

College of Science. Department of Physics & Astronomy

كلية العلوم قسم الفيزياء والفلك

Mid Term Exam Academic Year 1444 Hijri- 1st Semester

معلومات الامتحان Exam Information						
Course name	Classical Mechanics 2		اسم المقرر			
Course Code	Phys. 312		رمز المقرر			
Exam Date	2022-09-29	1444-03-03	تاريخ الامتحان			
Exam Time	08: 00 AM – 09:05 AM		وقت الامتحان			
Exam Duration	1 hour		مدة الامتحان			
Classroom No.			رقم قاعة الاختبار			
Instructor Name	nstructor Name Dr. Abdelhay Salah		اسم استاذ المقرر			

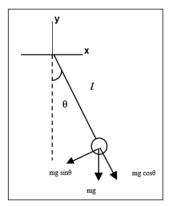
معلومات الطالب Student Information				
Student's Name		اسم الطالب		
ID number		الرقم الجامعي		
Section No.		رقم الشعبة		
Serial Number		الرقم التسلسلي		

General Instructions:

- Your Exam consists of 4 PAGES (except this paper)
- عدد صفحات الامتحان 7 صفحة. (بإستثناء هذه الورقة)
- Keep your mobile and smart watch out of the classroom.
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

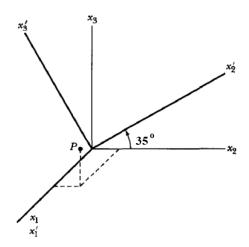
هذا الجزء خاص بأستاذ المادة

This section is ONLY for instructor

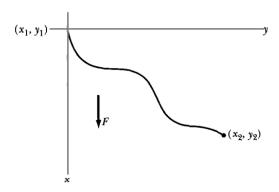

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	CLO 1.2	Q1	10	
2	CLO 1.1	Q2	10	
3	CLO 2.1	Q 3	10	
4				
				30

EXAM COVER PAGE

Solve all parts. All the parts carry equal marks


Part 1: [10 Marks]

Question 1: Consider a simple pendulum that oscillates with a small angle. Derive the equation of motion using Lagrangian mechanics


Question 2: A point P is represented in the (x_1, x_2, x_3) system by P (3, 2, 1). In another coordinate system the same point is represented as P (x_1', x_2', x_3') where x_2 has been roteted towards x_3 around x_1 -axis by an angle 35° . Find the rotation matrix and determine P (x_1', x_2', x_3') .

Question 2: Consider a particle moving in a constant force field starting at rest from some point (x_1, y_1) to some lower point (x_2, y_2) . Prove that the path that allows the particle to accomplish the transit in the least possible time can be represented by the following equation (a = constant).

$$y = \int \frac{x \, dx}{(2ax - x^2)^{1/2}}$$

