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Abstract: Nowadays, reverse osmosis is the most widely utilized strategy in membrane technology
due to its continuous improvement. Recent studies have highlighted the importance of the surface
characteristics of support layers in thin-film membranes to improve their reverse osmosis perfor-
mance. In this study, interfacial polymerization was used to generate the membranes by employing
polyamide as a selective layer on top of the polysulfone supporting sheet. Different membranes,
varying in terms of the concentrations of unfunctionalized and functionalized multiwalled carbon
nanotubes (MWCNTs), as well as ethanol, have been fabricated. The efficiency of the membrane has
been increased by increasing its permeability towards water with high salt rejection. Different charac-
terization techniques were applied to examine all of the fabricated membranes. PA-EtOH 30% (v/v),
as a selective layer on polysulfone sheets to enhance the membrane’s salt rejection, was shown to be
the most efficient of the suggested membranes, improving the membrane’s salt rejection. The water
permeability of the polyamide membrane with EtOH 30% (v/v) was 56.18 L/m2 h bar, which was
more than twice the average permeability of the polyamide membrane (23.63 L/m2 h bar). The salt
rejection was also improved (from 97.73% for NaCl to 99.29% and from 97.39% for MgSO4 to 99.62%
in the same condition). The PA-MWCNTs 0.15% membrane, on the other hand, had a reduced surface
roughness, higher hydrophobicity, and higher water contact angle readings, according to SEM. These
characteristics led to the lowest salt rejection, resulting from the hydrophobic nature of MWCNTs.

Keywords: polyamide; multiwalled carbon nanotubes; membrane; polysulfone; desalination

1. Introduction

Oceans, seas, rivers, lakes, and underground streams account for over 70% of the
world’s water reservoirs [1]. Fresh water accounts for around 2.5% of the Earth’s total water
capacity, according to indicators from the United Nations Water Statistics. Water scarcity,
defined as a high rate of usage compared to the available supply, has been created by a
variety of factors. Some elements are caused by natural events, while others are generated
by human activity, both of which have the potential to change the physical environment [2].
As a result of overpopulation, urbanization, and industrial growth, global warming has
an impact on the availability of water supplies. Many sectors are developing to meet the
demands of population growth, putting excessive demands on water and causing the
depletion of water and its resources [3]. The phrase “water purification” refers to any unit’s
operation and processes that entail techniques and subsequent stages for the removal of
harmful impurities. Physical, chemical, biological, or radioactive pollutants may be present.
Membrane processes are involved in the production of clean water, wastewater treat-
ment/purification, and water recycling around 53% of the time [4]. Membrane separation
is one of the most successful, convenient, and promising techniques used in water treatment
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systems [5]. When driving forces are applied to membrane water treatment, pollutants
must be removed from the water [6]. A pressure difference is the most common driving
force in membrane separation [7]. Membrane technologies used in water purification
include reverse osmosis (RO), nanofiltration (NF), microfiltration (MF), and ultrafiltration
(UF). Reverse osmosis (RO) is a better tool and system that allows several purifying jobs
to be completed in one operation. RO membranes are capable of effectively removing
salts and contaminants. A membrane separation procedure separates the water from the
solutes in a pressured saline solution without phase change or heating [8]. Furthermore, it
has little impact on the product pH or chemical alterations. The water is purified using a
RO membrane, which can remove nearly all soluble particles from the water and fulfills
the direct drinking standard [9]. The two most popular types of primary RO membrane
are cellulose acetate (CA) and aromatic polyamide (PA) [10,11]. A thin-film composite
polyamide membrane generated by interfacial polymerization of m-phenylenediamine
(MPD) and trimesoyl chloride (TMC) over a porous polysulfone (PS) substrate is the most
commercially successful membrane [12]. PA thin-film composite membranes have a stable
structure, low environmental demands, less biological pollution, pressure resistance, and
a wide range of applications. In thin-film composite membranes, a thin active layer is
frequently placed on top of a significant support layer [13,14]. Polymeric membranes
should ideally be hydrophilic, chemically resistant, and microbially resistant, as well as
physically, thermally, and structurally robust over lengthy periods of operation [15]. The
inherent balance between membrane selectivity and permeability is a key difficulty in
membrane technology [16].

