimator for a parameter 7(8), is called to be a MVUE for 7(0) if
1. E(T) = 7(0) unbiased estimator of 7(6).
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2. Var(T) has minimum variance compared to any other unbiased estimator.

Theorem 3.10: Cramér-Rao Lower Bound (CRLB)

Let X5, ..., X;, be a random sample from f(x,0) and T (X, ..., X,,) be an unbiased estimator of 7(6) such that 7(0)

is differentiable function of 6. Then, under the regularity conditions, the minimum variance of any unbiased
estimator 7' 1s

(7(8)"
Var(T) = 1 (0)

Proof:

Since 7 is an unbiased estimator of 7(0) [i.e. E(T ) = 7(8)]. Then, under the regularity conditions, we get

£(8) = %r(e) = % E(T) = %f o [ty ey x)L(x; 0) dxy ... doy,

£(0) = [ o [ tQty, s X)) = L(2;6) dity ... dity
= [ tler, e, xn) [%logL(x; 9)]L(x; 0)dx; ...dx,
= [ t(xy, e, xp) [;—elogL(x; 9)]L(x; 0)dxy ...dx, — [ ... [ t(8) [%logL(x; 9)]L(x; 0)dx; ...dx,

= [ o [[tCp, o, %) — T(0)] [;—glogL(x; 9)] L(x; 0)dx, ...dx,
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= E[ t(xqg, e, X)) — T(0)] [—logL(x 9)”
Now consider the covariance of T and score function as following
d d d ,
Cov|T,—~1ogL(x; 0)| = E [T —log L(x; 0)| — E[TIE | = log L(x; )| = £(6)

Now by the Cauchy-Schwarz inequality, we get

|Cov [T < Var|[T]Var [69 log L(x; 9)]
Then,
P 2
[£(0)]% < E[t(xy, ..., %) — T(0)]? E [%log L(x; 9)]
[£(8)]?
or Var[T] = o)
. 2
Remark: If there exists an unbiased estimator 7" of 7(8) that its variance attains the CRLB = %, then 7'is an

MVUE estimator of 7(8).

3.2.8 Efficiency
An unbiased estimator 7 of 7(6) is called an efficient estimator of 7(8) if and only if
(T) = CRLB _
eff () = Var(T)
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Theorem 3.11:

If T; and T, are both unbiased estimators of 7(8), then the efficiency of T; and T, is defined as follows
Var(Ty) (7 1, T, ismore efficient than Ty
1

eff(T, T,) = Vo (T = 1, T; and T, are equally efficient
ar(Tz) <1, T, ismore efficient than T,

Asymptotic Efficiency
An unbiased estimator 7 of 7(0) is called an asymptotically efficient estimator of 7(8) if

) ) — i CRLB
aim eff(T) = lim Var(T)

Example 3.13:

If X1, X,, ..., X, has an exponential distribution with parameter % Let T; and T, are unbiased estimates of A and %,
respectively. Find CRLB of T; and T,.

Solution:
The pdf of the exponential distribution with parameter % is given by

fl, ) =2, x>0

Then, the likelihood and the log-likelihood functions are obtained as
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Lo, ) =1, f(x,A) = Ame-AZixi
logL (x,A) =Y logf(x;,A) =nlogd —AY" x;

Taking the first and second partial derivatives of the log-likelihood function with respect to A, we get

9 ogLx,2) =2 N
o7 o8lted) =7 in
=1

2 n
FYE —logL(x,A) = =

Then, the Fisher information of A is derived as
Iy(A) = —E [6/12 logL(x, /1)] =7

Now, we want to find the CRLB for T; and T, of the two cases when (1) = A and when (1) = %

The case when 7(1) = A= t'(1) = 1, then the CRLB for T is

(7' (,1)) yE
CRLB(T,) = MOREEY, /12 =—
The second case, when T(4) = % = 7'(1) = — =, then the CRLB for T, is

(z (/1)) (=125 1
LA — n/22 nA?

CRLB(T,) =

Note that CRLB(T,) < CRLB(T;) and
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_ *Var(X;)) 1 n
=1 4
VCU'(X) = nz :Fﬁ:_
Then, X is an efficient estimator of % such that
FFR) = CRLB(X) _
¢ T VarX)

Remark: X is the MLE of %

Example 3.14:

1
ni?

Let X;, X5, ..., X~ Poisson(4). Find CRLB of the MLE of 4 and prove it is an efficient estimator.

Solution:

From Example 3.1 and Example 3.4, we get the MLE of 1 is T = X and it is an unbiased estimator of A where

D) =A=>7QA) =1
The pdf of Poisson distribution with parameter A is defined as

et Ax

flx, 1) = x=0,12,..

x!
The logarithm function of the pdf and the derivatives are

log f(x,A) = xlogd — A —logx!

dlogf(x,1) x

ER 71
0%logf(x,1)  «x
02 )2
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Then, the Fisher information is given as

d%log f(x, 1) _ nE(X)

n
IX(A) = Tll(ﬂ.) = —TlE[ EYE ﬁ i

where E(X) = A. Therefore, the CRLB is equal to

C@W) 1 2
CRLB =3 _g_a

Note that Var(X) =% and thus the variance of the MLE equals to the CRLB. Therefore, the MLE, X, is an

efficient estimator of A.

Example 3.15:
Let X;, X5, ..., X,, be a random sample from N (u, 52). Show that,
(i) X is an efficient estimator of p.
(i) S? = ﬁ m ,(X; — X)? is an asymptotically efficient of g2.

(iii) §% = % m (X; — w)? is an efficient estimator of o2 if u is known.

Solution:

The pdf of the N (u, a2), the likelihood and the log-likelihood functions are

— 5 (x—p)?
flx,u,0%) = e 27 x>0

2TTO
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L(u,02) = (2m)73 (02)" % e~ 202 Sma (i k)’
1
log L(,0%) = = 7log(2m) — ;log(c?) — 5= XL, (x; — )2,

The first and second partial derivatives with respect to u and o are

dlogL 1 dloglL n 1 n 2
a” - ; lzl(xl - I’l')ﬁ 60'2 - 20_2 + 20_4 lzl(xl - I’l)
d%logL _  n 9%logL _ n 1 «n 2
K o0t~ aer  gelizi (i T H)

Now, to study the efficiency, we need to determine the unbiasedness, CRLB and the variance:

(i) The efficiency of X:
From Example 3.6, we get
— _ 2
E(X)=pandVar(X) = %

i.e. X is an unbiased estimator of u. Now, the Fisher information of y is given as
02 5 n
Iy(w) = —E a—uzlogL(ﬂ, o) =—

