

College Physics

A Strategic Approach

THIRD EDITION

Randall D. Knight • Brian Jones • Stuart Field

Lecture Presentation

Chapter 30 Nuclear Physics

Chapter 30 Nuclear Physics

Section 30.1 Nuclear Structure Section 30.4 Radiation and Radioactivity Section 30.5 Nuclear Decay and Half-Lives

Chapter 30 Preview Looking Ahead

Nuclei and Isotopes

The ratio of two stable **isotopes** of oxygen in arctic ice gives us a record of past temperatures.

You'll learn about nuclear structure. The number of protons determines the element; the number of neutrons, the isotope.

Radioactivity and Radiation

These **radioactive** nuclei in this tank are unstable. They decay, emitting high-energy particles—**radiation**—that ionize the water.

You'll learn about different nuclear decay modes (alpha, beta, and gamma) and the resulting radiation for each.

Decay and Half-Life

Measurements of carbon isotopes in these cave drawings show that they are 30,000 years old.

In any sample of ¹⁴C, half the nuclei decay in 5700 years. You'll see how to use this half-life to calculate an object's age.

Chapter Goal: To understand the physics of the nucleus and some of the applications of nuclear physics.

Section 30.1 Nuclear Structure

Nuclear Structure

 The nucleus is composed of protons and neutrons.
 Together they are referred to as nucleons.

ProtonNeutronNumberZNCharge q+e0Mass, in u1.007281.00866

 TABLE 30.1
 Protons and neutrons

This picture of an atom would need to be 10 m in diameter if it were drawn to the same scale as the dot representing the nucleus.

To identify a nucleus, we need two of three numbers:

1.mass number, *A*, which corresponds to the number of nucleons in the nucleus.

2. atomic number, Z, which corresponds to the number of protons in the nucleus,

3. the number of neutrons, N.

A = Z + N

chemical symbol X

Isotopes

- Atoms with the same number of protons in the nucleus can have different numbers of neutrons.
- Atoms with the same number of protons but different number of neutrons are <u>isotopes</u> of the same element.
- For example, the most common isotope of carbon is ${}^{12}_{6}C$, which has six protons and six neutrons.

The three nuclei all have the same number of protons, so they are isotopes of the same element, carbon.

• Most isotopes are radioactive, meaning that the nucleus is not stable and, after some period, will emit a subatomic particle to reach a more stable state.

The isotope ${}_{2}^{3}$ He has _____ neutrons.

- A. 0
- **B.** 1
- C. 2
- D. 3
- E. 4

How many neutrons are in each of the following isotopes? (Some of these are uncommon or unstable.)

 $^{11}_{3}$ Li, $^{11}_{4}$ Be, $^{11}_{5}$ B, $^{11}_{6}$ C

How many neutrons are in each of the following isotopes? (Some of these are uncommon or unstable.)

 $^{11}_{3}$ Li, $^{11}_{4}$ Be, $^{11}_{5}$ B, $^{11}_{6}$ C

The number of neutrons is given by A–Z, so:

 $^{11}_{3}$ Li: 8 neutrons

¹¹₄Be: 7 neutrons

 ${}^{11}_{5}$ B: 6 neutrons

 ${}^{11}_{6}$ C: 5 neutrons

Section 30.4 Radiation and Radioactivity

© 2016 Pearson Education, Ltd.

Alpha Decay

- When a **large nucleus** spontaneously decays by breaking into two smaller fragments, one of the fragments is almost always a stable ⁴He nucleus—an alpha particle. An alpha particle is symbolized by α .
- An unstable nucleus that ejects an alpha particle loses two protons and two neutrons, so we write the decay as (Eq. 30.6)

$$^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + \alpha + \text{energy}$$

Alpha decay of a nucleus

Alpha Decay

• The original nucleus X is called the **parent nucleus** and the decay-product nucleus Y is the **daughter nucleus**.

The daughter nucleus has two fewer protons and four fewer nucleons. It has a small recoil.

