
King Saud University

Exercises

STAT 328 (Statistical Packages)

nashmiah r.alshammari

328 stat

Excel
and
Minitab

MATHEMATICAL FUNCTIONS

Write the commands of the following:

	$\begin{array}{c}\text { By Excel } \\ \text { (using }(f x))\end{array}$	$\begin{array}{c}\text { By Minitab } \\ \text { calc } \rightarrow \text { calculator }\end{array}$	
Absolute value	$\|-4\|=4$	ABS(-4)	
Combinations	$\binom{10}{6}=10 \mathrm{C}=210$	COMBIN(10;6)	
$\begin{array}{l}\text { The exponential } \\ \text { function }\end{array}$	$e^{-1.6=0.201897}$	EXP(-1.6)	
Factorial	$110!=1.5882 \mathrm{E}+178$	FACT(110)	
Floor function	$[-3.15]=-4$	INT(-3.15)	
Natural logarithm	$\ln (23)=3.135494216$	LN(23)	
$\begin{array}{l}\text { Logarithm with } \\ \text { respect to any } \\ \text { base }\end{array}$	$\log 9(4)=0.630929754$	LOG(4;9)	
$\begin{array}{l}\text { Logarithm with } \\ \text { respect to base } 10\end{array}$	$\begin{array}{l}\log (12)= \\ 1.079181246\end{array}$	LOG10(12)	
$\begin{array}{l}\text { Multinomial } \\ \text { Coefficient }\end{array}$	$\left(\begin{array}{c}9 \\ 2\end{array} \quad 5\right)=756$	MULTINOMIAL(2;2;5)	

MATRICES

Write the commands of the following:

		By Excel (using $(f \times x)$)	By Minitab 1) data \rightarrow copy \rightarrow columns in matrix display data
Addition of Matrices	$\begin{aligned} & A=\left[\begin{array}{cc} -5 & 0 \\ 4 & 1 \end{array}\right], B=\left[\begin{array}{cc} 6 & -3 \\ 2 & 3 \end{array}\right] \\ & \Rightarrow A+B=\left[\begin{array}{cc} -5+6 & 0+-3 \\ 4+2 & 1+3 \end{array}\right]=\left[\begin{array}{ll} 1 & -3 \\ 6 & 4 \end{array}\right] \end{aligned}$		
Subtract of Matrices	$\begin{aligned} & C=\left[\begin{array}{cc} 1 & 2 \\ -2 & 0 \\ -3 & -1 \end{array}\right], D=\left[\begin{array}{cc} 1 & -1 \\ 1 & 3 \\ 2 & 3 \end{array}\right] \\ & \Rightarrow C-D=\left[\begin{array}{ll} 1-1 & 2-(-1) \\ -3-1 & 0-3 \\ -3-2 & -1-3 \end{array}\right]=\left[\begin{array}{cc} 0 & 3 \\ -3 & -3 \\ -5 & -4 \end{array}\right] \end{aligned}$		
Additive Inverse of Matrix	$\begin{aligned} & A=\left[\begin{array}{ccc} 1 & 0 & 2 \\ 3 & -1 & 5 \end{array}\right] \\ & \Rightarrow-A=\left[\begin{array}{lll} -1 & 0 & -2 \\ -3 & 1 & -5 \end{array}\right] \end{aligned}$		
Scalar Multiplication of Matrices	$\begin{aligned} D & =\left[\begin{array}{cc} -3 & 0 \\ 4 & 5 \end{array}\right] \\ \Rightarrow 3 D & =\left[\begin{array}{ll} -9 & 0 \\ 12 & 15 \end{array}\right] \end{aligned}$		
Matrix Multiplication	$\begin{aligned} & E=\left[\begin{array}{lll} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{array}\right], F=\left[\begin{array}{ll} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array}\right] \\ & \Rightarrow E \times F=\left[\begin{array}{ll} 30 & 66 \\ 36 & 81 \\ 42 & 96 \end{array}\right] \end{aligned}$		
Determinant and Inverse Matrices	$\begin{gathered} G=\left[\begin{array}{cc} 3 & -1 \\ -5 & 2 \end{array}\right] \\ \Rightarrow \operatorname{det}(G)=1 \text { and } G^{-1}=\left[\begin{array}{ll} 2 & 1 \\ 5 & 3 \end{array}\right] \end{gathered}$		

CONDITIONAL FUNCTION (IF) AND COUNT CONDITIONAL FUNCTION

By Excel

(using (fx))

We have grades of 10 students

73	45	32	85	98	78	82	87	60	25	64	72	12	90

1. Print student case being successful (Mark $>=60$) and being a failure (Mark <60).
2. How many successful students?
3. How many students whose grades are less than or equal to 80 ?

DESCRIPTIVE STATISTICS

We have students' weights as follows: $44,40,42,48,46,44$. Find:

	By Excel (using ($f x$) and (Data Analysis))	\qquad
Mean=44	AVERAGE(C2:C7)	
Median=44	MEDIAN(C2:C7)	
Mode=44	MODE.SNGL(C2:C7)	
Sample standard deviation=2.828	STDEV.S(C2:C7)	
Sample variance $=8$	VAR.S(C2:C7)	
Kurtosis=-0.3	KURT(C2:C7)	
Skewness=4.996E-17	SKEW(C2:C7)	
Minimum=40	$\operatorname{MIN}(\mathrm{C} 2: \mathrm{C} 7)$	
Maximum=48	MAX (C2:C7)	
Range $=8$	$\operatorname{MAX}(\mathrm{C} 2: \mathrm{C} 7)-\mathrm{MIN}(\mathrm{C} 2: \mathrm{C} 7)$	
Count=6	COUNT(C2:C7)	
Coefficient of variation $=6.428 \%$	STDEV.S(C2:C7)/AVERAGE(C2:C7)*100	

* Range $=$ Maximum-Minimum
$\star \star$ Coefficient of variation $=\frac{\text { Sample standard deviation }}{\text { Mean }} \times 100 \%$

328 stat

PEARSON CORRELATION COEFFICIENT

We have the table illustrates the age X and blood pressure Y for eight female.

68	49	60	42	55	63	36	42	X
152	145	155	140	150	140	118	125	Y

Find:

	By Excel (using $(f x)$ and (Data Analysis))	By Minitab stat \rightarrow basic statistics \rightarrow correlation + \checkmark Display p-value
Correlation $=0.791832$	CORREL(M3:M10;N3:N10)	

PROBABILITY DISTRIBUTION FUNCTIONS

Discrete Distributions

Notes

If X is discrete random variable, then

1) $P(a<X \leq b)=P(X \leq b)-P(X \leq a)$
and so, if
$P(a \leq X<b)=P((a-1)<X \leq(b-1))=P(X \leq(b-1))-P(X \leq(a-1))$ or
$P(a \leq X \leq b)=P((a-1)<X \leq b)=P(X \leq b)-P(X \leq(a-1))$ or
$P(a<X<b)=P(a<X \leq(b-1))=P(X \leq(b-1))-P(X \leq a)$.
2) $P(X>a)=1-P(X \leq a)$, $P(X \geq a)=1-P(X<a)=1-P(X \leq(a-1))$, $P(X<a)=P(X \leq(a-1))$

1. Binomial Distribution

A biased coin is tossed 6 times. The probability of heads on any toss is 0.3 . Let X denote the number of heads that come up.
Calculate:
(i) If we call heads a success then this X has a binomial distribution with parameters $n=6$ and $p=0.3$.

$$
P(X=2)=\binom{6}{2}(0.3)^{2}(0.7)^{4}=0.324135
$$

(ii)

$$
P(X=3)=\binom{6}{3}(0.3)^{3}(0.7)^{3}=0.18522
$$

(iii) We need $P(1<X \leq 5)$

$$
\begin{aligned}
& P(X=2)+P(X=3)+P(X=4)+P(X=5) \\
= & 0.324+0.185+0.059+0.01 \\
= & 0.578
\end{aligned}
$$

	By Excel (using (fx))	By Minitab calc \rightarrow probability distribution
1		
ii		
iii		

328 stat

2. Poisson Distribution

Births in a hospital occur randomly at an average rate of 1.8 births per hour.
What is the probability of observing 4 births in a given hour at the hospital?
Let $X=$ No. of births in a given hour
(i) Events occur randomly $\Rightarrow X \sim \operatorname{Po}(1.8)$
(ii) Mean rate $\lambda=1.8$

We can now use the formula to calculate the probability of observing exactly 4 births in a given hour
$P(X=4)=\mathrm{e}^{-1.8 \frac{1.8^{4}}{4!}}=0.0723$

What about the probability of observing more than or equal to 2 births in a given hour at the hospital?