Carbon nanotubes (CNTs) exhibit the promised qualities for the purification of wa-
ter, including membrane deterioration via bacterial growth suppression and separation
selectivity improvement due to their narrow pore size distribution [17]. CNTs have a
large specific surface area, as well as a large number of adsorption sites and variable
surface chemistry [18]. The MWCNTs functionalization technique also averts agglomer-
ation and ameliorates interfacial adherence between the nanotubes’ graphitic sidewalls
and the polymer [19]. Shawky et al. [20] developed nanocomposite-based-multiwalled
carbon nanotubes/polyamide with 3-fold higher NaCl rejection capacity than a pure
polyamide membrane, according to the literature review. The flow rate of the polysul-
fone (PS) membrane also increased when the loading percentage of multiwalled carbon
nanotubes increased. Because of its increased activities, such as high-water permeability
with salt rejection, the fabrication of nanocomposite membranes for water desalination
has recently received a lot of attention. There has been significant progress in the use of
nanomaterials for filtration-based desalination processes. Fahmey et al. [21] described a
comparative evaluation of nanomaterials’ mixed polysulfone effect for enhanced the mem-
brane distillation for water desalination. Das et al. [22] reported a prospective overview
on the effect of particle size on the toxicity of CNTs and the purification of water. An-
other study performed by Das et al. [23] described the impact effect of functionalization of
MWCNTs on their solubility in water and acetone.

The goal of this study was to improve RO membranes constructed of carbon nanotubes
(MWCNT) and polyamide (PA) via interfacial polymerization of m-phenylenediamine
(MPD) and trimesoyl chloride (TMC) on a polysulfone (PS) membrane for use in the
desalination process. The RO membranes’ surface shape, mechanical characteristics, hy-
drophobicity, and thermal stability were all studied. This research also focused on water
permeability, the rejection performance of RO membranes to inorganic electrolytes, and the
effect of EtOH on membrane performance.

2. Materials and Methods
2.1. Materials

Polysulfone membrane sheet, PS (PS-20), (Sepro, California, CA, USA). Merck sup-
plied 1,3-phenylenediamine (C6H8N2, 99.5%) and 1,3,5-benzenetricarbonyl trichloride
(C9H3Cl3O3, 98%) (Kenilworth, New Jersey, NJ, USA). Short multiwalled carbon nanotubes



Polymers 2022, 14, 1544 3 of 16

(MWCNTs) with a purity of 95% and average diameter of 3–10 nm was provided by Grafen
Chemical Industries (Ankara, Turkey). MWCNTs COOH and MWCNTs-NH2) are thin
multiwalled carbon nanotubes that have been functionalized. MWCNT samples with a
purity of 95% were obtained from Nanocyl (Sambreville, Belgium). Hexane (C6H14, 99%)
was purchased from Oxford Laboratory (Mumbai, India). Sodium chloride (NaCl, 99%)
was purchased from Sigma-Aldrich Chemicals (Hamburg, Germany), while anhydrous
magnesium sulfate (MgSO4, 98%) and extra pure anhydrous sodium carbonate (Na2CO3,
99.5%) were obtained from Scharlau (Barcelona, Spain). Absolute ethanol (96%) was pur-
chased from Ajax Finechem Pty, Ltd. (South Wales, Australia). Milli-Q® water (18.2) was
used to make both solutions and dilutions in this study.

2.2. Preparation of Membrane
2.2.1. Polyamide Membrane

The fabrication of the RO membrane (Figure 1) was conducted in four steps. The first
step involved the modification of the PS membrane support layer. The MPD solution 2%
(w/v) was prepared in the second step. The preparation of a 0.1% TMC solution (w/v) was
carried out in the third step. The final step was accomplished by preparing an anhydrous
sodium carbonate solution of 2% (w/v).
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Figure 1. Diagram of PA membrane preparation.

A polyamide layer on top of PS was used to conduct interfacial polymerization
(IP) between the MPD and TMC supporting membrane sheets. The PS support sheets
were adjusted before beginning by soaking them in an aqueous solution for 24 h at room
temperature. After that, the PS sheet was immersed in an aqueous MPD solution for
2 min. The excess MPD was removed with a rubber roller. After 1 min in the TMC solution
(0.1% w/v), the substrate membranes were rolled over the support surface with a rubber
roller to remove surplus solution. Finally, they were washed for 10 min with a 2% (w/v)
anhydrous sodium carbonate solution before being kept in distilled water [24].