Thus, the CRLB of X is

CRLB(X) = —(jx(ég)) = %2

which is equal to the variance of X, then we conclude that the estimator X is an efficient of u. Notice that, X is
the MLE of pu.
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(ii) The efficiency of $? = X=X

E(S*) =E

n
1 _
—— (- %)
— 1 =
i=
We know from Section 2.3, when X;~N(u,2),i = 1,2,..,n, then

(n—1)8*  YLi(X;—X)?
o2 B o2

~Y2
n-—1

4
and E(S?) = 02, Var(§?) = % Thus, S? is an unbiased estimator of 2. The Fisher information of ¢? is

given by
2 0* 2 n 1% 2
Iy(0%) = —E ﬁlogL(u,a )| = —ﬁ'F;Z E(X; — )
i=1
From Corollary 2.2, when X;~N(u,02%),i = 1,2,..,n, then

P (B ~xz and B[z, (22) ] =0

g

Therefore,

2N n Tl_ n
o) = ogat 5i = 200

Now, the CRLB i1s obtained as
( (02)) 1 20"

CRLB(S®) = Ix(0?) n/204 n

85




STAT 340 Theory of Statistics 1 Dr. Samah Alghamdi

CRLB(S?*)  20*/n n-1
Var(§2) 20%/n—1 n

eff(5?) =

n—1 1
lim ef f (§%) = lim = lim (1——)=1
n—oo n—-oo

n n—oo

Then, §2 is asymptotically efficient of o2

(iii) The efficiency of S7 =~ X1, (X; — p)?:
From Corollary 2.2, when X;~N(u,02%),i = 1,2,..,n, then

n (Xiz# 2~ 2
i=1 An

(2

Therefore, the mean and the variance of S7 are calculated as follows

n
X — u\? nS? n
Z( : “) ]=n=>E[—22]:n=>—2E(522)=n=>E(522)=02
o o

o
i=1

E

Var

= Xi—m’| nSy| n? - . 20"
=2n = Var |—| =2n = —Var[S;] = 2n = Var(§;) = —
L\ o a2 ot n
i=

Now, the CRLD and the efficiency of SZ are

1} 2 2 4
2_(1(0))_ 1 2
CRLB(S;) = Iy(c2) n/20% n
CRLB(S?) 20*/n

Var(S%?) =~ 20%/n

eff(S3) =
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Thus, S7 is an efficient estimator of 2.

Theorem 3.12: (Rao-Blackwell Theorem)

Let X;,..,X, be a random sample from f(x,60),0 may be a vector of parameters; and let S; =
s1(X1, v, X3), o, Sk = s (X4, ..., X;,) be a set of jointly sufficient statistics. Let the statistic T = t(X4, ..., X;,) be an
unbiased estimator of 7(8). Define,

T'=E(T|Sq, ..., Sk)
Then,

1. T'is a statistic and it is a function of the sufficient statistics Sy, ..., S,. Write T’ = t'(Sy, ..., Sk) .
2. T'is an unbiased estimator of 7(0); E(T") = t(0).
3. Var(T") < Var(T) forall 8, and Var(T') = Var(T) iff T' =T.

Proof:

1. §;,...., S, are sufficient statistics; so, the conditional distribution of any statistic T, given Sj,....,S; 1s
independent of 8, hence T' = E[T|S;, ...., Sx] is independent of 8, and so T' is a statistic which is obviously a
function of S, ...., Sk.

2. E[T'] = E[E[T|Sy, ...., S]] = E[T] = ©(6) [using E[Y] = E[E[Y]X]]].
3. we can write
MSE[T] = Var[T] = E[(T — E[T'D?] = E[(T = T' + T' — E[T'])?]
E[(T —T")?]+ 2E[(T — T")(T' — E[T'D] + E[(T" — E[T'])?]
E[(T —T"?] + 2E[(T = T')(T' — E[T'D] + Var[T']
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But
E[(T =T )YT'—E[T'D] = E[E[(T = T')(T' = E[T'DISy, ..., Si]]
and
E[(T =T )T —E[T'DIS1 = 515 -5 S = k] = {t' (51, oo, 56) —E[T'BENT —THIS; = 545 w5 S = ]

={t'(s1, s Si) — E[T'I}E[T|Sy = 515 5 Sk = 5] — E[T'[S; =
S1; s S = Sg])

= {t'(sy, ..., Sx) — E[T']}[t' (51, ., Sk) — t'(S1, ., SE)] =0
and therefore
Var[T] = E[(T — T")?] + Var[T'] = Var[T']
Note that Var[T] > Var[T'] unless T equals T' with probability 1.

Example 3.16:
Let X3, ..., X;, be a random sample from the Bernoulli(p)

fGsp) =p*q' ™, x=0orl
and let T = X; be an unbiased estimate of p. Find a MVUE of p.
Solution:

Since, T = X; is an unbiased estimator such that E(T) = E(X;) = p. From Example 3.9, we get S = )", X; is a
sufficient statistic. According to the Rao-Blackwell Theorem
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1
T = E(TIS) = ECGITi XD = ) X, POGI T, X))

= (0)P(X; = 0|XiL, X; = ) + (DPX; = 1[Xiz1 X; = 5)

_ P(x;=13%X;=S) _ P(X;=1)P(T},X;=5-1)

P, Xx;=S) P(Zi, Xi=S$)
p (2 )pS Lgn-s _ (n-1!  Si(n-5) _ S _ X
(n) pS qn-S T (S-D!(n-S)!  n! T n

Thus, T’ = X is a statistic and a function of a sufficient statistic S and an unbiased estimator of p where E(T') =
E(X) = p. Therefore, T' = X is a MVUE of p with minimum variance such that

_ m X 1 rq
T") = Var(X) = —— | = Snpg =—
Var(T") = Var(X) Var( " ) 2 Pq =
While, V(T) =V(X,) =pq

Thus, V(T <V(T)

Theorem 3.13: (Lehman-Scheffé Theorem)

Let X3, ..., X,, be a random sample from f(x, ), 8 may be a vector of parameters (04, ..., 0y). If S = s(S;, ..., Si) is
a complete sufficient statistic and if T* = t*(S) a function of S, is an unbiased estimator of t(8). Then, T"is
UMVUE of 7(8).

Proof:
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Let T’ be any unbiased estimator of T(68) which is a function of S; thatis, T' = t'(S). Then E[T* — T'] = 0 for all
0 € @,and T* — T' is a function of S; so by completeness of S, P[t*(S) = t'(S)] = 1 for all 8 € @. Hence there is
only one unbiased estimator of T(0) that is function of S. Now let T be any unbiased estimator of 7(6). T* must be
equal to E[T|S] since E[T|S] is an unbiased estimator of t(6) depending on S. By Theorem 3.11, Var[T*] <
Var|[T] for all 8 € @; so T*is an UMVUE.