We want $P(X \geq 2)=P(X=2)+P(X=3)+\ldots$
i.e. an infinite number of probabilities to calculate
but

$$
\begin{aligned}
P(X \geq 2) & =P(X=2)+P(X=3)+\ldots \\
& =1-P(X<2) \\
& =1-(P(X=0)+P(X=1)) \\
& =1-\left(\mathrm{e}^{-1.8} \frac{1.8^{0}}{0!}+\mathrm{e}^{-1.8} \frac{1.8^{1}}{1!}\right) \\
& =1-(0.16529+0.29753) \\
& =0.537
\end{aligned}
$$

328 stat

Continuous Distributions

Notes

If X is continuous symmetric random variable (as Normal distribution and Student's t distribution), then

1) $P(X \geq x)=1-P(X \leq x)$ and $P(X \leq x)=1-P(X \geq x)$
2) $P(X \leq x)=1-P(X \leq-x)$ and $P(X \geq x)=1-P(X \geq-x)$

1. Exponential Distribution

On the average, a certain computer part lasts 10 years. The length of time the computer part lasts is exponentially distributed.

What is the probability that a computer part lasts more than 7 years?

Solution

Let $X=$ the amount of time (in years) a computer part lasts.

$$
\mu=10 \text { so } m=\frac{1}{\mu}=\frac{1}{10}=0.1
$$

$P(X>7)=1-P(X<7)$.
$P(X>7)=e^{-0.1 \cdot 7}=0.4966$. The probability that a computer part lasts more than 7 years is 0.4966 .

328 stat

2. Normal Distribution

	By Excel (using $(f x)$)	By Minitab calc \rightarrow probability distribution
$\begin{gathered} P(X \leq 25) \\ =P(X<25) \\ \text { at } \\ \mu=20 \\ \quad \text { and } \\ \sigma=3 \end{gathered}$		
$\begin{gathered} f_{X}(25) \\ a t \\ \mu=20 \\ \text { and } \\ \sigma=3 \end{gathered}$		
$\begin{aligned} & P\left(X \leq x_{0}\right) \\ & =P\left(X<x_{0}\right) \\ & =.55 \\ & \quad \text { at } \\ & \quad \mu=20 \\ & \quad \text { and } \\ & \sigma=3 \end{aligned}$		
$\begin{gathered} P(Z \leq 1.78) \\ =P(Z<1.78) \\ a t \\ \mu=0 \\ a n d \\ \sigma=1 \end{gathered}$		
$\begin{gathered} P\left(Z \leq Z_{0}\right) \\ =.55 \\ a t \\ \mu=0 \\ a n d \\ \sigma=1 \end{gathered}$		

328 stat

3．Student＇s t Distribution

Find：
（a）$t_{0.025}$ when $v=14$
（b）$t_{0.01}$ when $v=10$
（c）$t_{0.995}$ when $v=7$

	By Excel $(\operatorname{using}(f x))$	By Minitab calc \rightarrow probability distribution
$\begin{aligned} & (a) \\ & P\left(T_{14} \leq t\right) \\ & =0.025 \end{aligned}$	$=T . I N V(.025 ; 14)$ \square $\cdot \cdot r_{0}=\text { 屋霊 } .025$ $1 \varepsilon=$ \square Deg＿freedom عدد صعيح موجب يشير إلى عدد درجات الحربة التى تميز التوزيع．Deg＿freedom	
$\begin{aligned} & (b) \\ & P\left(T_{10}<t\right) \\ & =0.01 \end{aligned}$	5，VTTV19ミ0月－＝ عدد صحيح موجب يشير إلى عدد درجات الحرية التى تميز التوزيع．Deg＿freedom	
$\begin{aligned} & \text { (c) } \\ & P\left(T_{7}<t\right) \\ & =0.995 \end{aligned}$	```-.,90 = P最 0.995 Probability v = 稂 标None``` إرجاع عكس توزي8 t للطالب ذي الطرف الأيسر． عدد صحبح موحب يشـير اللى عدد در＞ات الاحربة التق تميز التوزي8．Deg＿freedom	

328 stat

Given a random sample of size $\mathbf{2 4}$ from a normal distribution, find \mathbf{k} such that:
(a) $P(-1.7139<T<k)=0.90$
(b) $P(k<T<2.807)=0.95$
(c) $P(-k<T<k)=0.90$
(a)
$P\left(-1.7139<T_{23}<k\right)=0.9$
$\leftrightarrow P\left(T_{23}<k\right)-P\left(T_{23}<-1.7139\right)=0.9$
$\leftrightarrow P\left(T_{23}<k\right)=0.9+P\left(T_{23}<-1.7139\right)$
$\leftrightarrow P\left(T_{23}<k\right)=0.949997$

By Excel (using (fx))	By Minitab calc \rightarrow probability distribution
 OIn excel you might make it in one step too $\begin{aligned} & P\left(T_{23}<k\right)=0.9+P\left(T_{23}<-1.7139\right) \\ & \text { so, } \quad=\operatorname{T.INV}(0.9+\operatorname{T.DIST}(-1.7139,23,1), 23)=1.713839369 \end{aligned}$	

328 stat

(b)
$P\left(k<T_{23}<2.807\right)=0.95$
$\leftrightarrow P\left(T_{23}<2.807\right)-P\left(T_{23}<k\right)=0.95$
$\leftrightarrow P\left(T_{23}<k\right)=\left(T_{23}<2.807\right)-0.95$
$\leftrightarrow P\left(T_{23}<k\right)=0.044996$

328 stat

(c)

$$
\begin{aligned}
& \text { (i) } P\left(T_{23}<k\right)-P\left(T_{23}<-k\right)=.9 \\
& \leftrightarrow P\left(T_{23}<k\right)-\left\{1-P\left(T_{23}<k\right)\right\}=0.9 \\
& \leftrightarrow 2 P\left(T_{23}<k\right)-1=0.9 \\
& \leftrightarrow 2 P\left(T_{23}<k\right)=1.9 \\
& \leftrightarrow P\left(T_{23}<k\right)=0.95 \\
& \text { so } \quad=T . \operatorname{inv}(0.95,23)=1.71387 \\
& \text { (ii) } P\left(T_{23}<k\right)-P\left(T_{23}<-k\right)=.9 \\
& \leftrightarrow 1-P\left(T_{23}>k\right)-P\left(T_{23}<-k\right)=0.9 \\
& \leftrightarrow 1-P\left(T_{23}>k\right)-\left\{1-P\left(T_{23}>-k\right)\right\}=0.9 \\
& \leftrightarrow 1-P\left(T_{23}>k\right)-\left\{1-\left[1-P\left(T_{23}>k\right)\right]\right\}=0.9 \\
& \leftrightarrow 1-P\left(T_{23}>k\right)-\left\{1-1+P\left(T_{23}>k\right)\right\}=0.9 \\
& \leftrightarrow 1-P\left(T_{23}>k\right)-P\left(T_{23}>k\right)=0.9 \\
& \leftrightarrow 1-2 P\left(T_{23}>k\right)=0.9 \\
& \leftrightarrow 2 P(T 23>k)=0.1 \\
& \text { so } \quad=T . \operatorname{inv} .2 t(0.1,23)=1.71387
\end{aligned}
$$

328 stat

4. Chi-Square Distribution

Notes in Excel

1) $=\mathbf{C H I S Q} . \operatorname{DIST}(x, v, 0) \leftrightarrow f_{\chi_{v}}(x)$
2) $=$ CHISQ. $\operatorname{DIST}(\boldsymbol{x}, \boldsymbol{v}, \mathbf{1}) \quad \leftrightarrow P\left(\chi_{v} \leq x\right)$
3) $=$ CHISQ. DIST.RT $(x, v, 1) \leftrightarrow P\left(\chi_{v} \geq x\right)$
4) $=\operatorname{CHISQ} \cdot \operatorname{INV}(\boldsymbol{p}, v) \quad \leftrightarrow P\left(\chi_{v} \leq x_{0}\right)=p$
5) $=\mathbf{C H I S Q} \cdot \operatorname{INV} \cdot \operatorname{RT}(\boldsymbol{p}, \boldsymbol{v}) \quad \leftrightarrow P\left(\chi_{v} \geq x_{0}\right)=p$

By using chi- square distribution, Find:
$\chi_{0.995}^{2}$ when $v=19$

	By Excel (using (fx))	By Minitab calc \rightarrow probability distribution
$\begin{gathered} \mathrm{P}\left(\chi_{19}<\mathrm{x}\right) \\ =0.995 \end{gathered}$		

328 stat

5. F Distribution

Notes in Excel

$$
\begin{array}{ll}
\text { 1) }=\mathbf{F} . \operatorname{DIST}\left(\boldsymbol{f}, \boldsymbol{v}_{1}, v_{2}, \mathbf{0}\right) & \leftrightarrow f_{F_{v_{1}}, v_{2}}(f) \\
\text { 2) }=\mathbf{F} . \operatorname{DIST}\left(\boldsymbol{f}, \boldsymbol{v}_{1}, v_{2}, \mathbf{1}\right) & \leftrightarrow P\left(F_{v_{1}, v_{2}} \leq f\right) \\
\text { 3) } & =\text { F.DIST.RT }\left(\boldsymbol{f}, \boldsymbol{v}_{1}, v_{2}, \mathbf{1}\right) \\
\text { 4) } & =\text { F.INV }\left(\boldsymbol{p}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)
\end{array}
$$

From the tables of F - distribution , Find:

$$
F_{0.995,15,22}
$$

328 stat

HYPOTHESIS TESTING STATISTICS AND CONFIDENCES INTERVAL

	By Excel (using (Data Analysis))	By Minitab

[^0]In the programs (Excel and Spss for symmetric distribution), how to find p-value for the one tail from p-value for two tail?