2.2.2. PA-MWCNT Membranes

PA-MWCNT membranes were made using the same procedure as that described in
Section 2.2.1. Briefly, PA-MWCNT dispersions were prepared by mixing 15 mL of MPD
with MWCNTs at 0.08% (w/v), 0.1% (w/v), or 0.15% (w/v), 0.08% MWCNTs−COOH
(w/v), and 0.08% MWCNTs–NH2 (w/v) in an aqueous solution. The MWCNTs were then
dispersed in the solution using sonication at various intervals to maximize their dispersion.
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Sonication was performed with a 30 W power output and 0.5 s on/off pulses. To prevent
temperature spikes during sonication, the sample bottle was placed in a water bath.

2.2.3. PA-EtOH

Before 1 h of work, PS sheets were immersed in different concentrations of ethanol:
10% (v/v), 20% (v/v), or 30% (v/v). The procedure was completed as previously described
in Section 2.2.1.

2.3. Characterization and Evaluation

Various instrumentation methods were employed to confirm and assess the mem-
branes.

2.3.1. Sonication Time

To verify that the observed absorption was inside the instrumental optimum range,
Milli-Q water was used to dilute the dispersion solutions (PA-MWCNTs, MWCNTs-COOH,
and MWCNTs-NH2). The UV-Vis-NIR spectra of each dispersion solution were mea-
sured in a quartz cuvette at room temperature (about 21 ◦C). A Cary® 500 UV-Vis-NIR
spectrophotometer (Llantrisant, UK) was applied to measure the absorption maxima at
300–800 nm for all suspended solutions. To determine the membrane surface’s hydrophilic-
ity/hydrophobicity, the water contact angle was estimated using the sessile drop method.
Two liters of Milli-Q were progressively deposited over the drier membrane surface using
a microsyringe. Measurements were taken a minimum of five times for each membrane,
and the mean average was determined.

2.3.2. Thermal Stability

A PerkinElmer analyzer was used to perform the thermogravimetric analysis (TGA)
of the membranes (Massachusetts, MA, USA). The TGA experiment was carried out in the
presence of nitrogen gas at a temperature range of ambient temperature to 800 ◦C with a
heating rate of 10 ◦C/min.

2.3.3. Zeta Potential (ZP)

The zeta potential (ZP) of all membrane surfaces was monitored using a SurPASS
electrokinetic analyzer (Anton-Paar GmbH, Graz, Austria). At room temperature, all zeta
potentials of the membrane were acquired with a 1 mM KCl supporting electrolyte solution.
To modify the KCl solution, a 0.05 M HCl solution was utilized, and pH values ranging
from 2.5 to 5.5 were calculated for all automatic titration measurements.

2.3.4. Scanning Electron Microscope (SEM)

Images of the top surfaces, as well as cross sections, of membranes were obtained
using an SEM-JSM-7610F (JEOL Ltd., Tokyo, Japan). To boost the conductivity and improve
imaging, the membrane samples were dried for 24 h at ambient temperature before being
coated with platinum.

2.3.5. Salt Rejection of Water

To describe all membranes with an area of 40 cm2, the water flux and salt rejection
were measured. A salt solution combining sodium chloride (NaCl) and magnesium sulfate
(MgSO4) at a concentration of 2 g/L was used as a feed solution; each salt was individually
evaluated. Water fluxes and salt rejection were investigated at pressures ranging from 6
to 25 bar, with a pH of 7. All data on water flow and salt rejection were taken after being
compressed for about 45 min at 28 bar pressure to produce a steady-state functioning. All
of the tests were performed at ambient temperature (21 ◦C 2 ◦C) with Milli-Q® water.

The water flux was calculated using Equation (1):

J =
V

A × t
, (1)
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where J is the water flux (L/m2 h), V is the permeate volume (L), A is the membrane area
(m2), and t is the treatment time (h).

The salt rejection (R) was calculated using Equation (2):

R% =

(
1 − CP

C f

)
× 100, (2)

where Cp and Cf are the salt concentration in the permeate and feed streams, respectively.