Beta Decay

- In beta decay, a nucleus decays by emitting an electron.
- The neutron changes itself into a proton by emitting an electron:

$$n \rightarrow p + e^{-}$$

• The electron is ejected from the nucleus but the proton is not. The beta-decay process is (Eq. 30.9)

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + energy$$

Beta-minus decay of a nucleus

Beta Decay

- Some nuclei emit a positron. A positron, *e*⁺, is identical to an electron except that it has a positive charge. It is the antiparticle of the electron.
- To distinguish between the two forms of beta decay, we call the emission of an electron <u>beta-minus decay</u> and the emission of a positron <u>beta-plus decay</u>.

 $p^{\scriptscriptstyle +} \to n + e^{\scriptscriptstyle +}$

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^{+} + energy$$

Beta-plus decay of a nucleus

Beta Decay

(a) Beta-minus decay

 $^{A}_{Z}X$

 $\frac{1}{7}X$

After:

A neutron changes into a proton and an electron. The electron is ejected from the nucleus.

(b) Beta-plus decay

Before:

A proton changes into a neutron and a positron. The positron is ejected from the nucleus.

© 2016 Pearson Education, Ltd.

Beta-minus decay

A neutron turns into a proton, so:

The number of nucleons stays the same . . .

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + energy$$

... and the nucleus gains a proton.

This chlorine isotope is present at low levels in the environment. $^{36}_{17}\text{Cl} \rightarrow ^{36}_{18}\text{Ar} + e^- + \text{energy}$

Beta-plus decay

A proton turns into a neutron, so:

The number of nucleons stays the same . . .

 $^{A}_{Z}X \rightarrow ^{A}_{Z-1}Y + e^{+} + energy$

... and the nucleus loses a proton.

This carbon isotope is produced in cyclotrons. ${}^{11}_{6}C \rightarrow {}^{11}_{5}B + e^+ + \text{energy}$

Gamma Decay

• Gamma decay occurs when a proton or neutron undergoes a quantum jump.

No change in the number of neutrons or protons means no change of element or isotope.

$${}^{A}_{Z}X^{*} \rightarrow {}^{A}_{Z}X^{*} + \gamma$$

This excited form of nickel is produced in the beta-minus decay of ⁶⁰Co. ${}^{60}_{28}Ni^* \rightarrow {}^{60}_{28}Ni + \gamma$

Is $^{238}_{94}Pu \rightarrow ^{236}_{92}U + \alpha$ a possible decay mode?

- A. Yes
- B. No
- C. It depends on the energy of the alpha particle.

What is the daughter nucleus for the following decay?

 ${}^{90}_{38}Sr \rightarrow {}^{?}X + e^{-}$

- *A.* $^{90}_{39}Y$
- *B.* ⁸⁹₃₉*Y*
- *C.* $^{90}_{37}Rb$
- D. ⁸⁹₃₇Rb

What is the decay mode of the following decay?

$$^{137}_{55}Cs \rightarrow ^{137}_{56}Ba + ?$$

- A. Alpha decay
- B. Beta-minus decay
- C. Beta-plus decay
- D. Gamma decay

What is the decay mode of the following decay?

$$^{60}_{28}Ni^* \rightarrow {}^{60}_{28}Ni + ?$$

- A. Alpha decay
- B. Beta-minus decay
- C. Beta-plus decay
- D. Gamma decay

Section 30.5 Nuclear Decay and Half-Lives

© 2016 Pearson Education, Ltd.

- If you start with N_0 unstable nuclei, after an interval of time called the *half-life*, you'll have $\frac{1}{2}N_0$ nuclei remaining.
- The **half-life** $t_{1/2}$ is the average time required for one-half the nuclei to decay.
- The number of nuclei N remaining at time t is (Eq. 30.12):

• The figure shows the decay of a sample of radioactive nuclei.

- The decay of radioactive nuclei is an exponential decay.
- The equation for the number of atoms after a half-life can be written in terms of a time constant τ that is related to the half-life :

• The relationship between the time constant and the half life can be demonstrated by applying $N = N_0/2$ at $t = t_{1/2}$ to the equation for exponential decay:

$$\frac{N_0}{2} = N_0 e^{-t_{1/2}/\tau}$$

$$\ln\left(\frac{1}{2}\right) = -\ln 2 = -\frac{t_{1/2}}{\tau}$$

• We find that the time constant in terms of the half-life and the half-life in terms of the time constant are

$$\tau = \frac{t_{1/2}}{\ln 2} = 1.44t_{1/2}$$
$$t_{1/2} = \tau \ln 2 = 0.693\tau$$

 The number of radioactive atoms decreases exponentially with time.