$p-$ value one tail $p-$ value $_{\text {two tail }}$	test statistical >0	Then we have $p-$ value $_{\text {one tail }(>)}$ and $p-$ value $_{\text {one tail }(<)}=1-p-$ value $_{\text {one tail }(>)}$
	test statistical <0	Then we have $p-$ value $_{\text {one tail }(<)}$ and $p-$ value $_{\text {one tail }(>)}=1-p-$ value $_{\text {one tail }(<)}$

328 stat

1)

For a sample of 10 fruits from thirteen-year-old acidless orange trees, the fruit shape (determined as adiameter divided by height) wae measured [Shaheen and Hamouda (1984b)]:
$\begin{array}{llllllllll}1.066 & 1.084 & 1.076 & 1.051 & 1.059 & 1.020 & 1.035 & 1.052 & 1.046 & 0.976\end{array}$
Assuming that fruit shapes are approximately normally distributed, find and interpret a 90% confidence interval for the average fruit shape.
(T test one sample for mean with unknown variance By Minitab)

One-Sample T: Q1

Variable	N	Mean	StDev	SE Mean	908 CI
Q1	10	1.04650	0.03103	0.00981	$(1.02851 ; ~ 1.06449)$

328 stat

2)

[In a sample of 185 people in the Western Region who had a particular bacterial infection, the mean egg count (per gram of stool) was 141 [Ghandour et. al. (1991)]. Assume that egg counts of such people are normally distributed with a variance of 3025.]

Find and interpret a 90% confidence interval for the average egg count.
**
In a sample of 185 people in the Western Region who had a particular bacterial infection, the mean egg count (per gram of stool) was 141 . Assume that egg counts of such people are normally distributed with a variance of 3025 . Can we conclude that the true mean egg count is different from 130. . Use $\alpha=0.10$.
(Z test one sample for mean with known variance By Minitab)

328 stat

3)

The phosphorus content was measured for independent samples of skim and whole Whole: $94.95 \quad 95.15 \quad 94.85 \quad 94.55 \quad 94.55 \quad 93.40$

Assuming normal populations with equal variances
a) Test whether the average phosphorus content of skim milk is less than the average phosphorus content of whole milk. Use $\alpha=0.01$
b) Find and interpret a 99% confidence interval for the difference in average phosphorus contents of whole and skim milk
(T test two samples for means assuming equal variance By Minitab)

Two-Sample T-Test and CI: skim; whole

Two-sample T for skim vs whole

	N	Mean	StDev	SE Mean
skim	10	91.340	0.483	0.15
whole	10	94.645	0.503	0.16

Difference $=\mu$ (skim) $-\mu$ (whole)
Estimate for difference: -3.305
998 upper bound for difference: -2.742
T-Test of difference $=0$ (vs <): I -Value $=-14.99 \quad \mathrm{P}$-Value $=0.000 \quad \mathrm{DF}=18$
Both use Pooled StDev $=0.4931$

328 stat

Two-Sample T-Test and CI: skim; whole

|
Two-sample I for skim vs whole

	N	Mean	StDev	SE Mean
skim	10	91.340	0.483	0.15
whole	10	94.645	0.503	0.16

Difference $=\mu(s k i m)-\mu$ (whole)
Estimate for difference: -3.305
99\% CI for difference: (-3.940 ; -2.670)
T-Test of difference $=0(\mathrm{vs} \neq): \mathrm{T}$-Value $=-14.99 \quad \mathrm{P}$-Value $=0.000 \quad \mathrm{DF}=18$
Both use Pooled StDev $=0.4931$

Or

C6	C7-T	Two-Sample t for the Mean				
91.25	skim	C1 Q1 C3 skim C4 whole	Both samples are in one column			
91.80	skim		Samples: \quad C6			
91.50	skim					
91.65	skim		Sample IDs: $\mathrm{C7}$			
91.15	skim					
90.25	skim					
91.90	skim					
91.25	skim	Select		Options...	Graphs...	
91.65	skim					
91.00	skim					
94.95	whole	Help		OK		
95.15	whole	Two-Sample t: Options			\times	
94.85	whole	Difference $=($ sample 1 mean $)-($ sample 2 mean $)$				
94.55	whole					
94.55	whole	Confidence level: $\quad 39$				
93.40	whole	Hypothesized difference:	0.0			
95.05	whole					
94.35	whole	Alternative hypothesis:	Difference < hypothesized difference		-	
94.70	whole	\checkmark Assume equal variances				
94.90	whole					
		Help		OK Cancel		

328 stat

Two-Sample T-Test and CI: C6; C7

Two-sample T for C6

C7	N	Mean	StDev	SE Mean
skim	10	91.340	0.483	0.15
whole	10	94.645	0.503	0.16

Difference $=\mu$ (skim) $-\mu$ (whole)
Estimate for difference: -3.305
99% upper bound for difference: -2.742
T-Test of difference $=0(\mathrm{Vs} \mathrm{<} \mathrm{)} \mathrm{:} \mathrm{T-Value}=-14.99 \quad \mathrm{P}$-Value $=0.000 \quad \mathrm{DF}=18$
Both use Pooled StDev $=0.4931$

Two-Sample t: Options

Difference $=($ sample 1 mean $)-($ sample 2 mean $)$
Confidence level:
99
Hypothesized difference: 0.0
Alternative hypothesis: Difference \neq hypothesized difference
\checkmark Assume equal variances

Help

Two-Sample T-Test and CI: C6; C7

```
Two-sample I for C6
\begin{tabular}{lrrrr} 
C7 & N & Mean & StDev & SE Mean \\
skim & 10 & 91.340 & 0.483 & 0.15 \\
whole & 10 & 94.645 & 0.503 & 0.16
\end{tabular}
Difference = \mu (skim) - \mu (whole)
Estimate for difference: -3.305
99% CI for difference: (-3.940; -2.670)
I-Test of difference = 0 (vs f): T-Value = -14.99 P-Value = 0.000 DF = 18
Both use Pooled StDev =0.4931
```

(T test two samples for means assuming equal variance By Excel)

t-Test: Two-Sample Assuming Equal Variances

	skim	whole
Mean	91.34	94.645
Variance	0.233222	0.253028
Observations	10	10
Pooled Variance	0.243125	
Hypothesized Mean Difference	0	
df	18	
t Stat	-14.9879	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$6.53 \mathrm{E}-12$	
t Critical one-tail	2.55238	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.31 \mathrm{E}-11$	
t Critical two-tail	2.87844	

328 stat

4)

In an experiment comparing 2 feeding methods for caves, eight pairs of twins were used one twin receiving Method A and other twin receiving Method B. At the end of a given time, the calves were slaughtered and cooked, and the meat was rated for its taste (with a higher number indicating a better taste):

Twin pair	Method A	Method B
1	27	23
2	37	28
3	31	30
4	38	32
5	29	27
6	35	29
7	41	36
8	37	31

Assuming approximate normality, test if the average taste score for calves fed by Method B is less than the average taste foe calves fed by Method A. Use $\alpha=0.05$.
(T test parried two samples for means By Minitab)

328 stat

Paired T－Test and CI：Method B；Method A

Paired I for Method B－Method A

	N	Mean	StDev	SE Mean
Method B	8	29.50	3.82	1.35
Method A	8	34.38	4.87	1.72
Difference	8	-4.875	2.532	0.895

｜95\％upper bound for mean difference：-3.179
I－Test of mean difference $=0(\mathrm{vs}<0): \mathrm{T}$－Value $=-5.45 \quad \mathrm{P}$－Value $=0.000$
（T test parried two samples for means By Excel）

