Nanorods of ZnO: An effective hydrazine sensor and their chemical properties

Rizwan Wahab a,∗, Naushad Ahmad b, Manawwer Alam b, Javed Ahmad a

a Zoology Department, College of Science King Saud University, Riyadh, 11451, Saudi Arabia
b Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia

Abstract

In this paper, ZnO nanorods (ZnONRs) have been synthesized via chemical solution approach. The chemicals such as the nitrate salt of zinc, hexamethylenetetramine and NaOH were utilized and the acquired solution was refluxed at ∼ 90 °C for 60 min for fabrication of nanorods. Thereafter, the obtained NRs were well characterized with the instruments such as X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transform infra-red (FTIR) spectroscopy also with electrochemical data. The well crystalline nanorods were used as an electrode material for to high sensitive hydrazine sensor detection with glassy carbon electrode (GCE). The cyclic voltammetry (CV) data’s were analyzed from low (2μL/100 mL PBS) to high concentration (1–5 mL/PBS) of hydrazine with NRs/GCE electrode. The electrochemical impedance spectroscopy (EIS) was evaluated from 0 to 5 mL of solution at 4211 Z/ohm conditions. The proposed sensor and their stability are the promising features of the sensor.

1. Introduction

Any society is directly or indirectly affected with the pollution, especially environmental, which is a major apprehension. The environment is polluted with the release of various chemical effluents, directly contaminated and causes an adverse effect to the whole biota [1,2]. Over various organic and inorganic pollutants, hydrazine (N₂H₄) has attracted significant attention of the scientific community due to their significance in the industries for instance agriculture, pharmacy, military, fuels, aerospace, catalysis and so on [3–5]. The application of hydrazine (N₂H₄) chemical in industry for various purposes such as it reduces the corrosion, applies as pharmaceutical intermediates, catalysts, emulsifiers, antioxidants, insecticides, herbicides, pesticides, dyestuffs, and explosive etc [1–6]. However, it is a toxic, carcinogenic and hepatotoxic material, which causes adverse effects on human health, irritation of eyes, nose and throat, temporary blindness, dizziness, nausea, pulmonary edema, coma, blood abnormalities, severe damage to liver, lungs, kidneys, DNA and human central nervous system [7]. Because of the wider application in industry and directly related to public health, it is obvious and mandatory to form a reliable, rapid and highly sensitive sensor for the detection and determination of hydrazine concentration/level in the environment. Towards this direction, the techniques such as electrochemical, chromatographic and spectroscopic is reported in the literature [8–11]. Among them, the electrochemical technique is promising, portable, economical, robust and high-sensitive towards the determination of hydrazine [12]. Although the electrochemical studies are quick, reliable and reproducible but the main challenge is to design the nanostructured materials for sensing application with high efficiency and active electron transport medium at an electrode. In this direction, the nano-structured materials, which exhibit good optical, electrical and high surface properties, have possibility to change and give high output of electron transport properties. The electro-chemical property of hydrazine is slow and it requires high potential with working electrodes. To accelerate the rate of oxidation and reduce the over potential, many attempts have been adopted for to develop the electron mediator species for detection of hydrazine, for instance nanoparticle [13–17] and complexes [18,19]. The organized and zero dimensional sphere shaped nanostructures exhibit the property to increase the electron transfer rate due to their organization and high surface area [19,20]. It is required to select the best geometrical nanostructures, which is the key factor for the sensitization of hydrazine sensor. Several electrodes have been developed based on nanostructured material for the detection of hydrazine for instance PEG coated nano zinc sulfide were formed by Mehta et al. [21] and achieve best sensitivity (∼ 89.3 μA M⁻¹) for their fabricated electrode [21]. Umar et al. reported the fabrication of sea-urchins prepared hydrothermally (at 165°C) and used as an electrode material for the detection of phenyl hydrazine from 0.0 to +1.5V via I−V
2.1. Preparation of ZnO nanorods (ZnONRs)

The synthesis of nanostructures in the form of powder was accomplished with using chemicals such as nitrate salt of zinc (Zn(NO₃)₂·6H₂O), sodium hydroxide (NaOH) and hexa methylene-triamine (CH₂)₆N₃, HMT). The chemicals were procured from Aldrich Chemical Corporation and used as received. For the preparation of nanopowder, about ~0.3 M of nitrate salt of zinc and a HMT (4.9 × 10⁻² M) were mixed in 100 mL of double distilled water (DDW) and stirred the solution of 30 min and the pH was checked which reaches to 6.3. When the solution was completely mixed, NaOH (3 M) was added to this solution gradually to enhance the solutions basic condition and their pH was lifted to 12.5. For few seconds a white colored suspension was appeared in the beaker and then changes to original condition. The solution was moved to a glass pot (~250 mL capacity) and refluxed at 90 °C for an hour. At initial no change was examined whereas when the temperature roses, imagine that initial formation of nanorods were started and this heating was continued and completed in an hour. After the complete reaction, the glass pot was cooled at room temperature, washed with organic solvents and dried. The white powder was analyzed for their crystalline, structural and electrochemical studies.