Example 3.17:

Let X, X,, ..., X,, be a random sample from the Exponential( ),
1
flx,p) = Ee"‘/ﬁ. x>0

Find UMVUE of f and %.

Solution:

Since the exponential distribution is a member of the exponential family, then S = )., X; is a complete sufficient

.. : . : : 1
statistic. Thus, we need to derive two functions of S that are unbiased estimators of § and 5

1. Put Ty = ¢S, c is a constant such that

« 1
E(T)) = B=E(cS) =B = cESE,X)=p=>cnf=f=c=1
Thus, T; = ¢S = X is a UMVUE of §5.

2. PutT, = % , ¢ 1s a constant such that
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1
5 =) =8 (gx) =5
Since, S = Y} X; ~ Gamma (n, ), then

(l)zfool E S"‘le‘s/ﬂds=r(n_1)ﬁn 1= !
S o sT(m)B" r(m)p» (n—1pB
Thus,
. 1 1 1
E(TZ)—CE(§> (n—l)ﬁ_E:C n—1
Therefore, T, = ST 1Xi isa UMVUE of -

3.3 Properties of Maximum Likelihood Estimators

Let X;,X,, ..., X, be a random sample with probability distribution f(x,8). If MLE = 8 of 6 and under certain
regularity conditions, then @ satisfies the following properties:

1. Invariance: Let h(0) be a function of 8. Then, T = h(é) is the MLE of h(6).

2. Sufficiency: If a sufficient statistic exists for 8, the MLE of 8 must be a function of it.
3. Asymptotically unbiased: lim E (9) =0
4
5

n—oo

. Consistency: lim P(|9 9| > e) =0, Vo

n—-oo

. Asymptotic efficiency: If a most efficient unbiased estimator 7 of 0 exists (i.e. 7 is unbiased and its variance
is equal to the CRLB). Then, the maximum likelihood method of estimation will produce it.

6. Asymptotic normality: The MLE 8 of 8 has asymptotic normal distribution such that
~ d 1
Vn(6—0) - N( (9)) n — oo where Var(8) = CRLB(9) = e
In general, if 7(6) be the MLE of 7(0), then 7(8) has distribution as

@)
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Va(#(©) = 7©) > N (o, (”(9))2) or #(6) N (<(6), (T’(‘”)Z).

1(6) ni(o)

3.4 Location and Scale Invariance

3.4.1 Location Invariance:
Location Parameter:

Let f(x) be any pdf. The family of pdfs f(x — u) indexed by parameter u is called the location family with
standard pdf f (x) and u is the location parameter for the family.

Equivalently, u is a location parameter for f (x) iff the distribution f(x — @) does not depend on pu.
Location Invariant:
Let X3, X5, ..., X;, be a random sample of a distribution with pdf (or pmf); f(x, u), u € Q.

* An estimator t(x4, ..., X, ) is defined to be a location equivariant iff

t(x; + ¢, .., xy +¢) =t(xy,...,x,) + c for all values c.

* An estimator t(x4, ..., X,) is defined to be a location invariant iff
t(x; + ¢, .., x, +¢) = t(xy, ..., x,) for all values c.

Example 3.18:
« If X~N(6,1), then the distribution of X — 8 ~N(0,1) is independent of & — 8 is a location parameter.

e Lett(xy,..,x,) = X. Then,
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Xp+c+txp+c  xi++xptnc
t(x; + ¢, x,+¢) == L = L

n n

=X+c=t(xg,..,x,) +cC

— X is location equivariant.

* Lett(xy,...,x,) = §2 = ==Y, (X; — X)2 Then,

t(x; +¢ ., x,+¢) = — X+ —(X+ c))2 =52 = t(xq, o, X))

1
n_

— S?2 location invariant.

3.4.2 Scale Invariant:

Scale Parameter:

Let f(x) be any pdf. The family of pdfs % f (g) for 0 > 0, indexed by parameter o is called the scale family with
standard pdf f (x) and o is the scale parameter for the family.

Equivalently, o is a scale parameter for f (x) iff the distribution % f (g) does not depend on o.

Scale Invariant:
Let X;, X5, ..., X, be a random sample of a distribution with pdf (or pmf); f(x,0), 0 € Q.
* An estimator t(xq, ..., X, ) 1s defined to be a scale equivariant iff

t(c xq, ...,C Xp) = C t(xyq, ..., x,) for all values c.

* An estimator t(x4, ..., X,) is defined to be a scale invariant iff
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t(c xq,...,c x,) = t(xq, ..., x,,) for all values c.

Example 3.19:

* If X~Exponential (%), then the distribution % f (g) is independent of & — 6 is a scale parameter.

e Lett(xy,..,x,) = X. Then,

c (xq++xp)

~ =cX=Ct(X1;---;xn)

t(cxq, .., CXp) =

— X is scale equivariant.

X4

e Lett(xq,..,x,) = . Then
( 1 ) n) X1+X, s
CX]_ X1
t(cxq,...,CX,) = = = t(xq,...,%x
( 1 ) n) ¢ X +c X, X1+X, ( 1 ) n)
X, . ) )
— 1s scale invariant.
1+X>

3.4.3 Location-Scale Invariant:

Location-Scale Parameter:

Let f(x) be any pdf. The family of pdfs % f (%) for 0 > 0, indexed by parameter (u, o) is called the location-

scale family with standard pdf f(x) and u is a location parameter and o is the scale parameter for the family.
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Equivalently, u is a location parameter and ¢ is a scale parameter for f(x) iff the distribution i f (%) does not

depend on u and o.

Location-Scale Invariant:
Let X, X5, ..., X, be a random sample of a distribution with pdf (or pmf); f(x,0), 0 € Q.

* An estimator t(x4, ..., X,) is defined to be a location-scale equivariant iff

t(cx; +d,...,cx, +d) =ct(xq,..,x,) + d forall values ¢ > 0 and d.

* An estimator t(xq, ..., X, ) 1s defined to be a location-scale invariant iff
t(cxy+4d,...,cx, +d) = t(xq, ..., x,,) for all values ¢ > 0 and d.

Example 3.20:

e If X~N(u.0?),then the distribution of Y = % ~N(0,1) is independent of u and 6?2 — u and o? are
location-scale parameters.
e Lett(xy,..,x,) = X. Then,

t(cx; +d,..,cx, +d) = C(x1+":x")+nd =cX+d=ctlxy,..,x,) +d

— X is location-scale equivariant.