3. Results
3.1. Optimization of Sonication Time

PA-MWCNTs, PA-MWCNTs-COOH, and PA-MWCNTs-NH2 were all subjected to
sonication. The three dispersions’ UV-Vis-NIR spectra (300–800 nm) were investigated. By
extending the sonication period, the absorbance at 660 nm was dramatically increased [25].
As shown in Figure 2, the UV-Vis absorbance of each of the three dispersions at 660 nm was
plotted versus sonication time. The results showed that 20 min of sonication was enough to
disperse the three dispersion solutions (MWCNTs, MWCNTs-COOH, and MWCNTs-NH2)
in the PA solution.
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Figure 2. Sonication time of PA-MCWNTs, PA-MWCNTs−COOH, and PA-MWCNTs-NH2.

After 20 min, there were no remarkable difference in the absorption of the three
dispersions at 660 nm. It should also be mentioned that the three investigated solutions
(PA-MWCNTs, PA-MWCNTs-COOH, and PA-MWCNTs-NH2) were comparable to those
reported previously with MWCNTs/chitosan and MWCNTs/chitosan-crosslinked [19].
Previous research showed that CNTs would not be distributed for a long time due to
the lengthy ultrasonic energy exposure, which would increase flaws and diminish the
membrane porosity. This might result in poor mechanical and electrical characteristics,
lowering the permeability of nanotube carbon membranes [19].

3.2. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis has proven to be a useful tool for determining the thermal
stability of polymeric systems. The thermal stability of the produced membranes using
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PA-MWCNTs, PA-MWCNTs-COOH, PA-MWCNTs-NH2, and PA-EtOH on a polysulfone
support was evaluated using thermogravimetric analysis. Figure 3 clearly shows that the
thermal decomposition of all membranes occurred in two stages: the first decomposition
step, which resulted in a 59–60% weight loss at temperatures between 375 and 475 ◦C,
and the second decomposition stage, which occurred at temperatures between 475 ◦C and
700 ◦C. Surprisingly, a slight degradation phase of 3% weight loss was seen in PS at the
100–170 ◦C temperature range. This is attributed to the absorbed water removal. PS was the
only one that showed a decline phase. It was not found in any other membranes. Because
the peaks were formed via sulfone base and amide linkage, the created MWCNTs and
EtOH membranes were more stable than PS [26]. PS was stable up to 400 ◦C. The threshed
decomposition temperature provided an indication of the highest processing temperature
that can be adopted.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

ing PA-MWCNTs, PA-MWCNTs-COOH, PA-MWCNTs-NH2, and PA-EtOH on a poly-

sulfone support was evaluated using thermogravimetric analysis. Figure 3 clearly shows 

that the thermal decomposition of all membranes occurred in two stages: the first decom-

position step, which resulted in a 59–60% weight loss at temperatures between 375 and 

475 °C, and the second decomposition stage, which occurred at temperatures between 475 

°C and 700 °C. Surprisingly, a slight degradation phase of 3% weight loss was seen in PS 

at the 100–170 °C temperature range. This is attributed to the absorbed water removal. PS 

was the only one that showed a decline phase. It was not found in any other membranes. 

Because the peaks were formed via sulfone base and amide linkage, the created MWCNTs 

and EtOH membranes were more stable than PS [26]. PS was stable up to 400 °C. The 

threshed decomposition temperature provided an indication of the highest processing 

temperature that can be adopted. 

 

Figure 3. TGA PA-MWCNTs, PA-MWCNTs−COOH and PA-MWCN 

 3.3. Determination of Zeta Potential (ZP). 

The ZP of each of the nine membrane surfaces was calculated and compared to the 

pH of the feed solution. Figures 4–6 show the ZP measurements for nine produced mem-

branes. The produced membrane has a pattern that is comparable to that of previously 

described polyamide composites in acidic media. The observed zeta potential variation 

began at pH 4 [19,27] and, when the pH climbed, the ZP began to have negative values. A 

more negative membrane was shown to reject more salt due to a coulombic interaction 

between the negatively charged membrane surface and charged solutes in previous stud-

ies. The deprotonation of carboxylic acid groups is to blame for this. Due to the protona-

tion of amine groups, the membranes displayed positive surface zeta potential values at 

low pH values (3) as well. The positive ZP values at low pH suggested that decreasing the 

pH value could increase the NaCl adsorption [19,28]. Moreover, the streaming potential 

observations demonstrated double layer compression as the ionic strength increased and 

charge neutralization as the pH decreased [29]. The point-of-zero-charge for PA, PA-