$\times \quad$ ¢	Data Analysis		Method B	Method A
			23	27
OK		Analysis Tools	28	37
	\wedge	Exponential Smoothing	30	31
Cancel		Fourier Analysis	32	38
İ．		Moving Averagam	27	29
		Random Number Generation	29	35
		Rank and Percentile	36	41
		Regression Sampling	31	37
		Paired Two Samole for Means		

x \quad ¢ －Test：Paired Two Sample for Means

OK	閜 SFS1：\＄F59		$\begin{array}{r} \text { Input } \\ : \text { Variable } \underline{1} \text { Range } \end{array}$	
Cancel	罭 SE\＄1：\＄ET9		：Vari	Range
تعليمات	0		：Hypothesized Mean Difference Labels \sqrt{V}	
			0.05	：Alpha
				options
	䦗		：Outpu	ange
			：New Works	Ply \bigcirc
			New W	book 0

t－Test：Paired Two Sample for Means

	Method B	Method A
Mean	29.5	34.375
Variance	14.57143	23.69643
Observations	8	8
Pearson Correlation	0.857204	
Hypothesized Mean Difference	0	
df	7	
t Stat	-5.44586	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one－tail	0.00048	
t Critical one－tail	1.894579	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two－tail	0.00096	
t Critical two－tail	2.364624	

328 stat

5)

Two independent samples of dates were taken-one from dates in the Khalal stage and one from dates at the Tamr stage. The calcium (in $\mathrm{mg} / \mathrm{loog}$) was measured [Sawaya (1986)]:

Khalal:30,57,29,23,55,50,49,74,101,97,79,158,112,107,93,63,70,90,98,48,75,64,71,72,146,37, $82,19,115,36,34,27,38,42,18,21,75,37,80,72,73,198,107,107,35,56,25,35,26,40,75,109,27,101$
Tamr: $14,25,21,18,28,14,19,20,44,18,24,47,19,52,31,38,41,39,35,16,47,26,26,30,81,18,42,9,49,2$ $3,27,14,15,17,10,16,18,14,13,32,42,55,42,27,30,17,24,14,20,17,48,20,76$
Assuming normal populations with unequal variances ($\alpha=0.05$)
a) Test whether the average calcium of dates at the khalal stage is more than this average for Tamar stage dates
b) Find the confidence interval for the difference in the average calcium of dates at the two stage

328 stat

(T test two samples for means assuming unequal variance By Minitab)

	Khalal	Tamr
1	30	14
2	57	25
3	29	21
4	23	18
5	55	28
6	50	14
7	49	19
8	74	20
9	101	44
10	97	18
11	79	24
12	158	47
13	112	19
14	107	52
15	93	31
16	63	38
17	70	41
18	90	39
19	98	35
20	48	16
21	75	47
22	64	26
23	71	26
24	72	30

25	146	81
26	37	18
27	82	42
28	19	9
29	115	49
30	36	23
31	34	27
32	27	14
33	38	15
34	42	17
35	18	10
36	21	16
37	75	18
38	37	14
39	80	13
40	72	32
41	73	42
42	198	55
43	107	42
44	107	27
45	35	30
46	56	17
47	25	24
48	35	14
49	26	20
50	40	17
51	75	48
52	109	20
53	27	76
54	101	

328 stat

Two-Sample T-Test and CI: Khalal; Tamr
Two-sample I for Khalal vs Tamr

	N	Mean	StDev	SE Mean
Khalal	54	67.7	38.0	5.2
Tamr	53	28.7	15.7	2.2

Difference $=\mu($ Khalal $)-\mu$ (Tamr)
Estimate for difference: 39.02
95% upper bound for difference: 48.36
T -Test of difference $=0$ (vs <): T-Value $=6.97 \quad \mathrm{P}$-Value $=1.000 \quad \mathrm{DF}=70$

Two-Sample T-Test and CI: Khalal; Tamr

```
Two-sample I for Khalal vs Tamr
\begin{tabular}{lrrrr} 
& N & Mean & StDev & SE Mean \\
Khalal & 54 & 67.7 & 38.0 & 5.2 \\
Tamr & 53 & 28.7 & 15.7 & 2.2
\end{tabular}
Difference = \mu (Khalal) - \mu (Tamr)
Estimate for difference: 39.02
95% CI for difference: (27.85; 50.20)
T-Test of difference = 0 (vs 手): T-Value = 6.97 P-Value = 0.000 DF = 70
```


328 stat

（ T test two samples for means assuming unequal variance By Excel）

¢ t－Test：Two－Sample Assuming Unequal Variances				t－Test：Two－Sample Assuming Unequal Variances		
OK	凰	\＄1\＄1：\＄1\＄55	：Variable 1 Range		Khalal	Tamr
Cancel	蔵	\＄］\＄1：\＄1\＄54	：Variable $\underline{2}^{\text {Range }}$	Mean	67.74074074	28.71698
				Variance	1443.139064	247.2837
－	0		：Hypothesized Mean Difference	Observations	54	53
			Labels \square	Hypothesized Mean Difference	0	
			0.05 ：Alpha	df	71	
				t Stat	6.965139095	
			Output options	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one－tail	$6.80179 \mathrm{E}-10$	
	闌		：Output Range	t Critical one－tail	1.666599658	
			：New Worksheet Ply \bigcirc	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two－tail	$1.36036 \mathrm{E}-09$	
			New Workbook	t Critical two－tail	1.993943368	

328 stat

6)

Formation of vitamin D depends on exposure to ultraviolet radiation in sunlight. A sample of Saudis was classified by the type of residence and the level of vitamin D [Sedrani et al. (1992)]:

Vitamin D Level

Residence type	Insufficient $<5 \mathrm{ng} / \mathrm{ml}$	Low $5-10 \mathrm{ng} / \mathrm{ml}$	Sufficient $>10 \mathrm{ng} / \mathrm{ml}$	Total
Tent	6	31	97	134
Mud house	16	73	349	438
Flat	45	174	652	871
Villa	64	323	1061	1448
Brick house	51	250	886	1187
Total	182	851	3045	4078

Test whether the Vitamin D level of Saudis is related to the type of residence. Use a level of significance of 0.05 .
(Independent test By Minitab)

328 stat

Chi-Square Test for Association: Worksheet rows; Worksheet columns

Rows: Worksheet rows Columns: Worksheet columns

	C16	C17	C18	All
1	6	31	97	134
	6.0	28.0	100.1	
2	16	73	349	438
	19.5	91.4	327.1	
3	45	174	652	871
	38.9	181.8	650.4	
4	64	323	1061	1448
	64.6	302.2	1081.2	
5	51	250	886	1187
	53.0	247.7	886.3	
All	182	851	3045	4078
Cell Contents:		Count		
			Expected count	

Pearson Chi-Square $=9.461$; $\mathrm{DF}=8$; P -Value $=0.305$
Likelihood Ratio Chi-Square $=9.668$; $\mathrm{DF}=8$; P-Value $=0.289$
Or

328 stat

Tabulated Statistics: C21; C22

Using frequencies in C20

Rows: C21 Columns: C22

	1	2	3	All
1	6	31	97	134
	6.0	28.0	100.1	
2	16	73	349	438
	19.5	91.4	327.1	
3	45	174	652	871
	38.9	181.8	650.4	
4	64	323	1061	1448
	64.6	302.2	1081.2	
5	51	250	886	1187
	53.0	247.7	886.3	
All	182	851	3045	4078
Cell Contents:			Count	
			Expecte	coun

Pearson Chi-Square $=9.461 ; \mathrm{DF}=8$; P -Value $=0.305$
Likelihood Ratio Chi-Square $=9.668 ; \mathrm{DF}=8 ; \mathrm{P}$-Value $=0.289$

328 stat

7)

A firm wishes to compare four programs for training workers to perform a certain manual task. Twenty new employees are randomly assigned to the training programs, with 5 in each program. At the end of the training period, a test is conducted to see how quickly trainees can perform the task. The number of times the task is performed per minute is recorded for each trainee, with the following results:

Observation	Program 1	Program 2	Program 3	Program 4
1	9	10	12	9
2	12	6	14	8
3	14	9	11	11
4	11	9	13	7
5	13	10	11	8

(One-way ANOVA by Minitab)

328 stat

One-Way Analysis of Variance: Comparisons x

Error rate for comparisons: 5

Comparison procedures assuming equal variances
\sqrt{V} Iukey
Γ Eisher
「 Dunnett Control group level: $\mathrm{C} 25 \quad \square$
Γ Hsu MCB
Best:
Largest mean is best

Results
I Interval plot for differences of means

- Grouping information
Γ Tests

Help
QK
Cancel

One-way ANOVA: C25; C26; C27; C28
Method
Null hypothesis All means are equal
Alternative hypothesis At least one mean is different Significance level $\quad \alpha=0.05$

Equal variances were assumed for the analysis.

