Solving Problems by Search: Informed
(Heuristic) Search

Chapter 3

&

Problem with uniformed search

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)
Complete? Yes® Yes®? No No Yes® Yes®?
Time O(bd) O(bl—l-LC'*/eJ) O(b™) O(bf) O(bd) O(bd/g)
Space O(bd) O(bl—l-I_C'*/eJ) O(bm) O(bg) O(bd) O(bd/Q)
Optimal? Yes® Yes No No Yes® Yes©:@
Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth

of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > € for
positive €; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

C* is the cost of the optimal solution

Informed (heuristic) search

* Uniformed search does not use any information specific to the
problem, only its definition.

e Consider the following example:

1 2 5
Current state S Goal state
3 4 8
1 2 5 6 7 1 2
3 4 3 3 4 5
6 7 1 2 5 6 7 8
3 4

6 7 8 More promising action

Informed search

* Our knowledge about the 8-puzzle problem lets us choose the second
state because it is more promising

* For the 8 puzzle: number of misplaced tiles

* In the previous example, the first action leads to a state with
. The second action leads to

e Second action is more promising

Goal state
1 2 5 1 2 5 1 2
3 4 8 3 4 3 4 5

6 7 6 7 8 6 7 8

Informed (heuristic) search

* [dea: use a function h that tells which state is better:
* For the 8 puzzle: number of misplaced tiles

* his called a heuristic function

e Algorithms that use a heuristic function (alone or combined with
other functions) are called

Informed (heuristic) search

We will study 3 algorithms:

1. Greedy Best First Search
2. A*

3. Memory-bounded heuristic search

1. Greedy best-first search

* Follows either the or pattern

* The list frontier is a priority queue with f as the priority. [is called an

* By changing f, we obtain different algorithms. For example:

* UCS is a best-first graph search with f(n) = g(n), where g(n) is the cost of the
current node starting from the initial state

* Greedy search is a best-first graph search with f(n) = h(n)
* In the previous example of the 8-puzzle, we took: f(n) = h(n) = misplaced tiles

* A* is a best-first graph search with f(n) = g(n) + h(n)
* Assumptions: h(n) = 0. If n is a goal then h(n) = 0.

RECALL: UCS

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node < a node with STATE = problem INITIAL-STATE, PATH-COST =0
frontier < a priority queue ordered by‘ PATH-COSTL with node as the only element

explored < an empty set fm) = g0 ucs
loop do h(n) Greedy
if EMPTY?(frontier) then return failure gm) + h(n) A*

node < POP(frontier) [* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
frontier < INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

1. Greedy best-first search

* Take f(n) = h(n)
* Always tries the node that seems closer to the goal

EXN
S 7
A 6
S
B 2
C 1
G 0

1. Greedy best-first search example 27

* Example: Map of Romania

* Heuristic: h_, straight line distance
* Use greedy best-first graph search

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj

366

160
242
161
176

77
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

118

A
366

Explored:

Oradea

Zerind

Fagaras
Vaslui

Rimnicu Vilcea

Timisoara

111 Pitesti

Lugoj

Hirsova

Mehadia Urziceni

86

Bucharest

Drobeta 120

Eforie

10

1. Greedy best-first search example

Frontier:
T Z
329 | 374
Explored:
A
366
hs ld

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 /\ Sibiu 253
Giurgiu 77 A Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 A Zerind 374

Fagaras

Vaslui
Rimnicu Vilcea
111 Pitesti
08
Hirsova
Mehadia Urziceni
86
& Bucharest
Drobeta
90
Craiova Eforie

Giurgiu

11

1. Greedy best-first search example

Frontier: 380 Oradea
RV o) Neamt
87
193 380
Iasi
Explored: Arad 0
ibiu Fagaras
99 5
A > 118 Vaslui
366 | 253 80 o
Timisoara 193 lemcu Vilcea
142
hsld 111 Lugo] Pitesti \211
Arad 366 Mehadia 241 70 08
Bucharest 0 Neamt 234] 85 Hirsova
Craiova 160 A Oradea 380 Mehadia 101 Urziceni
Drobeta 242 Pitesti 100 75 138 86
Eforie 161 Rimnicu Vilcea 193 Bucharest
AFagaras 176 Sibiu 253 | Drobeta 120 90

Giurgiu 77 Timisoara 329 - Eforie
Hirsova 151 Urziceni 80 Craiova Giurgiu
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374 12