MWCNTs, PA-MWNCTs-COOH, and PA-MWCNTs-NH2 was nearly the same because 

of the heterogeneous nature of the polyamide membrane. This might be because the mem-

branes include carboxylic acid, amine, and amide functional groups, all of which contrib-

ute with titrations [29].  

Figure 3. TGA PA-MWCNTs, PA-MWCNTs−COOH and PA-MWCN.

3.3. Determination of Zeta Potential (ZP)

The ZP of each of the nine membrane surfaces was calculated and compared to the pH
of the feed solution. Figures 4–6 show the ZP measurements for nine produced membranes.
The produced membrane has a pattern that is comparable to that of previously described
polyamide composites in acidic media. The observed zeta potential variation began at
pH 4 [19,27] and, when the pH climbed, the ZP began to have negative values. A more
negative membrane was shown to reject more salt due to a coulombic interaction between
the negatively charged membrane surface and charged solutes in previous studies. The
deprotonation of carboxylic acid groups is to blame for this. Due to the protonation of
amine groups, the membranes displayed positive surface zeta potential values at low
pH values (3) as well. The positive ZP values at low pH suggested that decreasing the
pH value could increase the NaCl adsorption [19,28]. Moreover, the streaming potential
observations demonstrated double layer compression as the ionic strength increased and
charge neutralization as the pH decreased [29]. The point-of-zero-charge for PA, PA-
MWCNTs, PA-MWNCTs-COOH, and PA-MWCNTs-NH2 was nearly the same because
of the heterogeneous nature of the polyamide membrane. This might be because the
membranes include carboxylic acid, amine, and amide functional groups, all of which
contribute with titrations [29].
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3.4. Scanning Electron Microscope Analysis (SEM)

Because of the interaction between the carboxylic group on the MWCNT walls and
the functional groups on the PA chain, SEM images of the surface and cross section of
PA-MWCNTs-COOH and -NH2 showed that they were better disseminated in PA than
unfunctionalized MWCNTs (Figures 7 and 8).
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Furthermore, when compared to PA-MWCNTs, the carboxylic group on MWCNTs
enhanced the hydrophilicity of the PA membrane [20]. An increase in the MWCNT con-
centration reduces the support’s mean pore size. More MPD solution is absorbed on
the support when the pore size is large enough, resulting in more MPD diffusing into
the hexane solution and reacting with TMC, resulting in the formation of a “leaf-like”
structure [30]. Table 1 shows the findings of the direct estimation of the hydrophilicity of
polyamide membranes using water contact angle data. The PA-EtOH 30% membrane was
discovered to have a lower water contact angle than the PA membrane. Because of the
hydrophilic –OH groups in the PA-EtOH membrane, it has higher hydrophilicity than the
PA membrane, although it has a lower surface roughness. The SEM image of the cross
section of membranes (Figure 9) revealed a highly porous structure, with a high degree
of interconnectivity for the examined membranes. This porous structure was expected to
have a positive impact on the flux rate and permeability of water. However, it can be noted
that the membranes exhibit a denser morphology as the loading percentage of PA-EtOH
30% composite increases, which will probably enhance their selectivity.

Table 1. Contact angle, water permeability, and salt rejection results of all membranes.

