

334 MBIO

Biochemical Instrumentation Techniques

- Lab 8 -

By: Aljawharah Alabbad

Expression and Purification of

Recombinant Proteins

Introduction

- **Protein extraction** is important for protein function and structure.
- Starting with **cellular lysis** \rightarrow release the intracellular contents, it is followed by **purification** \rightarrow isolate just that target protein.
- Various methods are employed for protein production using the unique features of **different expression systems**, from chemical to mechanical techniques.

Workflow of Our Work So Far! 😳

Protein Expression Systems

- **Expression systems:** is an overproduction of proteins by placing the gene encoding them under the control of a strong promoter.
- Expression systems are used in research and in the commercial production of enzymes or therapeutics.
- The most widely used for protein overproduction, both in lab and industrial scale, is the **prokaryotic system**.

Multiple Host Systems Commonly Used for Protein Expression

General Considerations When Choosing the Expression system

Host compatibility: with cost, regulations, bioprocess optimization, and production capacity.

Protein origin: Mammalian cells suit human proteins; bacterial systems are better for

bacterial proteins.

Post-translational modifications (PTMs): Eukaryotic systems are preferred for complex PTM requirements.

Production speed and yield: Bacterial and yeast systems offer fast growth and high

yield, ideal for research and bulk production.

Protein folding: Eukaryotic cells are often better for proper folding of recombinant proteins,

which may form insoluble aggregates in bacteria.

Prokaryotic Expression System

- This system is based primarily on the bacteria *E.coli*.
- The main components of prokaryotic gene regulation are:

Prokaryotic gene regulation

Promoter	is like a " start signal " in DNA. It tells the cell where to begin making RNA.		
Operator	is a short DNA segment located next to the promoter. It's like a " gene switch ", in which a repressor/inducer can bind to block/activate RNA production.		
Operon	a group of genes that are controlled together and turned on/off as a unit.		
Activator	is a helper protein that boosts gene activity . It helps the machinery bind better to the promoter.		
Inducer	is a small molecule that turns genes on . It either activates <u>an activator</u> or removes a repressor.		
Repressor	is a protein that turns genes off .		

Prokaryotic Expression System:

	Pros		Cons
٠	Fast Growth & High Yield: Bacteria grow quickly,	•	Lack of PTMs: Can't perform complex PTMs (like
	allowing rapid protein production in large		glycosylation) that are essential for the function of
	amounts.		many eukaryotic proteins
•	Cost-Effective: Culture media and maintenance	•	Protein Misfolding & Inclusion Bodies: Some
	are cheap compared to mammalian or insect		proteins don't fold correctly and end up as inclusion
	systems.		bodies, which are hard to purify and refold.
•	Simple Handling: Easy to genetically manipulate,	•	Toxicity to Host: Some proteins may be toxic to
	culture, and scale up.		bacteria, reducing yield or killing the cells.
•	Well-Studied System: E. coli, for example, has	•	Codon Usage Differences: Human genes may need
	well-established protocols and tools available for		codon optimisation.
	expression.	•	Endotoxin Contamination: E. coli produces harmful
			endotoxins that must be removed, especially for

therapeutic use.

جـــامـعــة الملكسعود King Saud University

- Harvest the cells by centrifugation: 4000 *xg*, 20min.
- Flash freeze the pellet with liquid nitrogen and leave it overnight at -80 °C.

• PROTEINS LIKE TO BE COLD!!!!!!

• Methods to lyse cells:

- Freeze thaw
- Enzymatic lysis with Lysozyme
- Detergent (Triton X-100)
- Sonication
- Soluble protein will be in supernatant after centrifugation
- Once outside of cells, protein <u>will be susceptible to proteases</u>. Therefore, **protease inhibitors** will be added to help prevent this.

Sonication Equipment: (1) Rod and Clamp (2) Sonicator with Tip (3) Tube Holder (4) 600 mL Beaker with Ice (5) Adjustable Stage (6) Sonicator Control Box

Eukaryotic Expression System

- The problems associated with obtaining high yields of native recombinant proteins from genes cloned in *E. coli* have led to the development of expression for other organisms, such as:
- Yeast
- Insect cells (e.g., baculovirus expression)
- **Mammalian cells** (e.g., human embryonic kidney (HEK), and Chinese hamster ovary (CHO) cells).

Eukaryotic Expression System

- Eukaryotes **do not have operons**.
- Eukaryotic systems use **strong promoters**, but the type depends on the host cell
- **Signal peptide** should be optimised for better expression and yield.
- Eukaryotes genes are organised into **two segments**:
- Intros → non-coding sections
- **Exons** \rightarrow coding sections

Eukaryotic Expression System:

Pros	Cons
• PTMs: Can perform complex PTMs (like	• Higher Cost: expensive media, equipment, and
glycosylation, phosphorylation)	maintenance compared to bacterial systems.
• Native Protein Folding: help produce proteins in	• Slower Growth: grow slower than bacteria, leading
their biologically active and native conformations	to longer production times.
Suitable for Human Proteins: Especially	Complex Handling: Requires sterile conditions and
mammalian systems, which closely mimic the	more expertise in cell culture techniques.
human cellular environment.	• Lower Yields: may produce lower amounts of
• Versatile Hosts: Multiple systems available (yeast,	protein compared to bacteria.
insect, mammalian), each with different strengths	• Risk of Contamination: Especially in mammalian
for various protein types.	systems, contamination with viruses or other
• Scalable: an be adapted for small-scale lab work or	pathogens is a concern.

• Scalable: an be adapted for small-scale lab work or large-scale industrial production.

*

1957

Mammalian Expression System

Protein Purification

Affinity chromatography

- Protein purification depends on the type of **tag used**.
- Each tag binds to a <u>specific resin or purification</u> <u>system</u>.
- Some tags <u>improve protein solubility and stability</u> (e.g., Fc-tag).

Affinity chromatography

جـــامـعــة الملك سعود King Saud University

Affinity Chromatography

SDS-Page Analysis

2

*

1957

Size Exclusion Chromatography (SEC)

جامے الملك سعود King Saud University

Size Exclusion Chromatography (SEC)

Size Exclusion Chromatography (SEC)

- As protein **travels down** the column, the UV monitor tracks the 280nm absorbance.
- The computer software graphs the absorbance over the volume in mLs.
- A narrow high peak means good purification!

alalabbad@ksu.edu.sa