2.1.1. Materials and methods

The zinc oxide nanorods were used to check the electrochemical detection against hydrazine and sensitivity was observed 50 × 10⁴ μA cm⁻² μM⁻¹ cm² with the limit of detection range is 0.01 mM [23]. The composite material of zinc oxide and SiO₂ was also detected similarly and formed a sensor which is to be 1.42 μM with sensitivity and it reaches to 10.80 μA cm⁻² mM⁻¹ [24]. In this continuation, the silver doped zinc oxide nanorods sensitivity was acquired 105.5 μA μM⁻¹ cm² with the concentration of 98.6 mM with sensor detection limit was 5 × 10⁻² mM [25]. In other report, Fe₂O₃ based carbon nanocomposite electrode were fabricated and they have succeeded the sensitivity of ~0.0445 μA μM⁻¹ [26]. The nanocopper oxide and nanoarray's structured were also empl-oyed to fabricate as a hydrazine based sensor and to attain 29.78 μA μM⁻¹, ~94.21 μA μM⁻¹ sensitivity respectively [21,27]. Including the oxide material the metal nanoparticles such as palladium nanoparticles decorated with cobalt nanoparticles (CoNPs), enfolded with carbon nanotubes (Pd/Co-NCNTs) in nitrogen atmosphere were utilized for the detection of hydrazine as an amperometric sensor [28]. In another report, the doped material Fe₂O₃/Co₃O₄ nanocubes (NCs), were applied on a glassy carbon electrode (GCE) and used as film form chemical sensors detect the hydrazine level via the electrochemical method [29]. The nanoparticles of ZnO were also used as an electrode material pasted on glassy carbon electrode (GCE) and tested for to utilize as a working electrode for the detection of hydrazine [30]. The fluorescent N₂H₄ probes are different type's shows the sensing mechanism and these probes designing process are comprehensively explained on aspects of unique chemical characteristics of N₂H₄ and the structures with spectral properties of fluorophores [31,32].

However, various types of electrodes prepared through different materials, the zinc oxide based nanostructures, which has a special attraction because of their versatile properties such as wide band gap energy (3.37eV), high exciton binding energy (60 meV), high thermal stability, because of their versatile properties such as wide band gap energy (3.37eV), high exciton binding energy (60 meV), high thermal stability, and physical characteristics of the prepared material, were analyzed via FTIR. The formed electrode materials oxidation and reduction potential and chemical characteristic of the prepared material, were analyzed via FESEM and TEM consequently. To know the functional characteristic of the prepared powder was observed via FTIR (FTIR; Perkin Elmer-FTIR Spectrum-100, U.S.A.) in the range of 400–4000 cm⁻¹ with KBr powder.

2.1.2. Characterization of zinc oxide nanorods

The materials phases were characterized via XRD (PANanalytical Xpert Pro., United Kingdom) with CuKα radiation (1.54178 Å) ranges from 20 to 80° with 6°/min rotation. The shape and size of the nanostructures were examined via FESEM (Hitachi S-4700, Japan).

The structural detail was further examined for the prepared powder by using TEM (JEOL JEM JSM 2010; Hitachi Japan) operated with an acceleration voltage of 200 kV at room temperature. The obtained powder was dissolved in an ethanol (EtOH) solvent and sonicated in a bath sonicator (~40 W) for ~10 min, and to this suspension solution a copper grid (~400 mesh, Sigma) was dipped for about ~2 min and removed from the solution. The copper grid was dried at room temperature, and fixed it to the sample holder for structural analysis. The functional characteristic of the prepared powder was observed via FTIR (FTIR; Perkin Elmer-FTIR Spectrum-100, U.S.A.) in the range of 400–4000 cm⁻¹ with KBr powder.