Yn — Y1

o Lett(xy, ..., xp) = S

. Then,
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t(cx,+d,...,cx,+d) =

_ (cYp+d)—(cY1+d) _ cYp—cYy

_ Yn—-Y;

cS+d

Y, —Y; . ) ) )
— "Tl is location-scale invariant.

cS

S

== t(xl,
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Chapter 4: Interval Estimation

Chapter 3 dealt with the point estimation of a parameter or made the inference of estimating the true value of the
parameter to be a point. In this chapter, we might make the inference of estimating that true value of the parameter
is contained in some interval that is called interval estimation.

Confidence Interval:

Let X;,X,,...,X,, be a random sample from f(x,0). Let T, = t;(Xy,...,X,,) and T, = t,(X4, ..., X,) be two
statistics satisfying T; < T, for which P(T; < 1(0) < T,) = 1 — a, where a does not depend on 6, then the
random interval (Ty,T,) is called 100 (1 — a)% confidence interval for 7(0), a is called the confidence
coefficient and T; and T, are called the lower and upper confidence limits, respectively, for 7(6).

4.1 Confidence Intervals from Normal Distribution

In this section, we derive confidence intervals for the mean u and the variance o2 when the random sample
X4, X5, ..., X, has normal distribution.

4.1.1 Confidence Interval for the Mean
There are two cases to consider depending on whether or not a2 is known.

First Case (62 is known):
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If the sample is selected from a normal population or, if z is large enough, (Theorem 2.3 and Theorem 2.4) the
sampling distribution of the sample mean X when a2 is known is given by

X—pu
o/vn
Then, we establish a 100 (1 — a)% confidence interval for 4 when a2 is known as following:
X—-u 1
a/\/ﬁ<zl—%)_1 a

> o > o
P (X _Zl—%\/_ﬁ <u<X +Z1-%Tﬁ)

~N(0,1)

P(—Zl_%<
=1—a

where z, _a is a value from z-table.
2

Second Case (o is unknown and n<30):

Now, we turn to the problem of finding a confidence interval for the mean u of a normal distribution when we are
not known the variance o2 and the sample size n is small. In Theorem 2.11 we found that

X—

£ ~t
S/\/% (n—1)

where S is the sample standard deviation. Then, we can find 100 (1 — @)% confidence interval for u when o2 is
unknown as following:

X-u 1 _
P (_t(l—%,n—l) < S/un < t(l—%,n—l)) =1l—-a

S

1-%n-1) Jn =1l-a

= - S
P(X—t <,u<X+t(1_%’n_1)\/—ﬁ)
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where t-e

o1 is a value from t-table with n — 1 degrees of freedom.
>

Example 4.1:

Let X1, X, ..., X;0 be a random sample from N(u, 16) and let the sample mean X be 3.67. Find 95% confidence
interval for the population mean pu.

Solution:

Since population variance is known, 2 = 16, and X = 3.67, n = 10; then 95% confidence interval for the
population mean u is
4

V10

3.67 +z,_

N|

where, the value of z-table z, _ o is found as
2

a a
1-a=095=a=005= §=0.025:1—E=0.975

— Zl—% = Zpg75 = 1.96

Then, 3.67 + 1.96 — = 3.67 + 2.4792
V10

= p € (1.1908, 6.1492)
4.1.2 Confidence Interval for the Variance

Let the random variable X be N (u, 62). We shall discuss the problem of finding a confidence interval for 2. Our
discussion will consist of two parts: the first when u is a know number, and second when p is unknown.
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First Case (u is known):

Let X;, X5, ..., X,, denote a random sample of size n from distribution that is N(u, 02), where u is known. From
Corollary 2.2, we got that

Z?:l(xi_”)z ~
0—2

X

Let us select a probability, say 1 — a, then 100 (1 — a)% confidence interval for 62 when u is known is given by

2 ?:1(Xi_ﬂ)2 2 _
P (X(l—zﬁ.n) ST < X(%n)) =l-a

no(Xi—u)? nox.—u)?
P <21_1g i—) < 0_2 < 21_21( i—H) > —1— a
X(% ) Xa- %)

where X?gn) and Xé_ « . are x* values with n degrees of freedom.
>

2™
Second Case (u is unknown):

Now, we discuss the case when u is not known. This case can be handled by making use of the facts from Theorem
2.8 that

(n-1)s2

n v\ 2
2 i=1(Xi—X) 2
> ~“Xn-1 O — o —~

o2 Xn—l

g

when the sample variance s? is computed. Then, for a fixed positive integer n = 2, we can find a 100 (1 — a)%
confidence interval for 2 as

2 (n-1)s? 2 _
P (X(l—%,n—l) <752 < X(%,n—l)) =l-a
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_ 2 _ 2
p(ﬁgiqugni):l_a

X( %,n—l) X(l— %,n—l)

where x?%’n_ H and x?l_ &n1 are x° values with n — 1 degrees of freedom.

)

Example 4.2:

Let X;,X,, ..., X,5 be a random sample from normal distribution when the sample variance is equal to 2.3. Find
90% confidence interval for the population variance 2.

Solution:

We want to construct a confidence interval for 02 when the population is normal with unknown mean, thus we
should use the following case

p <2z§(2.3) co? < 224(2.3) ) — 0.9

X(Z24) Xa-%24)

55.2 55.2
Pl—"-<o0?2<- =0.9
X 224) X(1- 2.24)

a a
1—a=0.9ﬁa=0.1:E=0.05$1—E=0.95

= X{o00524) = 3642 and  X{g54) = 13.85

55.2 552
36.42°13.85

= o’ € ( ) = o2 € (1.5157,3.9856)
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4.2 Pivotal Quantity Method
Pivotal Quantity:

Let X;, X5, ..., X, be a random sample from f(x, 8). Let Q = q(X3, ..., X;;; 0) be a function of Xy, ..., X, and 8. If Q
has a distribution that does not depend on 8, then Q is defined to be a pivotal quantity.