Salt Rejection at 15 bar (%) Water Permeability at 15 bar
(L m−2 h−1 bar−1) Contact Angle (◦) Membrane

MgSO4 NaCl

97.12 95.55 18.85 57 ± 3 PA
99.35 98.46 30.9 45 ± 5 PA-EtOH 10%
99.62 99.09 33.75 35 ± 4 PA-EtOH 20%
98.27 99.29 44.21 22 ± 4 PA-EtOH 30%
96.03 96.79 23.662 47 ± 4 PA-MWCNTs 0.08%
96.89 95.98 15.45 50 ± 3 PA-MWCNTs 0.1%
91.5 93.42 10.5 55 ± 5 PA-MWCNTs 0.15%

95.43 96.43 36.225 25 ± 2 PA-MWCNTs-COOH
92.77 97.11 27.75 45 ± 2 PA-MWNHs-NH2
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3.5. Contact Angle Measurement

Hydrophilicity influences the flow and antifouling properties of membranes [31].
Contact angles of water droplets on the membrane’s surfaces containing PA, PA-EtOH
(10%, 20%, and 30%), PA-MWCNTs (0.08%, 0.1%, and 0.15%), PA-MWCNTs-COOH, and
PA-MWCNTs-NH2 were measured to determine the hydrophilicity of the membranes.
The measured contact angles for the fabricated membranes are displayed in Table 1 and
Figure 10. The developed membranes possess a contact angle of less than 90◦, which
indicates their hydrophilicity and a lower likelihood of fouling in water treatment. This
was attributed to water molecules hydrating the membrane surface, preventing foulants
from interacting directly with the membrane surface. Because of its hydrophilicity, the
surface has a strong polarity, which attracts polar molecules like water. Permeation does
not require any additional pressure. This could explain why the hydrophilic surfaces
of the PA-MWCNTs-COOH and PA-EtOH membranes are greater than PA’s, and why
both membranes have a higher hydrophilicity surface than the PA due to the existence of
hydrophilic groups such as COOH and OH in the surface of PA membrane that promote
hydrophilicity. The contact angles of the modified membranes were all reduced as a result
of the large number of hydrophilic groups on the membrane surface, which contributed to
boosting the membrane’s hydrophilicity. This was due to the aggregation of PA-MWCNTs
reducing the effective surface of hydrophilic groups and the hydrophobic nature of CNTs.
Additionally, because carbon nanotubes are hydrophobic, the contact angle values of PA-
MWCNTs (0.08%), PA-MWCNTs (0.1%), and PA-MWCNTs (0.15%) were (47◦, 50◦, and
55◦, respectively) as MWCNTs increased [32]. As shown in Figure 10, the contact angle
of PA-MWCNTs-EtOH and PA-MWCNTs-COOH was 22◦ and 25◦, respectively. The low
values could be attributed to the fact that increasing the hydrocarbon tail of the alcohol or
the carboxylic group led to more intrinsically wetting membrane surfaces, which correlates
with the trend in surface forces as well [33].
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Figure 10. Contact angles of water droplets on the membrane’s surfaces containing PA, PA-EtOH
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MWCNTs-NH2.

4. Membrane Performance Evaluation
4.1. Water Permeability

The hydrophilicity, surface charge, and chemical composition of the membrane had
a significant impact on the water flux rate because these variables alter the interaction
between the membrane surface and solution. This interaction could be mediated by a
variety of secondary forces, including dipole–dipole, van der Waals, electrostatic contact,
and hydrogen bonding [20]. The permeate flux was plotted versus the applied pressure
(Figures 11–13) for PA, PA-MWCNTs (0.08%, 0.1%, and 0.15%), PA-MWCNTs-COOH, PA-
MWCNTs-NH2, and PA-EtOH (10%, 20% and 30%), respectively (Table 1). The linear
regression slope between the flux and applied pressure was used to calculate the perme-
ability results. The results showed that the RO membrane water flux in the case of the
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modified membrane with 30% ethanol (44.21 L/m2 h) increased by about 134% compared
to PA (18.85 L/m2 h) at 15 bar.

In general, an increase in all membrane flux rates was maintained in tandem with an
increase in pressure. The outcomes revealed that the RO membrane water flux in the case
of the modified membrane with 30% ethanol (~44.21 L/m2 h) exhibited an enhancement
in permeation of about 134% compared to PA (18.85 L/m2 h). The water flux of PA-
MWCNTs-COOH (36.225 L/m2 h) at 15 bar, because the –COOH (polar) group, increased
the hydrophilicity of the membrane surface, so the water flow of PA was increased by
85% when MWCNTs-COOH was added. PA-MWCNTs 0.08% gave the best outcome
(23.662 L/m2 h). Accordingly, this concentration will be approved and compared with two
others (0.1% and 0.15% MWCNTs).
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4.2. Salt Rejection