Factor Information
Factor Levels Values
Factor $\quad 4$ C25; C26; C27; C28

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value

Factor	3	54.95	18.317	7.04	0.003

Error $16 \quad 41.60 \quad 2.600$

Total $19 \quad 96.55$

Tukey Simultaneous 95\% Cls

328 stat

Or

One-Way Analysis of Variance: Comparisons

```
Error rate for comparisons: [5
Comparison procedures assuming equal variances
    V Iukey
    \ulcorner \text { Fisher}
    \unnett
                Control group level: C25
    Hsu MCB
                Best
    Results
    Interval plot for differences of means
    Grouping information
    \Gamma ~ T e s t s
    Help
                            OK
                Cancel
```


328 stat

One-way ANOVA: C30 versus C31

Method

Null hypothesis
All means are equal
Alternative hypothesis At least one mean is different Significance level $\alpha=0.05$

Equal variances were assumed for the analysis.

Factor Information
Factor Levels Values
C31 $\quad 4$ 1; 2; 3; 4

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
$\begin{array}{llllll}\text { C31 } & 3 & 54.95 & 18.317 & 7.04 & 0.003\end{array}$
Error $16 \quad 41.60 \quad 2.600$
Total $19 \quad 96.55$

Tukey Simultaneous 95\% Cls

(One-way ANOVA by Excel)

$\times \quad ¢$	Anova: Single Factor		
OK			Input
OK			:Input Range
Cancel	Columns Rows		:Grouped By
تـعليمات			
			Labels in first row \square
			0.05 :Alpha
			Output options
	區		:Qutput Range \bigcirc
			:New Worksheet Ply \bigcirc
			New Workbook

328 stat

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	5	59	11.8	3.7		
Column 2	5	44	8.8	2.7		
Column 3	5	61	12.2	1.7		
Column 4	5	43	8.6	2.3		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	Fcrit
Between Groups	54.95	3	18.31667	7.044872	0.003113	3.238872
Within Groups	41.6	16	2.6			
Total	96.55	19				

328 stat

8)

Ten Corvettes between 1 and 6 years old were randomly selected from last year's sales records in Virginia Beach, Virginia. The following data were obtained, where x denotes age, in years, and y denotes sales price, in hundreds of dollars.

x	6	6	6	4	2	5	4	5	1	2
y	125	115	130	160	219	150	190	163	260	260

a) Determine the regression equation for the data.
b) Compute and interpret the coefficient of determination, r^{2}.
c) Obtain a point estimate for the mean sales price of all 4 -year-old Corvettes.
(Linear regression by Minitab)

328 stat

Regression Analysis: y versus x

|
Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
14.2465	93.68%	92.89%	90.16%

Coefficients					
Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	291.6	11.4	25.51	0.000	
x	-27.90	2.56	-10.89	0.000	1.00

Regression Equation
$y=291.6-27.90 x$
(Linear regression by Excel)

\times ¢	Regression			
	臨 \$ $\$ \$ 1: \$ 5 \$ 11$		$\begin{array}{r} \text { Input } \\ \text { :Input } \underset{\text { R Range }}{ } \end{array}$	
Cancel			:Input \underline{X} Range	
تِعليمات	$\begin{array}{r} \text { Constant is Zero } \square \\ \% 95 \end{array}$		Labels \square :Confidence Level \square	
	瀶		Output options	
			:Output Range \bigcirc	
			:New Worksheet Ply \bigcirc	
	New Workbook ©			
	Residual Plots \square Line Fit Plots \square		Residuals Residuals \square Standardized Residuals \square	
	Normal Probability Normal Probability Plots			

328 stat

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.967871585							
R Square	0.936775406							
Adjusted R Square	0.928872332							
Standard Error	14.24652913							
Observations	10							
ANOVA.								
	df	SS	MS	F	Significance F			
Regression	1	24057.89126	24057.89	118.533	$4.48427 \mathrm{E}-06$			
Residual	8	1623.708738	202.9636					
Total	9	25681.6						
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	291.6019417	11.43289905	25.50551	$5.98 \mathrm{E}-09$	265.2376293	317.9662542	265.2376293	317.9662542
x	-27.90291262	2.562889198	-10.8873	4.48E-06	-33.81294571	-21.99287953	-33.81294571	-21.99287953

Spss

Q1)
For a sample of 10 fruits from thirteen-year-old acidless orange trees, the fruit shape (determined as adiameter divided by height) wae measured [Shaheen and Hamouda (1984b)]: $\begin{array}{llllllllll}1.066 & 1.084 & 1.076 & 1.051 & 1.059 & 1.020 & 1.035 & 1.052 & 1.046 & 0.976\end{array}$
Assuming that fruit shapes are approximately normally distributed, find and interpret a 90% confidence interval for the average fruit shape.

Q2)
The phosphorus content was measured for independent samples of skim and whole
Whole: $94.95 \quad 95.1594 .8594 .55 \quad 94.55 \quad 93.40 \quad 95.05 \quad 94.35 \quad 94.7094 .90$
Skim: $91.25 \quad 91.80 \quad 91.50 \begin{array}{llllllllllllllllll} & 91.65 & 91.15 & 90.25 & 91.90 & 91.25 & 91.65 & 91.00\end{array}$
Assuming normal populations with equal variances
a) Test whether the average phosphorus content of skim milk is less than the average phosphorus content of whole milk. Use $\alpha=0.01$
b) Find and interpret a 99% confidence interval for the difference in average phosphorus contents of whole and skim milk

Q3)
What is the relationship between the gender of the students and the assignment of a Pass or No Pass test grade? (Pass = score 70 or above).

	Pass	No Pass	Row Totals
Males	12	3	15
Females	13	2	15
Column Totals	25	5	30

Q4)
A firm wishes to compare four programs for training workers to perform a certain manual task. Twenty new employees are randomly assigned to the training programs, with 5 in each program. At the end of the training period, a test is conducted to see how quickly trainees can perform the task. The number of times the task is performed per minute is recorded for each trainee, with the following results:

Observation	Program 1	Program 2	Program 3	Program 4
1	9	10	12	9
2	12	6	14	8
3	14	9	11	11
4	11	9	13	7
5	13	10	11	8

328 stat

Q5)
Ten Corvettes between 1 and 6 years old were randomly selected from last year's sales records in Virginia Beach, Virginia. The following data were obtained, where x denotes age, in years, and y denotes sales price, in hundreds of dollars.

x	6	6	6	4	2	5	4	5	1	2
y	125	115	130	160	219	150	190	163	260	260

a) Compute and interpret the linear correlation coefficient, r .
b) Determine the regression equation for the data.
c) Compute and interpret the coefficient of determination, r^{2}.
d) Obtain a point estimate for the mean sales price of all 4 -year-old Corvettes.

Q1) to use the T- test, we need to make sure that the population follows a normal distribution i.e.
H_{0} : the population follows a normal distribution Vs
H_{1} : the population does not follow a normal distribution
However, we find the question he said that the population follows a normal distribution, so is not necessary to make this test.

Now, $\mathbf{9 0 \%}$ Confidence interval of the mean can be found in two ways:

1) The first method:

\Rightarrow T.Test

[DataSet0]

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
FruitShape	10	1.0465	.03103	.00981

One-Sample Test

C.I for the mean

328 stat

2) The second method:

It helps in the calculation of the confidence interval and find the statistical measures

328 stat

\Rightarrow Explore

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N		Percent	N
Percent						
FruitShape	10	50.0%	10	50.0%	20	100.0%

Descriptives

Tests of Normality

	Kolmogorov-Smirnov $^{\text {a }}$			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
FruitShape	.194	10	200^{*}	.907	10	-260	

*. This is a lower bound of the true signiffeance.
a. Lilliefors Significance Correction

$$
\text { As } \mathrm{P}-\text { value }>.1
$$

So, we except H_{0} : the population follows a normal distribution

328 stat

Q2) to use the T- test for two sample, we need to make sure that

1) The independence of the two samples: It is very clear that there is no correlation between the values of the two samples.
2) The populations follow a normal distribution
\square i.e.

$$
\begin{aligned}
& H_{0} \text { : the two populations follow a normal distribution } \\
& \qquad V s \\
& H_{1} \text { : the two populations do not follow a normal distribution }
\end{aligned}
$$

However, we find the question he said that the populations follows a normal distribution, so is not necessary to make this test.
*To make sure no more \qquad