2.1.3. Hydrazine sensor based with hexagonal ZnO nanorods

The prepared hexagonal shaped nanostructures were applied as an electron mediator/working electrode to sense the N₂H₄. To make a sensor fabrication, the ZnONRs were coated as film form on GCE electrode with an active surface area (SA = 0.071 cm²). For coating, the prepared NRs (Metrohom Autolab B.V.Kanaalweg 29-G, 3526 KM Utrecht, Netherlands) in three electrode system [47,48]. The prepared NRs based zinc oxide/GCE electrode was used as a working electrode; to this a platinum (pt) wire was used as a counter electrode whereas Ag/AgCl (sat.KCl) was employed as a reference electrode. The PBS (0.1 M; pH 7.2) with hydrazine was used as an electrolyte solution for all electrochemical measurements. To sense the hydrazine concentration with ZnONRs/GCE, an inclusive range of hydrazine (2 μL–100 μL/100 mL PBS and 1 mL–5 mL/100 mL PBS) with ~0.2 to +2.0 V current was adopted to determine the sensing characteristics. The sensitivity and amperometric response with current-time (i-t) curves were measured at a potential of 0.5 V in PBS solution. To know the exposure of real sample, 10 μL of hydrazine was added to 100 mL PBS solution.

2.1.4. Electrochemical impedance spectroscopy (EIS) measurements

The EIS were employed to examine the prepared ZnONRs/GCE electrode with the wide range of hydrazine concentrations (1 mL–5 mL/100 mL PBS) with frequency range, 10 kHz–0.01 Hz.
The size, phase and crystalline character of the prepared white powder were analyzed via the XRD pattern from the range of 20–80° with 6°/min scanning speed at room temperature. The acquired data clearly demonstrates that almost all peaks and their positions ("1010" (31.95), "0002" (34.70), "1011" (36.60), "1012" (47.80), "1120" (56.90), "1013" (63.20), "200" (66.70), "1122" (67.65), "201" (68.20), "004" (72.30) and "202" (76.65)) are analogous with the available powder diffraction data JCPDS 36–1451 and lattice constants \(a = 3.249 \text{ Å} \) and \(c = 5.206 \text{ Å} \) (Fig. 1). The obtained data reveals that the prepared powder is crystalline in nature and corresponds to the wurtzite phase of commercial powder of ZnO. The spectrum defines no such peak was examine except ZnO, further indicates that the prepared structure is pure ZnO [48].

3.2. Morphological evaluation of nanopowder/prepared powder

The morphology of the processed structure in the form of white powder was analyzed via FESEM and achieved data is represented as Fig. 2. The image (Fig. 2a and b) shows that many rod shaped structures are seen from the spectra, the set potential (0.65 V) for hydrazine solution [3] was moved to less value with and without hydrazine solution (1.1 V), the spectra, confirms that the prepared modified electrode based on ZnO-NRs/GCE is much efficient for the transport of electron and oxidize the hydrazine [1] solution (Fig. 4).

3.3. Functional characterization (FTIR spectroscopy)

As described in experimental section, the FTIR spectroscopy was evaluated with KBr in the ranges from 4000 to 400 cm\(^{-1}\). Fig. 3. Illustrates a wide peak obtained in the range of 3200–3600 cm\(^{-1}\) signifies the stretching mode of vibration in hydroxyl group (O−H) [48]. Very small peak at 2300–2400 denotes the atmospheric CO\(_2\). The sharp peak at 1457 cm\(^{-1}\) shows the bending mode of vibration in water (HOH) [18,20] molecule. The symmetric and asymmetric stretching modes of vibration for nitro group were also observed at 1065 and 885 cm\(^{-1}\). The peak at 493 cm\(^{-1}\) denotes the metal oxide peaks. The functional change in the material states that the hydrooxide molecules changes to metal oxides [48] (Fig. 3).

3.4. Electrochemical studies (CV) results

The prepared modified working electrode based on hexagonal zinc nanorods (area 2 × 2 cm\(^2\)) on ZnO-NRs/GCE was checked in absence and presence of hydrazine (10 μL) in 100 mL of PBS (0.1 M, pH 7.2) solution with the scan rate of 100 mV/s. From the obtained spectra, it can be seen that good activity for hydrazine oxidation [2]. As can be seen from the spectra, the set potential (0.65 V) for hydrazine solution [3] was moved to less value with and without hydrazine solution (1.1 V), the spectra, confirms that the prepared modified electrode based on ZnO-NRs/GCE is much efficient for the transport of electron and oxidize the hydrazine [1] solution (Fig. 4).