Example 4.4:
Let X;, X5, ..., X;, be a random sample from N( 8,9). Then,

1. X— 6~N (0 ) and TNN(O 1) are pivotal quantities.

2. X —26~N (—9,;) is not pivotal quantity.

Pivotal Quantity Method:

If Q = q(Xy,...,X,; 0) is apivotal quantity and has a probability distribution, then for any fixed 0 < a < 1 there
will exist g; and g, such thatq; < g, and P(q; <Q<q,) =1—«

Therefore, we can find 100 (1 — a)% confidence interval for 7(0) as
P(ti(x1, 0, %) <T(0) < ty(xq, 0, %)) =1—«

where t; and t, are functions of the random sample does not depend on 6.
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Remark:

If X;, X,, ..., X;, 1s a random sample from f(x, 8), and the corresponding cumulative distribution function F(x, 8) is
continuous in x. Then, a pivotal quantity can be given as

Q =—2X1,logF(x;6)~ X5,
Then, the (1 — @)100 % confidence interval for T(8) is given as

2 2 4
P (X(l—%,Zn) <@< X(%.zn)) =1l-a

Example 4.5:
If X, ..., X;, be a random sample from the density function
fx)=0x%"1, 0<x<1

Find a pivotal quantity for 8 and use it to construct 100(1 — a)% confidence interval for 6.
Solution:
The CDF of x is given by

F(x) = f(f@xe‘ldx =x% 0<x<1
So, the pivotal quantity can be of the form

Q=-2Y",logx? =-20%" logx;

where Q~ x3,,, then one can construct 100(1 — @)% confidence interval for 8 as
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2 2 — _
P (Xu—%.zm <@s< X(%Zn)) =1l-a

n
2 2 _ 1
P <x(1_%’2n) < —ZQZ logx; < X(%,m)) =1—a

=1

2 2
X&) o< ~X1-Zom)
2y logx; 23 logx;

4.3 Large Sample Confidence Interval

From Section 3.3, the MLE 8 of 6, has an asymptotic normal distribution when n is large which is given by

V(8 -0)5N(0,5) or 85N (6,—1)

Thus, we can write

~

1/\/ni(6)

Use the distribution of the MLE 8 to construct 100(1 — a)% confidence interval for the parameter 6 as following:

~ N(0,1)

P(-z,_a <—~ <z a)=1—«

2 1/Jnl(0) 'z
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<0<0+z «a

. 1 1
-2z « =1-—
P< Zl_fw/nl(e) 1‘?,/n1(9)> :

In General:

Since the MLE £(8) of 7(8), has an asymptotic normal distribution when n is large as following:

(0 2
0 ﬂzv<r(9), (:5 (;% )

T(H) —1(0)
T(B)/Jnl(e

Then, 100(1 — @)% confidence interval for the parameter 7(6) is given by

t(6) - T(9)

P(-z,_a< )—1—a

2 1(9)/,/n1(9

1(6) t(6)
1(0) — a 0 (6 a =1-
P (T( ) Zl_E 1) <1(0) <t(0)+ Zl_E nI(Q)) 1—«a

~N(0,1)

Example 4.6:
Let X~Exponential(f) with large sample size. Construct 100(1 — a)% confidence interval for .
Solution:

The pdf of the exponential distribution with parameter f is defined as
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f(x,B) =%e‘x/ﬁ, x>0

We found from Example 3.2 and Example 3.3 that the MLE of 8 is X and it is an unbiased estimator (i.e. E(X ) =

). Thus, X has an asymptotic normal distribution that is

X~N(ﬁ,%)

Now we need to derive the Fisher information, 1(0):

log f(x;0) = —logp _x

B
61 9 = 1 x
55108/ (x; )__E-I_E

1(0) =Var [aa—elogf(x; 9)] = Var [_l_i_ﬁ] _Var(x) 1

B B?
The asymptotic normal distribution of the MLE is

)?~N([)’,%2) or

Thus, 100(1 — a)% confidence interval for £ is obtained as

X-pB

P(—Zl_%<\/ﬁ<%{—1> <Z1_%) =1l-a

Z

a v Z a
I S R |
vn B Vn
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Z,_a
2 2 142
p Vn
<B< Xyn

Vn—z,_a
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Chapter 5: Bayesian Estimation

In the last two Chapters 3 and 4, we assumed the random sample came from some known probability distribution
f(x,0) and we used the classic method to estimate the unknown parameter & which was some fixed. In this
Chapter, we will estimate 8 using the Bayesian method which is define the unknown parameter 6 as a random
variable and has a distribution depending on previous information called prior distribution.

Prior and Posterior Distributions

Consider a random variable X that has a distribution of probability that depends upon the symbol 8, where 6 is an
element of a well-defined set (). Let us now introduce a random variable ® that has a distribution of probability
over the set (). The probability distribution h(8) is called the prior distribution of ®. Moreover, we now denote
the probability distribution of X by f(x|8) since we think of it as a conditional distribution of X, given ® = 6. For
clarity in this chapter, we will use the following summary of this model:

X160 ~ f(x]6)
® ~ h(8)
Thus, we can write the joint conditional distribution of X, given ® = 0, as
L(x10) = f(x110)f (x216) ... f (x,16)
Thus, the joint distribution of X and © is
9(x,0) = L(x|0)h(6) (5.1)

The marginal distribution of X is given by
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(x,0)d0, if O is a continuous
9:(x) = fe I
Yo 9(x,0), if@isadiscrete

In either case the conditional distribution of ©, given the sample X, is

gx6) _ L(x]0)h(®)

k(010) =707 9100

(5.2)

The distribution defined by this conditional distribution is called the posterior distribution. The prior distribution
reflects the subjective belief of ® before the sample is drawn while the posterior distribution is the conditional
distribution of © after the sample is drawn. Further discussion on these distributions follows an illustrative
example.

Example 5.1:
Consider the model
X;|6 ~iid Poisson (60)
® ~ I'(a, B), a and B are known

Hence, the random sample is drawn from a Poisson distribution with mean 6 and the prior distribution is I'(a, )
distribution. Thus, in this case, the joint conditional pdf of X, given ® = 0, is

0*1e=9  QGrneg—0

x! T x,!

L(x|8) = ,,=0,1,2,...,i =1,2,....,n,

and the prior pdfis
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h(@)—gr( VE ,0<0 <o

Hence, the joint mixed continuous discrete pdf is given by

0
X1~ QXne=07|gr "1 B
g(x,0) = L(x|6)h(0) = [ , ]

x! T x,! ['(a)B*
B+1
92?=1xi+a—1e_(n,8 )9
i= 1xl F((Z)ﬁa
Provided that x; = 0,1,2,3, ....,i = 1,2, ...,nand 0 < @ < oo. Then, the marginal distribution of the sample, is
n _(@)9
® @Li=1 Xita—1o \" B rQh, x +a)
gl(x) = f X F((X)ﬁa do = ﬁ +1 Yo xita
0 1 n i=1*1
- e X! T(a ),Ba( B )
Finally, the posterior pdf of ©, given X = x, is
__ 6
; (w#+0)
g(x, 9) gri=1xita-1o \np+1
k(6]x) = = 7
g1(x) B \Li=atite
M(Zh, x + a) (m)
Provided that 0 < 6 < co. This conditional pdf is one of the gamma type with parameters a* = ), x; + @ and
g = L . Notice that the posterior pdf reflects both prior information (e, ) and sample information (3=, x;).