	Variable	grouping	var
-	94.95	Whole	
-	95.15	Whole	
-	94.85	Whole	
-	94.55	Whole	
-	94.55	Whole	
-	93.40	Whole	
-	95.05	Whole	
-	94.35	Whole	
-	94.70	Whole	
-	94.90	Whole	
-	91.25	Skim	
-	91.80	Skim	
-	91.50	Skim	
-	91.65	Skim	
-	91.15	Skim	
-	90.25	Skim	
-	91.90	Skim	
-	91.25	Skim	
-	91.65	Skim	
-	91.00	Skim	

328 stat

It helps in the calculation of the confidence interval and find statistical measures for each sample

Helps in the normality test

328 stat

Explore

grouping

Case Processing Summary							
	grouping	Cases					
		Valid		Missing		Total	
		N	Percent	N	Percent	N	Percent
Variable	Skim	10	100.0\%	0	0.0\%	10	100.0\%
	Whole	10	100.0\%	0	0.0\%	10	100.0\%

Descriptives

grouping				Statistic	Std. Error	\mathcal{Z}	C.I for the mean for the skim
Variable	Skim	Mean		91.3400	. 15272		
		99\% Confidence Interval	Lower Bound	90.8437			
		for Mean	Upper Bound	91.8363			
		5\% Trimmed Mean		91.3694			

					\cdots	
	Interquartile Range		. 57		1	
	Skewness		-1.241	687		
	Kurtosis		2.035	1.334		
Whole	Mean		94.6450	. 15907		C.I for the mean for the whole
$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Double-click to } \\ \text { activate } \end{array} \\ \hline \end{array}$	99\% Confidence Interval for Mean	Lower Bound Upper Bound	$\begin{aligned} & 94.1281 \\ & 95.1619 \\ & \hline \end{aligned}$			
	5\% Trimmed Mean		94.6861			
	Median		94.7750			

As $\mathrm{P}-$ value $>.01$ for both populations.
So, we except H_{0} : the two populations follow a normal distribution

328 stat

Now, the goal of the question:
a) $H_{0}: \mu_{\text {whole }}-\mu_{\text {skim }}=0$ Vs $\quad H_{1}: \mu_{\text {whole }}-\mu_{\text {skim }}>0$ at $\alpha=.01$ and
b) 90% Confidence interval of $\mu_{\text {whole }}-\mu_{\text {skim }}$

328 stat

This for test

$$
H_{0}: \sigma_{\text {whole }}^{2}=\sigma_{\text {skim }}^{2} \quad \text { Vs } \quad H_{1}: \sigma_{\text {whole }}^{2} \neq \sigma_{\text {skim }}^{2}
$$

As $\mathrm{P}-$ value $>.01$. So, we except H_{0}. However, it is given in question.

\section*{\Rightarrow T-Test
 | Group Statistics | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | grouping | N | Mean | Std. Deviation | $\begin{gathered} \hline \text { Std. Error } \\ \text { Mean } \end{gathered}$ |
| Variable | Whole | 10 | 94.6450 | . 50302 | . 15907 |
| | Skim | 10 | 91.3400 | . 48293 | . 15272 |

Infependent Samples Test

		Levene's Test for Equality of Variances		t-testor Equality of Means													
		F	$\begin{aligned} & \\ & \\ & \text { sig. } \\ & \hline \end{aligned}$	t	df	Sig. (2-tailed)	$\begin{aligned} & \text { Mean } \\ & \text { Difference } \end{aligned}$	Std. Eror Difference	99% Confidence Interval of the Difference								
		Lower							Upper								
Variable	Equal variances assumed		. 009	. 924	14.988		-000	3.30500	. 22051	2.67027	${ }^{3.93973}$						
	Equal variances not assumed			14.988		. 000	3.30500	. 22051	2.67015	3.93985							
$4.988>0 \text { so } P-\text { value }=P\left(T_{18}>t\right)=0$ then we reject $H_{0}: \mu_{\text {whole }}-\mu_{\text {skim }}=0$.																	

$$
99 \% \text { C.I for } \mu_{\text {whole }}-\mu_{\text {skim }}
$$

Q3)

H_{0} : the gender of the students is indep. of a Pass or No Pass test grade

Vs

H_{1} : the gender of the students is not indep. of a Pass or No Pass test grade

| Count | PassOrNot | Gender | var |
| ---: | ---: | ---: | ---: | ---: |
| 1.00 | 1.00 | 1.00 | |
| 2.00 | 1.00 | 1.00 | |
| 3.00 | 1.00 | 1.00 | |
| 4.00 | 1.00 | 1.00 | |
| 5.00 | 1.00 | 1.00 | |
| 6.00 | 1.00 | 1.00 | |
| 7.00 | 1.00 | 1.00 | |
| 8.00 | 1.00 | 1.00 | |
| 9.00 | 1.00 | 1.00 | |
| 10.00 | 1.00 | 1.00 | |
| 12.00 | 1.00 | 1.00 | |
| 13.00 | 1.00 | 1.00 | |
| 14.00 | 2.00 | 1.00 | |
| 15.00 | 2.00 | 1.00 | |
| 17.00 | 2.00 | 1.00 | |
| 1.00 | 1.00 | 2.00 | |
| 19.00 | 1.00 | 2.00 | |
| 19.00 | 1.00 | 2.00 | |
| 20.00 | 1.00 | 2.00 | |
| 21.00 | 1.00 | 2.00 | |
| 22.00 | 1.00 | 2.00 | |
| 23.00 | 1.00 | 2.00 | |
| 24.00 | 1.00 | 2.00 | |
| 25.00 | 1.00 | 2.00 | |
| 26.00 | 1.00 | 2.00 | |
| 27.00 | 1.00 | 2.00 | |
| 28.00 | 1.00 | 2.00 | |
| 29.00 | 1.00 | 2.00 | |
| | 2.00 | 2.00 | |
| | | | |

30.00	2.00	2.00	

328 stat

Crosstabs

Case Processing Summary						
	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
	30	100.0%	0	0.0%	30	100.0%

Gender *PassOrNot Crosstabulation

		PassOrNot			
		1.00	2.00	Total	
Gender	1.00	Count	12	3	15
		Expected Count	12.5	2.5	15.0
	2.00	Count	13	2	15
		Expected Count	12.5	2.5	15.0
Total		Count	25	5	30
		Expected Count	25.0	5.0	30.0

The Chi-Square statistic

	Value	df Asymp. Sig. (2-sides)	Exact Sig. (2sided)	$\begin{aligned} & \text { Exact Sig. (1- } \\ & \text { sided) } \end{aligned}$
Pearson Chi-Square	$240^{\text {a }}$	$1 \quad 624$		
Continuity Correction ${ }^{\text {b }}$. 000	$1 \quad 1.000$		
Likelihood Ratio	. 241	1 . 623		
Fisher's Exact Test		\|	1.000	. 500
Linear-by-Linear Association	. 232			
N of Valid Cases	30	1		
a. 2 cells (50.0%) have expected count less thar 5 . The minimum expected count is 2.50 .				
b. Computed only for a				

$P-$ value $>(\alpha=.05)$ so we except H_{0}

As we can see that 2 cells have expected count less than 5 because these 2 cells contain less than 5 observations. So the solution is will
be Merge cells until we get the expectation greater than 5 but here it is not possible, so take a larger sample.

328 stat

Q4) to use the one way ANOVA- test, we need to make sure that

1) The independence of the four samples: It is very clear that there is no correlation between the values of the four samples.
2) The populations follow a normal distribution
H_{0} : the four populations follow a normal distribution
Vs
H_{1} : the four populations do not follow a normal distribution

328 stat

328 stat

Explore
[DataSet1] E: \328\7 انـلـ
TypesOfProgram

Case Processing Summary

TypesOfProgram		Cases					
		Valid		Missing		Total	
		N	Percent	N	Percent	N	Percent
NumberOfTask	1.00	5	100.0\%	0	0.0\%	5	100.0\%
	2.00	5	100.0\%	0	0.0\%	5	100.0\%
	3.00	5	100.0\%	0	0.0\%	5	100.0\%
	4.00	5	100.0\%	0	0.0\%	5	100.0\%

Descriptives

TypesOfProgram				Statistic	Std. Error
NumberOfTask	1.00	Mean		11.8000	. 86023
		95\% Confidence Interval	Lower Bound	9.4116	
			Upper Bound	14.1884	
		5\% Trimmed Mean		11.8333	
		Median		12.0000	
		Variance		3.700	
		Std. Deviation		1.92354	
		Minimum		9.00	
		Maximum		14.00	
		Range		5.00	
		Interquartile Range		3.50	
		Skewness		-. 590	. 913
		Kurtosis		-. 022	2.000
	2.00	Mean		8.8000	. 73485

