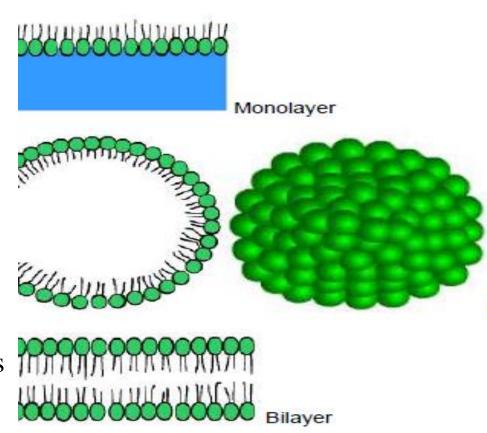
# فسيولوجيا الأحياء الدقيقة Microbial Physiology


د. تركي محمد الداود مكتب ۲ ب ٥٤

مقدمة Introduction-L4

## Lipids

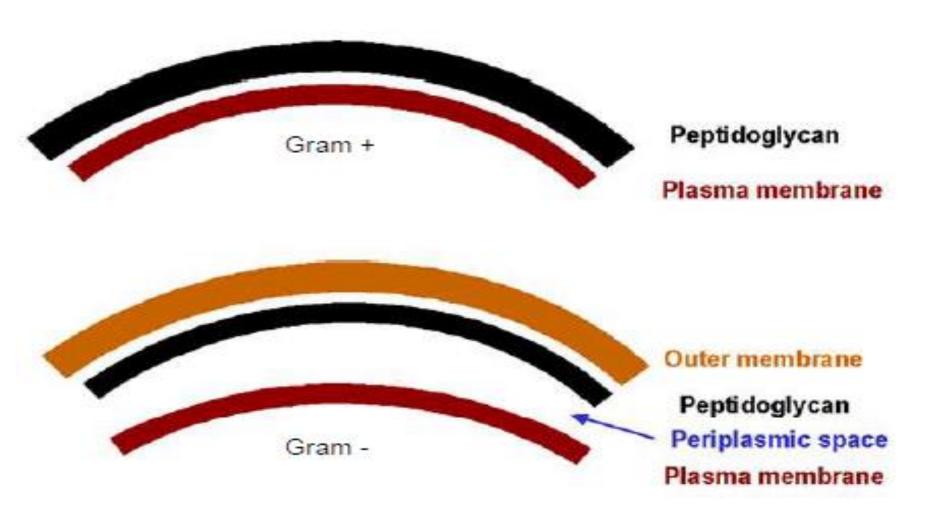

#### - Lipids:

- \* Lipids tends to be formed in 3 structures:
  - Monolayer is formed on an aqueous surface.
  - Micelles are formed in solutions with polar heads on the outside and hydrophobic tails to the centre.
  - **Bilayers** are formed under the increased concentration of lipids. It forms the membranes of all cells.



### Lipids structural difference

- Bacterial and eukaroyotic lipids VS Archaeal lipids:
  - ❖ Bacteria and eukaroytics Lipids= Ester-links between tails and polar heads.
  - Archaeal lipids =Ether-links between tails and polar heads.

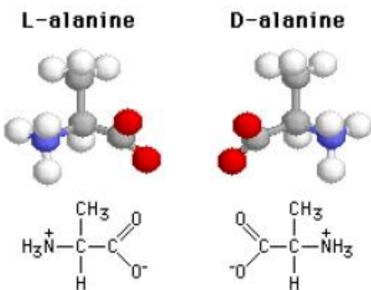



### Lipids structural difference

#### • In bacteria:

- Over 200 associated proteins in the cell membrane fluid structure.
- Involved with the synthesis and maintenance of the cell wall and membrane.
- Others are involved in the degradation of macromolecules and transport.

### Bacterial cell membrane structures




#### - Cell Wall:

- Made up of a thick many-layered peptidoglycan.
- An alternating sugar unit motif connected by inter-peptide bridges.
  - N-acetyl-glucosamine (NAG).
  - N-acetyl-muramic acid (NAM).
- The peptidoglycan is a layer of the cell wall that interacts with the environment.

