1. Determine the coefficients a_{i} and b_{i} in the expression

$$
a_{0}+a_{1} \cos x+b_{1} \sin x+a_{2} \cos 2 x+b_{2} \sin 2 x
$$

which give the best approximation in $L^{2}(-\pi, \pi)$ of the function $f(x)=$ $x,-\pi<x<\pi$.
2. (i) Let $L=a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}+c$ be a linear differential operator with constant coefficients. When is L formally self-adjoint?
(ii) Determine the eigenvalues and eigenfunctions of the operator $L=$ $\frac{d^{2}}{d x^{2}}+1$ on the interval $(0,1)$ by solving the equation $L u+\lambda u=0$ under the boundary conditions

$$
u(0)=1, \quad \text { (ii) } u(1)=0 .
$$

3. Determine the eigenvalues and eigenfunctions of the equation $x^{2} u^{\prime \prime}+$ $x u^{\prime}+\lambda u=0$ on the interval $(1, e)$, subject to the conditions

$$
u(1)=u(e)=0
$$

Write the orthogonality relation between the eigenfunctions.
4. expand the function

$$
f(x)=\left\{\begin{array}{lr}
0, & -\pi<x<0 \\
x, & 0<x<\pi
\end{array}\right.
$$

in a Fourier series. Is the covergence uniform, and why?