	TypesOfProgram	Kolmogorov-Smirnov ${ }^{\text {a }}$			Shapiro-Wilk		
		Statistic	df	Sig.	Statistic	df	Sig.
NumberOfTask	1.00	.141	5	.200*	. 979	5	. 928
	2.00	. 348	5	. 047	. 779	5	. 054
	3.00	. 221	5	.200*	. 902	5	-. 421
	4.00	. 254	5	.200*	. 914	- 5	. 492

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

$$
\text { As } \mathrm{P}-\text { value }>.05 \text { for the four populations. }
$$

So, we except H_{0} : the four populations follow a normal distribution

328 stat

3) Homogeneity of Variance (to get a test of the assumption of homogeneity of variance) i.e.

$$
H_{0}: \sigma_{\text {program } 1}^{2}=\sigma_{\text {program } 2}^{2}=\sigma_{\text {program } 3}^{2}=\sigma_{\text {program } 4}^{2}
$$

i.e. the variances of each sample are equal Vs
H_{1} : The variances are not all equal
This will be clear later.
Now, the goal of the question:

$$
\begin{gathered}
H_{0}: \mu_{\text {program } 1}=\mu_{\text {program } 2}=\mu_{\text {program } 3}=\mu_{\text {program } 4} \\
\text { i.e. treatments are equally effective }
\end{gathered}
$$

Vs

H_{1} : The means are not all equal

$$
\text { at } \alpha=.05
$$

Helps in the homogeneity of variance test

328 stat

If we reject H_{0} in Analysis of Variance (ANOVA one way-test) we need to look at the multiple comparisons output by use the appropriate post hoc procedure (LSD) to determine whether unique pairwise comparisons are significant.

as $P-$ value $<.05$,then we reject $H_{0}: \mu_{\text {program } 1}=\mu_{\text {program } 2}=\mu_{\text {program } 3}=\mu_{\text {program } 4}$.

Multiple Comparisons						
Dependent Variable: NumberOfTaskLSD						
(1) TypesOfProgram	(J) TypesOfProgram	Mean Difference (IJ)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
1.00	2.00	3.00000^{*}	1.01980	. 010	. 8381	5.1619
	3.00	-. 40000	1.01980	. 700	-2.5619	1.7619
	4.00	3.20000^{*}	1.01980	. 006	1.0381	5.3619
2.00	1.00	-3.00000*	1.01980	. 010	-5.1619	-. 8381
	3.00	-3.40000*	1.01980	. 004	-5.5619	-1.2381
	4.00	. 20000	1.01980	. 847	-1.9619	2.3619
3.00	1.00	. 40000	1.01980	. 700	-1.7619	2.5619
	2.00	3.40000^{*}	1.01980	. 004	1.2381	5.5619
	4.00	3.60000^{*}	1.01980	. 003	1.4381	5.7619
4.00	1.00	-3.20000*	1.01980	. 006	-5.3619	-1.0381
	2.00	-. 20000	1.01980	. 847	-2.3619	1.9619
	3.00	-3.60000^{*}	1.01980	. 003	-5.7619	-1.4381

*. The mean difference is significant at the 0.05 level

1) $H_{0}: \mu_{\text {program }_{1}}=\mu_{\text {program }_{2}}$ vs $H_{1}: \mu_{\text {program }_{1}} \neq \mu_{\text {program }_{2}}$ at $\alpha=.05$ as $P-$ value $=.01<.05$, then we reject H_{0}.
2) $H_{0}: \mu_{\text {program }_{1}}=\mu_{\text {program }_{3}}$ vs $H_{1}: \mu_{\text {program }_{1}} \neq \mu_{\text {program }_{3}}$ at $\alpha=.05$ as $\mathrm{P}-$ value $=.7>.05$, then we except H_{0}.
3) $H_{0}: \mu_{\text {program }_{1}}=\mu_{\text {program } 4}$ vs $H_{1}: \mu_{\text {program }_{1}} \neq \mu_{\text {program }_{4}}$ at $\alpha=.05$ as $P-$ value $=.006<.05$, then we reject H_{0}.
4) $H_{0}: \mu_{\text {program }_{2}}=\mu_{\text {program } 3}$ vs $H_{1}: \mu_{\text {program }_{2}} \neq \mu_{\text {program }_{3}}$ at $\alpha=.05$ as $P-$ value $=.004<.05$, then we reject H_{0}.
5) $H_{0}: \mu_{\text {program } 2}=\mu_{\text {program }_{4}}$ vs $H_{1}: \mu_{\text {program }_{2}} \neq \mu_{\text {program }_{4}}$ at $\alpha=.05$ as $\mathrm{P}-$ value $=.847>.05$, then we except H_{0}.
6) $H_{0}: \mu_{\text {program }_{3}}=\mu_{\text {program } 4}$ vs $H_{1}: \mu_{\text {program }_{3}} \neq \mu_{\text {program }_{4}}$ at $\alpha=.05$ as $P-$ value $=.003<.05$, then we reject H_{0}.

328 stat

Q5)

Enter the age values into one variable and the corresponding sales price values into another variable (see figure, below).

\times	Y	var
6.00	125.00	
6.00	115.00	
6.00	130.00	
4.00	160.00	
2.00	219.00	
5.00	150.00	
4.00	190.00	
5.00	163.00	
1.00	260.00	
2.00	260.00	
-	\checkmark	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	

328 stat

a) Select Analyze \diamond Correlate \diamond Bivariate... (see figure, below).

Statistics Data Editor					
prm	Analyze	Direct Marketing	Graphs	$\underline{\text { Utilities }}$	Add-ons
\square	Reports Descriptive Statistics Tables		\downarrow	8\%	
			-		
Pass	com	are Means	-	AR00004	NumberO
	Gen	ral Linear Model	-	-	
	Gen	ralized Linear Models	-	-	
	Mixe	Models	-		
	Corr	late	-	[12 Bivaria	te...
		ssion	-	Prartial	
		near	-	8 Distan	ces...
		Networks	-		
		ify	-	- -	
		nsion Reduction	-	-	
			-	-	
		arametric Tests	-	-	
		asting	-	-	
			-	.	
		le Response	-	.	
	-3 Miss	g Value Analysis...		.	
		le Imputation	-	-	
		lex Samples	$\stackrel{ }{ }$	-	
	閊 Sim	ation...		-	
		Control	-	-	
	$\square \mathrm{ROC}$	Curve...		-	
	1.00	2.00	-	-	
	1.00	2.00	-	-	

Select "x" and "y" as the variables, select "Pearson" as the correlation coefficient, and click " "OK" (see the left figure, below).

328 stat

\Rightarrow Correlations

Correlations

	X	Y	
X	Pearson Correlation	1	$-.968^{\wedge \pi}$
	Sig. (2-tailed)		.000
	N	10	10
Y	Pearson Correlation	$-.968^{\pi \kappa}$	1
	Sig. (2-tailed)	.000	
	N	10	10

**. Correlation is significant at the 0.01 level (2-tailed).

The correlation coefficient is -0.9679 which we can see that the relationship between x and y are $-v e$ and strong.
b, c and d)
Since we eventually want to predict the price of 4 -year-old Corvettes, enter the number " 4 " in the " x " variable column of the data window after the last row. Enter a "." for the corresponding " y " variable value (this lets SPSS know that we want a prediction for this value and not to include the value in any other computations) (see figure, below).

	\times	Y
-	6.00	125.00
-	6.00	115.00
-	6.00	130.00
-	4.00	160.00
-	2.00	219.00
-	5.00	150.00
-	4.00	190.00
-	5.00	163.00
-	1.00	260.00
-	2.00	260.00
-	4.00	-
-	-	-
-	-	-

328 stat

Select Analyze \diamond Regression \diamond Linear... (see figure).
Select " y " as the dependent variable and " x " as the independent variable. Click "Statistics", select "Estimates" and "Confidence Intervals" for the regression coefficients, select "Model fit" to obtain r^{2}, and click "Continue". Click "Save...", select "Unstandardized" predicted values and click "Continue". Click "OK".

328 stat

328 stat

Regression

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.968^{\mathrm{a}}$.937	.929	14.24653

a. Predictors: (Constant), X
b. Dependent Variable: Y

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	24057.891	1	24057.891	118.533	. $000{ }^{\text {b }}$
	Residual	1623.709	8	202.964		
	Total	25681.600	9			

a. Dependent Variable: Y
b. Predictors: (Constant), X

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	95.0\% Confidence Interval for B	
		B	Std. Error				Lower Bound	Upper Bound
1	(Constant)	291.602	11.433		25.506	. 000	265.238	317.966
	X	-27.903	2.563	-. 968	-10.887	. 000	-33.813	-21.993

a. Dependent Variable: Y

From above, the regression equation is: $\mathrm{y}=29160.1942-(2790.2913)(\mathrm{x})$.
The coefficient of determination is 0.9368 ; therefore, about 93.68% of the variation in y data is explained by x .