#### Peptidoglycan formation:

- An alternating sugar unit motif (design) connected by inter-peptide bridges.
- The two alternating sugar residues are N-acetylglucosamine and N-acetylmuramic acid.
- The Penta-peptide bridge is added to N-acetylmuramic acid.
- The inter-peptide bridge contains naturally occurring D-forms of amino acids.



#### Peptidoglycan formation:

- Three stages:
  - Stage 1
    - Occurs in the cytoplasm.
    - N-acetylglucosamine (NAM) is converted to N-acetylmuramic acid (NAM).
    - D-forms amino acids, the pentapeptide (PP), are added to NAM.

#### • Stage 2

- Occurs in the membrane.
- After the addition of PP, NAM is bound to the carrier lipid undecaprenyl phosphate (UDCP).
- NAM is then bound to the NAM pentapeptide.
- They are released on the other side of the membrane.

#### Peptidoglycan formation:

- Stage 3
  - Occurs at extracellular side of membrane.
  - The individual peptidoglycan residues are then polymerized into the glycan chain.
  - Trans-peptide bridges are formed resulting in the releases of the last D-ala residue.

#### • How does penicillin affect peptidoglycan synthesis?

- The antibiotic of choice for use against gram positive bacteria are the b -lactams (penicillin). The enzymes involved in the final steps of transpeptidation, glycan chain formation, and undecaprenyl phosphate recycling are inhibited by penicillin.
- They are known as Penicillin Binding Proteins (PBP's).
  - Found outside the inner membrane enabling penicillin to act on them.

#### Teichoic acids:

- A characteristic wall bound acid.
- Wall bound (wall teichoic acids).
- Formed by the polymerization of:
  - Ribitol phosphate or
  - Glycerol phosphate molecules.
  - Joined by a phosphodiester links.
- Membrane/wall bound (**Lipoteichoic acids**).
  - Generally 16-40 phosphodiester linked glycerophosphate residues bound to a membrane anchor (glycolipid or glycophospholipid).
- All teichoic acids are capable of scavenging to concentrate divalent cations (Mg<sup>2+</sup>) as ready supply at cell suface.

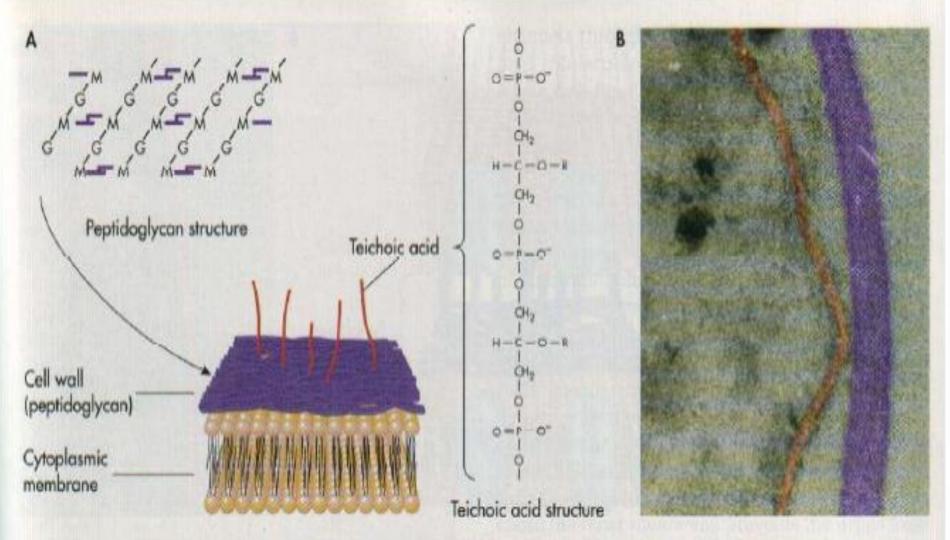



Fig. 3-20 Gram-positive Bacterial Cell Wall. A, The Gram-positive cell wall that surrounds and protects the cytoplasmic membrane has a relatively thick peptidoglycan layer. It also has teichoic acids, which are polymers of glycerol or ribitol phosphate. The teichoic acid structure shown here is the glycerol type, and R may be D-alanine or glucose. B, Colorized micrograph of the cell wall of the Gram-positive bacterium Bacillus subtilis shows the thick peptidoglycan layer (purple). This cell wall completely surrounds and protects the cytoplasmic membrane.

## **QUESTIONS??**