np+1
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C B
9|Xl ~F<in+a,nﬁ+1>

i=1
Remarks:

1. In Example 5.1 notice that it is not really necessary to determine the marginal pdf g, (x) to find the posterior pdf
k(0|x). If we divide L(x|0)h(6) by g,(x), we must get the product of a factor, which depend upon x but does not
depend upon 6, say c(x), That is,

6

(_B
k(8]x) = c(x) = xita-1, (n[f+1)

Provided that 0 < 8 < oo, and x; = 0,1,2,3,....,i = 1,2, ...,n. However, c(x) must be that “constant” needed to
make k(0|x) a pdf, namely

1

M(Z, x + a) (ng’%

Accordingly, we frequently write that k(8|x) is proportional to L(x|0)h(0); that is, the posterior pdf can be
written as

C(.X) = )Z?zlxi+a

k(0]|x) < L(x|6)h(0) (5.3)
Note that in the right-hand member of this expression all factors involving constants and x alone (not 8) can be
dropped. For illustration, in solving the problem presented in Example 5.1, we simply write

0

: (51)
k(8]x) o §Li=i¥ita—le \np+1
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B

0 < 0 < oo. Clearly, k(6]x) must be gamma pdf with parameter a* = ), x; + @ and f* = vy

2. There 1s another observation that can be made at this point. Suppose that there exists a sufficient statistic T =
t(X) for the parameter so that

L(x16) = fr(t|6).k(X),
where now f7(t | 8) is the pdf of T, given ® = 0. Then we note that

k(0|x) o fr(t|6) h(6) (5.4)

5.1 Bayesian Point Estimation

Suppose we want a point estimator of 6. From the Bayesian viewpoint, this really amounts to selecting a decision
function &, so that §(x) is a predicted value of 6 (an experimental value of the random variable @) when both the
computed value x and the conditional pdf k(6|x) are known. Now, in general, how would we predict an
experimental value of any random variable, say W, if we want our prediction to be “reasonably close” to the value
to be observed?. Many statisticians would predict the mean, E (W), of the distribution of W; others would predict a
median (perhaps unique) of the distribution of W, and some would have other predictions. However, it seems
desirable that the choice of the decision function should depend upon a loss function L[8, §(x)]. One way in which
this dependence upon the loss function can be reflected is to select the decision function § in such a way that the
conditional expectation of the loss is minimum. A Bayes’ estimate is a decision function § that minimizes the
expectation of the loss function E{L[0, §(x)]|X = x} and then

Jg LI6,6(x)]k(6]x) d, if @ isa continuous
Yo L[60,6(x)]k(0]x),  if©isacontinuous

0(x) = E{L[0,(x)]|X =x} =

(5.5)
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is called Bayes’ estimator of 6.

Some Possible Loss Functions:

1. Squared Error Loss Function:
The squared error loss function is given by
L[8,5(x)] = [0 — 6(x)]?
Then, the Bayes’ estimate is the mean of the conditional distribution of ©, given X = x
6(x) = E(O|x)
2. Absolute Error Loss Function:
The absolute error loss function is given by
L]8,8(x)] = 6 —6(x)|
Then, a median of the conditional distribution of ®, given X = x, is the Bayes’ solution
6 (x) = Median of ©
where the median, m, is the solution of

m 1
f k(O)d =3

It is easy to generalize this to estimate a function of 6, for a specified function t(8). For the loss function
L[6,5(x)], a Bayes estimate of 7(8) is a decision function § that minimizes

E{L[2(©),6(0)]IX = x} = [ L[(6),8(x)] k(6x)d6 (5.6)

The random variable § (X) is called Bayes’ estimator of 7(6).
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Example 5.2:
Consider the model
e X;|0 ~iid Binomial (1,6)
© ~Beta(a, B) , a and 8 are known
That is, the prior pdf is

_Tla+p) . _
h(e)_me l1-6)F10<0<1

when a and [ are assigned positive constants. We seek a decision function § that is a Bayes’ solution. The
sufficient statistic is Y = )} X;, which has a Binomial (n, 8) distribution. Thus, the conditional pdf of Y given
O =20is

n
g(y1o) = (y) 0Y(1—0)"Y y=01,..n

Thus by Equation (5.4), the conditional posterior pdf of ©, given Y = y at positive probability density, is
k(8ly) « 8Y(1—-0)"Y 0% 1(1-0)F10<0<1
That is
['(a+p +n)
F(a+y)[(B+n—y)

and y = 0,1, ....,n. Hence, the posterior pdf is a beta density function with parameters (¢ +y, +n —y). We
take squared error loss, i.e., L[8,5(y)] = [0 — 6(v)]?, as the loss function. Then, the Bayesian point estimate of 8
1s the mean of this beta pdf which is

k(8|y) = ety-1(1—-9)f+r-10< 6 <1
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a+y

"= E

5.2 Bayesian Interval Estimation

For fixed a, we can find two functions u(x) and v(x) so that the conditional probability

v(x)
Plu(x) <0 <vx)|X =x) = f k(@lx)d0 =1 —«a
u(x)
which is defined to be 100(1 — a)% Bayesian interval estimates of 6. This interval is often called credible
interval, so as not to confuse them with confidence interval.

Example 5.3:
Recall Example 5.1 where X, X, ..., X, is a random sample from a Poisson distribution with mean 8 and a I'(a, )
prior, with a and f§ known, is considered. As given, the posterior pdfis a T’ (y + «, %) pdf, where y = Y7, x;,
i.e.

O1X; ~T (y * a'nﬁﬂ+ 1)
Find:

a) Bayes’ point estimator of ® using the squared error loss function.
b) Bayes’ point estimator of ® using the absolute error loss function.
¢) (1 —¢&)100% credible interval for O.
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d) aandcwhen,a =2, =4,n=12,y =8, = 0.05.
Solution:

a) If we use the squared error loss function, the Bayes’ point estimate of O is the mean of the posterior

By +a)

60 = nf +1

b) If we use the absolute error loss function, the Bayes’ point estimate of © is the median of the posterior or it is
the solution, m, of the following equation:

_(nB+1)6
fm (nﬁ + 1)y+(}( 0y+a—1e 4]
0

[y + a)pr*e

d9—1
2

c) To obtain a credible interval, from that the posterior distribution of ® we get that

——0~T(y+a2)& T@ ~ X(ZZ(y+a))

B
Based on this, the following interval is a (1 — £)100% credible interval for ©
P(Z < 2MBD o 2 ):1—(1
Xa-f20+an S 8 X 2r+an
B 2 B 2
o o€ (Z(n/m) Xa-f20+a)y 2mpr §,2(y+a>))
where x2 d x%¢ are the lower and upper x? quantiles for a x? distribution with 2(y + a)

i3 an
(1-32(y+a) (52(y+a))
degrees of freedom.
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d) Ifa=2,=4,n=12,y = 8,& = 0.05, then the point estimator is