100 g of radioactive element X are placed in a sealed box. The half-life of this isotope of X is 2 days. After 4 days have passed, what is the mass of element X in the box?

- A. 100 g
- B. 50 g
- C. 37 g
- D. 25 gE. 0 g

Activity

- The activity *R* of a radioactive sample is the number of decays per second. Each decay corresponds to an alpha, beta, or gamma emission.
- The activity of a sample N nuclei with a time constant τ or half-life $t_{1/2}$ is (Eq. 30.15)

$$R = \frac{N}{\tau} = \frac{0.693N}{t_{1/2}}$$

• The activity is inversely proportional to the half-life.

Activity

• We can find the variation of activity with time:

$$R = \frac{N}{\tau} = \frac{N_0}{\tau} \left(\frac{1}{2}\right)^{t/t_{1/2}} = \frac{N_0}{\tau} e^{-t/\tau}$$

• N_0/τ is the initial activity R_0 so the decay of activity is (Eq. 30.16)

Activity after time
$$t$$
.
Activity at the start, $R = R_0 \left(\frac{1}{2}\right)^{t/t_{1/2}} = R_0 e^{-t/\tau}$
 $t = 0$

- The SI unit of activity is the **becquerel**: 1 becquerel = 1 Bq = 1 decay/second or 1 s⁻¹
- The **curie** is also used:

$$curie = 1 Ci = 3.7 \times 10^{10} Bq$$

Example

We consider a sample that contains 3×10^{16} nuclei Of radium-226, which has a half-life of 1600 years. What is the activity of the sample at $t = t_{1/2}$?

$$t_{1/2} = 1600 \ years = 5 \times 10^{10} s$$
$$\frac{1}{\tau} = \frac{\ln 2}{t_{1/2}} = 1.4 \times 10^{-11} s^{-1}$$
$$R = \frac{N_0}{\tau} \left(\frac{1}{2}\right)^{t/t_{1/2}}$$
$$R = 3 \times 10^{16} \times 1.4 \times 10^{-11} \times \left(\frac{1}{2}\right)^1 = 2.1 \times 10^5 Bq$$

Summary: General Principles

The Nucleus

The nucleus is a small, dense, positive core at the center of an atom.

Z protons, charge +e, spin $\frac{1}{2}$ N neutrons, charge 0, spin $\frac{1}{2}$

The mass number is

A = Z + N

Isotopes of an element have the same value of Z but different values of N.

The strong force holds nuclei together:

- It acts between any two nucleons.
- It is short range.

Adding neutrons to a nucleus allows the strong force to overcome the repulsive Coulomb force between protons.

Summary: General Principles

Nuclear Stability

Most nuclei are not stable. Unstable nuclei undergo radioactive decay. Stable nuclei cluster along the line of stability in a plot of the isotopes.

Mechanisms by which unstable nuclei decay:

Decay	Particle
alpha	⁴ He nucleus
beta-minus	e ⁻
beta-plus	e ⁺
gamma	photon

Alpha and beta decays change the nucleus; the daughter nucleus is a different element.

Alpha decay:Beta-minus decay: ${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + \alpha + \text{energy}$ ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + \beta + \text{energy}$

Summary

APPLICATIONS

Radioactive decay

The number of undecayed nuclei decreases exponentially with time *t*:

The half-life

 $t_{1/2} = \tau \ln 2 = 0.693 \tau$

is the time in which half of any sample decays.

N

 N_0

0 + 0 = 0

 $t_{1/2}$

 τ

Measuring radiation

The **activity** of a radioactive sample is the number of decays per second. Activity is related to the half-life as

$$R = \frac{0.693N}{t_{1/2}} = \frac{N}{\tau}$$