3.5. Effect of hydrazine concentration on modified electrode (ZnO-NRs/ GCE)

To evaluate the routine investigation of current and potential (I−V) for the modified ZnO Nrs/GEC with different concentration (2, 4, 6, 8 and 10 μL) of hydrazine electrolyte in 100 mL PBS and the obtained result is presented as Fig. 5. The stock solution of hydrazine was prepared for the study of different concentration of hydrazine in PBS solution. To evaluate the routine investigation of current and potential (I−V) for the modified - ZnOnRs/GEC with innumerable concentration of hydrazine in 100 mL PBS and presented as Fig. 5. The stock solution of hydrazine was prepared for the study of different concentration of hydrazine in PBS solution. The obtained spectrum represents at low range of hydrazine concentration solution, and this was examined at 100 mV with current potential ranges from −1.5 to 1.5 V. As can be seen that current at anodic peak is directly related to the hydrazine concentration and it increases with the increase of concentration of hydrazine in the PBS solution. It assumed that when the current in the form of ions (hydrazine and hydroxyl) increases with the increase of hydrazine concentration which resembles to the fast electrons transfer on to the conduction band. A high potential of anodic peak was also observed from another experiments, when hydrazine was used at high concentration level (1–5 mL). The electron was displaced due to the increased amount of hydrogen ions in the solution (Fig. 6).

3.6. Influence of scan rates

For more detail related to the scan rate and catalytic reactions between the hydrazine and modified ZnO Nrs on GCE electrode, which involved in the sensing process at various scan rates (5, 10, 20, 50 and 100 mVs\(^{-1}\)) were evaluated and presented as Fig. 7. The scan rate exhibit that the peak currents increase on increasing the scan rate, in 0.1 M PBS solution, confirms that the oxidation process is diffusion controlled. For more detail related to the scan rate and catalytic reactions between the hydrazine and modified ZnO Nrs on GCE electrode, which involved in the sensing process at various scan rates (5, 10, 20, 50 and 100 mVs\(^{-1}\)) were evaluated and presented as Fig. 7. The scan rate exhibit that the peak currents increase on increasing the scan rate, in 0.1 M PBS solution, confirms that the oxidation process is diffusion controlled. A successive response at different scan rate of hydrazine of 0.1 M PBS solution of pH 7.2 was observed and presented as Fig. 7. The enhancement in current was observed after at various scan rates (5, 10, 20, 50 and 100 mVs\(^{-1}\)). From the obtained graph and it can be concluded and show the relation between the current and potential enhancement of fabricated hydrazine sensor (Fig. 7).
Fig. 2. FESEM images of ZnO-NRs: (a–b) shows the low magnification images and (c and d) show the high magnification image of ZnO-NRs. whereas (e) shows the low magnification TEM image of ZnO-NRs and (f) presents the HR-TEM image and it shows the lattice difference between two fringes is about ~ 0.526 nm with the ideal fringes distance.

Fig. 3. Typical FTIR spectrum of grown ZnO-NRs.

Fig. 4. Typical $I - V$ response of ZnO NRs based GCE in absence and presence of hydrazine at scan rate of 100 mV/s.
3.7. Influence of time response

To know the prepared sensor selectivity and reproducibility, the time response was also measured from 0 to 600 s (Fig. 8). A sequential time response was observed at different time span for the prepared ZnO NRs/GCE based hydrazine sensor. At 100s not much response was observed in the current whereas as the time span increases at 200s, 300s, 400s, 500s and 600s current enhances to 9.436×10^{-6}, 1.442×10^{-5}, 2.030×10^{-5}, 2.789×10^{-5} consequently for the prepared electrode. The obtained data states that the produced sensor is specific, selective, and reproducible and exhibits enough sustainability for long time.

3.8. Electrochemical impedance spectroscopy (EIS) studies

The EIS measurement was used to know the ion transport (hydrazine and hydroxyl) mechanism/internal resistance between the electrode and the electrolyte (varied concentration of hydrazine loadings) for the fabricated ZnO NRs/GCE electrode in frequency range from 0.01 Hz to 10 kHz and the result presented as Fig. 9. In Nyquist plot, Z' represents the ohmic property and $-Z''$ represents the capacitive property. The impedance behavior is generally dominated by three major processes occurring in the high, medium and low frequency region, respectively. The obtained wide semicircle curve of electrochemical impedance of the smaller curve corresponds to a smaller charge transfer resistance. The present case indicates that the wide semicircle which is in the high-frequency region was observed and it resembles to electron-transfer limited process. The high-frequency region in diameter of the semicircle corresponds to the charge transfer resistance (R_{ct}) and controls electron transfer kinetics of the redox probe at electrode/electrolyte interface. It's well known that a larger semicircle curve represent a high interfacial charge transfer resistance, which probably results from the poor electrical conductivity of the active materials. From the obtained curve in Fig. 9, shows that diameters of the semicircle at low hydrazine concentrations are much smaller than the high concentrations due to less charge transfer resistance in the fabricated electrode [49–51].