4(8 + 2)

and the 95% credible interval for © is

4 ) 4 ,
CNS (—2(48 ) X(0'975’20)'—2(48 1) X(o.025,20)>

From x* distribution Table: X{y025 20) = 3417, X{o.97520) = 9-59, thus
0 € (0.3914,1.3947)
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TABLE 1
Percentage Points of the xz Distribution; xzv,a
P(X2> sz o) =a e
o
v__ | 0.001 [0.005 [0.010 [0.025 [0.050 [ 0.100 [ 0.250 [ 0.500 | 0.750 [ 0.900 [ 0.950 [ 0.975 | 0.990 [ 0.995 [ 0.999
1 [1083 [7.88 |663 502 (384 [271 132 |045 [010 |0.02
2 [1382 | 1060 |921 [738 [599 [461 [277 139 [058 [021 [010 005 [0.02 [0.01
3 1627 | 1284 [11.34 [935 [781 [625 [411 |237 [121 [058 [035 [022 011 007 002
4 [1847 [1486 [ 1328 [11.14 [949 |778 |539 [336 |192 |1.06 | 071 [048 [030 |0.21 |0.09
5 | 2052 [1675 |15.09 | 1283 [ 1107 |924 | 663 | 435 |26/ |1.61 |1.15 [ 083 |055 |04l | 021
6 | 2246 [1855 | 1681 | 1445 [1259 | 1064 | 784 [535 | 345 |[220 | 164 | 124 |087 | 068 | 038
7 [2432 [2028 [18.48 [1601 [1407 |12.02 [904 [635 [425 |2.83 [217 [169 [1.24 | 059 [0.60
8 |2612 [21.95 [20.09 [1753 [1551 |13.36 | 1022 [ 734 | 507 |3.49 [273 [218 [ 165 |1.34 | 0.86
9 |2788 [2359 |21.67 | 1902 [ 1692 | 1468 | 1139 [834 |590 |[417 [333 [270 [209 [1.73 | 115
10 [ 2959 [ 2519 [2321 [2048 | 1831 [1599 |1255 | 934 | 674 | 487 |394 325 [256 [216 | 148
11 | 3126 | 2676 | 2472 | 2192 | 1968 | 1728 | 1370 | 1034 | 758 | 558 |45/ |3.82 | 305 | 260 | 183
12 | 3291 | 2830 [2622 [2334 | 2103 | 1855 | 1485 | 1134|844 | 630 | 523 | 440 |[357 [307 |22l
13 | 3453 | 29.82 [27.69 | 2474 | 2236 | 1981 | 1598 |1234[930 | 7.04 | 589 |50l [411 |3.57 |262
14 | 3612 [31.32 [29.14 |2612 [23.68 |21.06 | 1712 [1334| 1017|779 | 657 |35.63 | 466 | 407 |3.04
15 | 3770 | 32.80 | 3058 |27.49 [2500 [2231 | 1825 | 1434 | 1104855 | 726 |626 |523 | 460 |348
16 | 3925 | 3427 |32.00 | 2885 | 2630 |2354 | 1937 | 15341191931 | 796 | 691 |58 |514 |3.94
17 | 4079 | 35.72 | 33.41 | 3019 | 27359 | 2477 | 2049 | 1634|1279 1009|867 | 7.56 | 641 | 570 | 4.42
18 | 4231 | 3716 | 3481 |3153 | 2887 2599 | 2160 | 1734 13.68] 1086|939 | 823 |70l | 626 | 490
19 | 43.82 | 38.58 |36.19 |32.85 |30.14 [27.20 | 2272 | 1834 | 14.56] 11.65]| 1012 | 8.91 |7.63 | 684 | 541
20 [ 4531 |40.00 |37.57 [ 3417 |31.41 | 2841 [2383 |19.34| 1545|1244 1085[9.59 [8.26 | 743 592
21 [ 4680 | 4140 | 3893 |3548 |3267 | 2962 | 2493 | 2034|1634 1324|1159 1028 [ 890 | 8.03 | 645
22 [ 4827 | 4280 | 4029 [ 3678 [33.92 | 30.81 | 2604 | 213417241404 (1234|1098 | 954 | 864 | 698
23 [ 4973 | 4418 | 41.64 | 38.08 [3517 [ 3201 |2714 [ 2234|1814 1485 13.09 11.69 | 10.20 | 9.26 | 7.53
24 [ 5118 | 4556 | 4298 [ 3036 | 3642 | 3320 | 2824 [233419.04 1566|1385 1240 | 10.86 | 9.89 | 8.08
25 [ 5262 |46.93 | 4431 |40.65 |37.65 | 3438 | 2934 | 24.34|19.94 1647 [ 14.61 | 13.12 | 11,52 | 10.52 [ 8.65
30 [ 5970 |53.67 |50.89 | 4698 |43.77 | 4026 |34.80 | 29.34 | 24.48 | 20.60 | 1849 | 16.79 | 14.95 | 13.79 | 11.59
40 7340 [ 6677 |63.69 5934 | 5576 |51.81 | 4562 | 3934 | 33.66 | 29.05 | 26.51 | 24.43 | 22.16 | 20.71 | 17.92
50 | 86.66 | 79.40 | 7615 | 7142 | 67.50 | 63.17 | 56.33 | 49.33 | 42.94 | 37.69 | 34.76 | 32.36 | 29.71 | 27.99 | 24.67
60 | 95.61 [9195 | 8338 | 8330 | 7908 | 7440 | 6698 | 59.33 | 52.29 | 46.46 | 43.19 | 40.48 | 37.48 | 35.53 | 31.74
70 [112.32[104.21 [ 100.43 [ 9502 [ 90.53 | 85.53 | 77.58 | 69.33 | 61.70 | 5533 | 51.74 | 48.76 | 45.44 | 43.28 | 39.04
80 | 124.84 [ 11632 ] 112.33 | 106.63 | 101.88 | 96.58 | 88.13 | 79.33 | 71.14 | 64.28 | 60.39 | 57.15 | 53.54 | 51.17 | 46.52
90 | 137.21 [ 12830 | 12412 | 118.14 | 113.15 | 107.57 | 98.65 | 89.33 | 80.62 | 73.29 | 69.13 | 65.65 | 61.75 | 59.20 | 54.16
100 | 149.45 [ 140.17 [ 135.81 | 129.56 | 124.34 | 118.50 | 109.14 | 99.33 | 90.13 | 82.36 | 77.93 | 74.22 | 70.06 | 67.33 | 61.92
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TABLE 11