The salt-rejection efficiency of all manufactured membranes was tested using a cross-
flow RO/NF system. The developed membranes’ salt rejection, employing PA-MWCNTs,
MWCNTs (0.08%, 0.1%, and 0.15%), PA-MWCNTs-COOH, PA-MWCNTs-NH2, and PA-
EtOH (10%, 20% and 30%), is demonstrated in Figures 14–16. NaCl and MgSO4 were the
salts rejected, with each salt solution containing 2 g/L salt. Generally, all the membranes
had more than a 96% reject ratio, indicating that modified membranes can be more effective.
The results showed that rejection decreased in the order of PA-EtOH 30% > PA-EtOH 20%
> PA-EtOH 10% > PA-MWCNTs-NH2 > PA-MWCNTs-COOH > MWCNTs 0.08% > PA >
MWCNTs 0.1% > MWCNTs 0.15%. In the case of decreased rejection, it appears that poor
interfacial compatibility of the CNT with the polymer hampered the inclusion of CNT in
the modified membrane matrix, resulting in unselective voids. Furthermore, a permeability
trade-off occurred because a larger pore size was preferred over the hydrophilic CNT
repulsion across the polymer matrix, leading to a permeability trade-off. This could be
due to CNT obstructing the pore surface, resulting in reduced water flow through the
membrane [34]. The rejection of salts for PA-EtOH 30% was 99.29% for NaCl and 99.62% for
MgSO4 at 15 bar. This was the best result among the membranes. By inter-chain hydrogen
bonds disrupting and enhancing the available free space for water permeation, combining
water with alcohol improves the alcohol permeation inside the active layer. As a result, the
functional groups accessible on the surface have a larger chance of contributing to the rejec-
tion of ions [35]. In this investigation, the membrane immersion period or ethanol contact
time continued for 1 h. This appears to be adequate to ensure that water passes through the
membranes in a controlled manner without impairing the membranes’ ability to reject salts
(Table 1). Several research articles on the performance of interfacial polymerized polyamide
membranes with PS pretreatment on desalination qualities through membranes based on
TMC and MPD have been published. The produced membranes’ flux and salt rejection
properties were compared to other membranes, as summarized in Table 2.
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Table 2. Comparison of PA-EtOH 30% membrane with previously reported membranes for
salt rejection.

Membrane Test Conditions Flux (L/m2 h) NaCl Salt Rejection % Ref.

PA-SiO2 1% 15 bar,
2000 ppm NaCl solutions 47.9 98.9% [36]

PA-DMF 12% 16 bar,
2000 ppm NaCl solutions 3.98 98.8% [37]

PA-NMP 82% 15 bar,
2000 ppm NaCl solutions 36 95% [29]

PA-EtOH 30% 15 bar,
2000 ppm NaCl solutions 44.21 99.29% This work

DMF = dimethyl formamide. NMP = 1-Methyl-2-pyrrolidone.

5. Conclusions

On the PS support sheet, interfacial polymerization was used to make all nine polyamide
membranes. We constructed polyamide membranes containing nanopartials (MWCNTs
or MWCNTs-COOH or MWCNTs-NH2) and treated them with ethanol to improve mem-
brane efficiency by improving permeability toward water with high salt rejection. The
PA-MWCNTs 0.15% membrane had decreased surface roughness and higher hydrophobic-
ity according to SEM and water contact angle studies. Because of MWCNTs’ hydrophobic
characteristics, increasing their loading might cause particle coagulation in a polymer
matrix, limiting the membrane separation. At 15 bar, the water flux of a RO membrane
modified with 30% ethanol exhibited the maximum permeate flux (68.40 L/m2 h) and rejec-
tion salts (99.29 percent for NaCl and 99.62 percent for MgSO4). This is due to PA-higher
EtOH’s wettability and larger interior pores, which play a key role in accelerating the move-
ment of water molecules. The addition of functionalized CNTs boosted the performance of
the modified membranes, according to the findings. The importance of hydrophilic CNTs in
improving the hydrophilicity of a modified membrane is responsible for the improvement.
Hydrophilicity is produced by hydrophilic groups connected to a functionalized CNTs
wall, as evidenced by the reduced contact angle of modified membranes.
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