R

328 stat

Q1)
i- $\binom{150}{30}, \Gamma(18), \ln (14), \log (17)$
ii- $P(2<X \leq 4) \quad$ when $\quad X \sim$ Poisson(3)
iii- Write R loop and the results to calculate

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}, z=-3.1,-3.0, \ldots-0.1,0,0.1, \ldots 3.0,3.1 .
$$

iv- Write R code and the results to calculate:

$$
\Phi(z)=\int_{-\infty}^{=} \frac{1}{\sqrt{2 \pi}} e^{\frac{t^{2}}{2}} d t, z=-3,-2,-1,0,1,2,3 .
$$

v - Write loop structure in R for generating 5 samples each of size 100 from Binomial $(5,0.7)$. Then calculate the mean, standard deviation and coefficient of variation for each sample.

Q2)
(a) Write the commends and results to calculate the following:
(i) $P(-1.0<T<1.5), \quad v=10$,
(ii) Find k such that $P(T<k)=0.025, \nu=12$,
(iii) $\binom{15}{9}, \quad \log _{10}(25), 28!$

(b) Generate a random sample of size 12 from the exponential (3) distribution and save it to A. Next, write an R
command to create the column B such that

$$
B_{i}=\left\{\begin{array}{ll}
1, & A_{i} \leq 3 \\
2, & A_{i}>3
\end{array}, \quad i=1,2, \ldots, 12 .\right.
$$

328 stat

Q3)
(a) Find k when $P(X>k)=0.04, \quad X-F(12,10)$

$$
\begin{aligned}
& \Rightarrow 1-P(x<k)=.04 \\
& \Rightarrow 1-04=P(x<k)
\end{aligned}
$$

(b) $P(3<X \leq 7)$ when X-Poisso n(3)

Peta'dis.

$$
=\frac{1}{\operatorname{Beta}(6,5)}
$$

(e) $\int_{0}^{1} x^{5}[1-x]^{4} d x \quad f(x)=\frac{\sqrt{6+5}}{\sqrt{6} \sqrt{5}} x^{6-1}(1-x)^{5-1}, 0 \lll 1$

Q4)

$$
A=\left[\begin{array}{cccc}
1 & 6 & 3 & -1 \\
5 & 2 & 7 & 4
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 9 & 8 \\
7 & 4 & 2 \\
5 & 1 & 5 \\
1 & 1 & 9
\end{array}\right], C=\left[\begin{array}{llll}
3 & 4 & 2 & 7 \\
4 & 9 & 0 & 6 \\
3 & 8 & 3 & 2 \\
3 & 4 & 6 & 2
\end{array}\right]
$$

(a) $A * B$
(b) Determinant of C
(c) Inverse of C
(\#) The following data are two independent random samples from two independent populations $A \sim\left(\mu_{A}, \sigma^{2}\right)$ and $B \sim\left(\mu_{B}, \sigma^{2}\right)$, respectively.

$$
\begin{array}{llllllllll}
\text { A: } & 48 & 39 & 42 & 52 & 40 & 48 & 52 & 52 & 54 \\
48 \\
\text { B: } & 50 & 48 & 42 & 40 & 43 & 48 & 50 & 46 & 38 \\
38
\end{array}
$$

Write R command and the results to
i- Test whether $\mu_{A}>\mu_{B}$.
ii- Construct 90% confidence interval of the difference $\mu_{B}-\mu_{A}$.

328 stat

Q5)
(a) Write the command and result to calculate the following:
$\log (80)=$
$18=$
$\ln (40)=$

40 ! $=$
$\binom{50}{15}=$
$P(X>2.22)$, where $X \sim N(2,5)$
$\Rightarrow \quad 1-P(X<2.22)$
(b) Write the commands and results to find the determent of the matrix and its inverse

Se $\left[\begin{array}{llll}1 & 0 & 4 & 7 \\ 8 & 3 & 1 & 9 \\ 7 & 4 & 2 & 8 \\ 0 & 9 & 5 & 6\end{array}\right]$

328 stat

```
###Q1
##i
    choose (150,30)
    gamma(18)
    log(14); log(14,base=exp (1))
    log(17,base=10); log10(17)
##ii
    ppois(4,lambda=3) -ppois(2,lambda=3)
##iii
    z <- seq(-3.1,3.1,by=.1)
    z
    for(i in z) {
    a=dnorm(i, mean = 0, sd = 1)
    cat(i," ",a,"\n")
    }
#or
    for(i in z) {
    a=dnorm(i, mean = 0, sd = 1)
    print(c(i,a))
    }
##vi
    z<- seq(-3,3,by=1)
    z
    for(i in z) {
    b=pnorm(i, mean = 0, sd = 1)
    cat(i," ",b,"\n")
    }
#or
    for(i in z) {
    b=pnorm(i, mean = 0, sd = 1)
    print(c(i,b))
    }
##v
    generating <- seq(1,5,by=1)
    generating
    generating <- c(1,2,3,4,5)
    generating
    for(i in generating) {
    c=rbinom(100, size=5, prob=.7)
    d <- mean(c)
    e <- sd(c)
    f<- e/d
    cat("sample:",c," ","mean=",d," ","sd=",e," ","cv=",f,"\n")
    }
#or
    for(i in generating) {
    c=rbinom(n=100, size=5, prob=.7)
    d <- mean(c)
    e <- sd(c)
    f <- e/d
    print(c(c,d,e,f))
    }
```


328 stat

```
###Q2
##ai
    pt(1.5,df=10) -pt(-1,df=10)
##aii
    k=qt (.025, df=12)
    k
```

\#\#aiii
choose $(15,9)$
$\log (25$, base $=10) ; \log 10(25)$
factorial(28)
\#\#b
A <- rexp (12, rate=3)
A
for(i in A) \{
if(i<=3) print(1) else print(2)
\}
\#or
B <- vector(mode = "numeric")
j <-0
for(i in A)
j <- j+1
if(i<=3) $B[j]=1$ else $B[j]=2$
\}
B
\#\#\#Q3
\#\#a
$\mathrm{k}=\mathrm{qf}(1-.04, \mathrm{df} 1=12, \mathrm{df} 2=10)$
k
\#\#c
f <- function(x) \{ ($\left.x^{\wedge} 5\right)^{*}\left((1-x)^{\wedge} 4\right)$ \}
i <- integrate (f,lower=0, upper=1) \$value
i
\#or
f <- function(x) \{ dbeta(x, shape1=6, shape2=5) * (beta (6,5)) \}
i <- integrate (f,lower=0, upper=1) \$value
i
*
\#\#Q4
a <- $c(1,6,3,-1,5,2,7,4)$
$\mathrm{A}<-$ matrix $(\mathrm{a}$, nrow $=2$, ncol $=4$, byrow=T)
A
b <- c(1, 9, 8, 7, 4, 2, 5, 1, 5, 1, 1, 9)
B <- matrix (b, nrow $=4$, ncol $=3$, byrow $=T$)
B
c <- c $(3,4,2,7,4,9,0,6,3,8,3,2,3,4,6,2)$
$C<-$ matrix (c,nrow $=4$, ncol $=4$, byrow $=T$)
C
\#\#a
A왕*옹
\#\#b
$\operatorname{det}(C)$
\#\#c
solve (C)

328 stat

```
##d
    A<- c(48,39,42,52,40,48,52,52,54,48)
    A
    B<- c(50,48,42,40,43,48,50,46,38,38)
    B
#or
```



```
    data <- read.csv("data.csv",header=T, sep=";")
        data
        A <- data$A
        A
        B <- data$B
    B
##di
        t.test (A,B,alternative = "greater", paired = FALSE, var.equal = T, conf.level = 0.95)
    ##dii
        t.test(B,A,alternative = "two.sided", paired = FALSE, var.equal = T, conf.level = 0.90)
    ###05
        1-pnorm(2.22, mean = 2, sd = sqrt (5))
```

+ See Appendix -3-

[^0]: Notes

 ## p-value

 (1) $H_{1}: \theta \neq \theta_{0} \rightarrow p-$ value $_{\text {two tail }}=2 P($ distribution oftest statistical $>\mid$ test statistical $)$
 (2) $H_{1}: \theta>\theta_{0} \rightarrow p-$ value $_{\text {one tail }(>)}=P($ distribution oftest statistical $>$ test statistical $)$
 (3) $H_{1}: \theta<\theta_{0} \rightarrow p-$ value $_{\text {one tail (<) }}=P$ (distribution oftest statistical $<$ test statistical $)$