Areas Under The Standard Normal Curve

z

F4 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3. .0010 .0009 .0009 .0009 .000: .0008 .000:! .000: .0007 .0007
=3. .0013 .0013 L0013 .0012 .001 .0011 .001 .001 .0010 .0010
-2. .0019 .0018 .0018 .0017 .001 .0016 001 .001 .0014 .0014
2. .0026 .0025 .0024 .0023 .002 .0022 .002 .002 .0020 .0019
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2, .0107 .0104 .0102 .0099 .0096 .0094 .009 .0089 .0087 0084 |
=2. 39 38 .0132 .0129 .0125 .0122 11 0113 2
-2. 79 74 .0170 .0166 .0162 .0158 154 .0146 .014
-2. 228 222 .0217 .0212 .0207 02 19 .0188 K
-1. 287 281 .0274 .0268 .0262 .0256 25 4 .0239 .023:
-1. 359 351 .0344 .0336 .0329 22 0314 030 .0301 .0294 |
-1. 446 436 .0427 .0418 .0409 .0401 039 0384 .0375 .036
-1. 548 537 .0526 .0516 .0505 .0495 048 0475 .0465 .0455
=1. 668 655 .0643 .0630 .0618 .0606 0594 0582 0571 0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
=-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 |
-1. .1151 1131 L1112 . 109 .1075 .1056 038 020 003 .098
=1. .1357 1335 .1314 . 129 1271 1251 230 210 .1190 117
1. .1587 1562 .1539 . 151 . 1492 . 1469 446 423 .1401 1379 |
=0. 1841 1814 L1788 . 176 . 1736 L1711 685 660 . 1635 .1611 |
-0. .2119 2090 .2061 .203: .2005 .1977 849 922 .1894 .186
=0. .2420 .2389 .2358 .232 . 2296 .2266 236 206 2177 .2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 4207 4168 4129 .4090 . 405’ .4013 .3974 .3936 3897 3859
=0.1 4602 4562 . 4522 .44 83 .444 .4404 4364 4325 4286 .4247
-0.0 000 4960 .4920 .4880 . 484 4801 A76 4721 468 4641

X 000 40 .508 .5121 .516! .5199 523 527 .531 .5359

. .5398 .5438 .547: .5517 .555 .5506 .5636 .567 .5714 .5753

. .5793 .5832 .587 .591 . 594! .5987 .6026 6064 .G 10! .6141

% .6179 .6217 .625: .6293 .633 .6368 .6406 .644 .6480 6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

. .7881 .7910 .7 939 .7967 .7995 .8023 .805 .8078 .8106 .8133

.. .8159 .8186 L8212 8238 . 8264 .8289 .831 .8340 8365 8389

S .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

3 .8643 .R665 L8686 .B708 .8729 .8749 .B77 .8790 L8810 .8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
13 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

5 .9382 .93826 .9830 .9834 .983: .9842 .984 .985 .93854 .9857

L .986 .9864 .O868 .9871 .987 .0878 .988 .9884 9887 .9890

3 .9389: .9896 .9898 .9901 .9904 .9906 .990 .991 .9913 .9916

.4 291 9920 9922 .9925 .992 .0929 293 293 .9934 .9936

B .9938 .9940 .994 1 .994 3 .994 .9946 .994- .994 .995 .9952 |
1 .9953 .9955 .995 .9957 . 995 .9960 .996 .996: .996: .9964 |
.7 965 [ .9967 . 996! .996! .9970 997 997 .997. .9974 |
¥ .9974 .9975 .997! .9977 .997 .0978 .997 .997 .098 .9981

5 .9981 .9982 .9982 .098! .998- .9984 .9985 .9985 .9986 .9986

.. .9987 .9987 L9087 .998: . 998! .9989 .9989 .9989 .9990 .9990

. .9990 .9991 .999 .999 .999' .9992 .9992 .9992 .9993 .9993

3 .9993 .9993 .9994 .0994 .9994 .0994 .9994 .9995 .9995 .9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

119




STAT 340

Theory of Statistics 1

Dr. Samah Alghamdi

TABLE ITT

Criricald Folues of rhe i-distridnrion /g )

w=df ooy Ly u= L LT
1 EX 3.4 12.706 F1.EZ1
E 1mon =G 4,503 & U5
3 TesE EIELE] 3182 2331
4 1.553 2.133 2776 3747
5 | 175 * 0 s ¥ 570 3 3655
& 1azn 1.5as Tear 3.143
7 1415 1.203 2365 3008
a 1 307 L E60 3 G 3 ROG
9 EEE EEE > o 2831
10 1372 1817 3728 3764
11 1363 1706 3201 3718
11 I 787 > 179 3 6E1 3
E] R R EEL 1
12 1.761 2145 3624 77
1= 1.753 2131 2.602 a7
I 16 R EETE] 1
i 1740 IR 3987 T
18 10434 2101 qoanm oy
12 1.729 z.093 2.539 &L
20 | 77 > naG 2 53m 15
21 o1 Zusn a1 =1
23 1717 2074 T 508 15
22 L7 > 4w 2 s0m a7
24 i BN ECE 27
35 1708 2060 3455 a7
3G 1.70% 2056 T 47D 78
2 L 703 EEE 3473 71
5 1o R AR 5
FT) 1.€0% 3045 T 4E2 56
30 L : 2.457 50
3= PVl wh
au : 7
4=
s0
6n
0
80
9n
1
120 12386
140 12876
1l T ormny
L5 1.rusd
Z0D 1.285%
= 1287

120




STAT 340 Theory of Statistics 1 Dr. Samah Alghamdi
Exponential and Gamma Distributions
Exponential Distribution Gamma Distribution
1 - % 1 1 - %
df (x)==e B,x>0 (x) = x%te B,x>0
P f B 4 ['(a)B®
Mean B ap
Variance p? af?
X~Exponential(f) 1 X~Gamma(a, B) 1
mgf A-p)yLet<= 1-pt)y % t<—
B B
n
2—~Gamma(a,2)
. Re.latefi z X;~Gamma(n, B) B
Distributions X .2
i=1 Or 2 B ~X2a
ﬁ(x
pdf f(x)=pBe F* x>0 f(x)=——=x%1e " F* x>0
I'(a)
M ! 2
ean - =
B B
Vari 1 ! 1 -
arlance X~Exponential (—) B2 X~Gamma (a, —) B?
B = B o
t t
mgf (1——) it < (1——) S t<B
g <t B
n
Related 2BX~Gamma(a, 2)
Distributions z Xi~Gamma (n, B ) Or 2BX~x2,
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