3.9. Possible mechanism

The synthesized hexagonal shaped zinc oxide nanorods (ZnO-NRs), which is a semiconductor material and exhibit good band gap (3.37 eV), plays an important role to enhance the electroactive properties due to
their number of active sites for and higher surface properties [52]. The larger range of electrochemical detection of hydrazine (analyte) at low (10–100 μL), median (0.1–1 mL/100 mL PBS) and high (1–5 mL/ 100 mL PBS) concentrations were evaluated in this experiment. The GCE/ZnO-NRs based electrode develops as an active material for the electrochemical sensing of hydrazine for larger utilities in industries and also for the environmental studies [53]. The developed electrochemical sensor works on the principle of variation in concentration of analyte (hydrazine) and their adsorption and conductance on zinc oxide nanorods (ZnO-NRs) based on GCE electrode. In this experiment, the atmospheric oxygen, which has an ability to physisorb on the surface of nanostructured based electrode (ZnO-NRs) and this oxygen molecule can be possible to move from site to site and ionized (O\text{ads}) through the elimination of electron from the conduction band then convert into their oxidized form (O\text{2+} or O\text{2-}) on the surface of nanorods layer, which form a charge layer between surface layer of nanostructures and analyte [48,54]. This amplifies the potential and enhanced the resistance of the developed sensor, which leads a decrease in the conductance of sensor and increase in potential. On the basis of the acquired data and their analysis, it represents that due to the presence of hydrazine molecule (analyte) the prepared nanobased film enhanced the conductivity. It also imagines that at higher concentration of analyte provides higher efficiency, which upsurges the resistivity. In our experiment, we have tested from very low hydrazine (analyte) concentration to higher concentration, which illustrates from CVs results. It's well conventional that the sensor results affect, on the basis of their organization of selected nanostructured material such as nanorods, nanoflowers, nanoparticles, their properties, ways applied for their synthesis etc. The studies shown that the nanorods found higher sensing aptitude as compared to others nanostructures because of their structural symmetry. The ZnO nanostructures/molecules have a tendency to generate a constructive environment on their surfaces, which facilitates the assessment of hydrazine molecule (analyte) via adsorption process. The higher sensitivity, stability and better reproducibility with zinc oxide based nanostructures endorsed the enhanced rate of electron transportation between the zinc oxide based nanostructures film, which works as an electrode and hydrazine molecule are their addition assets. The surface immobilization affects the response time and performance of the developed sensor, which can be improved via the proper use of catalyst and spill to the whole surface of the developed electrode. The catalyst exhibits the possibility to enhance the reaction with pre-adsorbed surface oxygen of the material, increase the conductance and response of the prepared electrode [25,48,53,54].

4. Conclusions

The conclusion of the present work states that the hexagonal shaped nanorods were formed via solution process with use zinc nitrate hexa hydrate (Zn(NO₃)₂·6HzO), sodium hydroxide (NaOH) and hexamethy-lamine (CH₃)₂N₄.HMT), in a very less time (60 min) span and were characterized well in terms of their structural, chemical and electro-chemical studies. The processed materials were initially characterized in terms of structural and chemical properties via the XRD, to examine the crystalline properties whereas the morphology of nanorods were accessed through FESEM and it reveals that the individual rod size is in the range of 3–4 μm (length) and diameter ranges about 200-250 nm. The obtained dimensional value was also confirmed from TEM and is consistent with the FESEM. The nanorods were applied as an efficient nanosensor against the catalyst N₂H₄ chemical sensor. The CV was applied to know the ion exchange in a liquid medium from very low (2 μL N₂H₄/100 mL PBS) to high concentration (5 mL/100 mL PBS) with hydrazine solution were observed. A sequential change in the oxidation and reduction peaks were examined which indicates that the obtained sensor is specific and can be useful for the large scale detection. The obtained sensors are selective, reproduceable and were observed from zero to 600 s deals that it exhibit enough sustainability for longer period. Including this, EIS defines the good contact of the prepared electrode with electrolyte and electrode with in the specified frequency range (0.01 Hz–10 kHz).

Conflicts of interest

The authors declare that there are no conflicts of interest.

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-218.

References