1. Greedy best-first search example

Frontier: Oradea
Neamt
87
75
Iasi
Explored: Arad 0
ibiu Fagaras
99
A > F 118 . Vaslui
366 | 253|176 80
. . Rimnicu Vilcea
Timisoara A
142
hsld 111 Lugo] Pitesti \211
Arad 366 Mehadia 241 70 08
/ABucharest 0 Neamt 234 ' 85 Hirsova
Craiova 160 Oradea 380 Mehadia 101 A Urziceni
Drobeta 242 Pitesti 100 75 138 86
Eforie 161 Rimnicu Vilcea 193 Bucharest
Fagaras 176 Sibiu 253 | Drobeta 120 90
Giurgiu 77 Timisoara 329 . ' Eforie
Hirsova 151 Urziceni 80 Craiova Giurgiu
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374 13

1. Greedy best-first search Performance @

Neamt

Completeness:
* Infinite graphs: No

* Finite graphs:
* Tree-search: No. It can get stuck in loops: Go from lasi to Fagaras: Fagaras
* Tree-search: lasi > Neamt - lasi > Neamt - ...
e Graph-search: Yes

Pitesti

Optimality: No, Rimnicu Vilcea and Pitesti path is shorter

Time Complexity:
* 0(b™), but a good heuristic can give dramatic improvement

Urziceni

Bucharest

Space Complexity:
« 0(b™), keeps all nodes in memory

14

2. A*

*f(n) = gn) + h(n)
* g(n) =cost so far toreachn
* h(n) = estimated cost from n to goal

* f(n) = estimated total cost of path through n to goal
* Combine both cost from the initial state and estimate to the goal

* A* avoids expanding paths that are already expensive
* A* = UCS + Greedy best-first search

2. A" search example (tree-search)

(a) The initial state D> Arad >
366=0+366
(b) After expanding Arad C Arad D
> Sibiu > imisoara CZerind >
393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

16

2. A" search example (tree-search)

(d) After expanding Rimnicu Vilcea Arad D

Csibia > CZerind>
a 447=118+329 449=75+374

Carad Db Fagarz> COnaden> i

646=280+366 415=239+176 671=291+380

CCraiova> CPitesti D C Sibiu

526=366+160 417=317+100 553=300+253

17

2. A" search example (tree-search)

(e) After expanding Fagaras Arad D
CSibiu > imisoarg CZerind >
447=118+329 449=75+374

Carad D (Fagaras> Oradea> iminyVieD

646=280+366 671=291+380

Csibiu > Queharesd CCraiovad pCPitesti > C Sibiu >

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

18

2. A" search example (tree-search)

() After expanding Pitesti Arad D
T oo o>
447-118+329 449=75+374

> T Coni> s>

646=280+366 671=291+380
CSibiu D Qucharesd CCraiovay Pitesti > Sibiu_
591=338+253 450=450+0 526=366+160 553=300+253

‘m CCraiova)

418=418+0 615=455+160 607=414+193

2. A* example rm = g + @

S
A
B
C
G

S r N O

Frontier:

S

0+7=7

Explored:

Frontier:
(S)A | (S,B)C
1+6=7 | 6+1=7
Explored:
S B
7 6

Frontier:

(s)B

(S)A

4+2=6

1+6=7

Explored:

S

7

Frontier; (S,A)C = (1+5)+1

(S,BIC | (S.A)G
6+1=7 | 13+0=13
Explored:

S B

7

20

2. A* example rm = g + @

Frontier:/ (S,A)G = 13+0

(S,B,C)G
9+0=9
it!
Explored: But Wait!
S B A C
7 6 7 S-A-B-C-G costs 1+2+2+3 =8
Frontier: What happened?
S 7
A 6
Explored:
B 2
S B A C
C 1
7 6 7
G 0

21

A*: Conditions for Optimality

Condition 1: 1(n) must be an admissible heuristic

e An admissible heuristic never overestimates the cost to reach the
goal: h(n) < h*(n) where h*(n) is the true cost from n to the
nearest goal.

* hg4(n) never overestimates the actual road distance so it is an admissible
heuristic

* Admissible heuristics are by nature optimistic because they think the
cost of solving the problem is less than it actually is

A*: Conditions for Optimality

* Condition 2: h(n) must be consistent (or monotone):
* h(n) is consistent if h(n) < c(n,n’) + h(n") for very successor n’ of n
* Is the last example consistent?
* If h(n) is consistent then h(n) is admissible. The inverse is not true
* When h(n) is consistent, the values of f(n) along any path are
nondecreasing

* Consistency is a form of the general triangle inequality: each side of a triangle
cannot be longer than the sum of the other two sides

23

A* with a non-admissible heuristic

H

h(n) £ h*(n)
6 %4

A ™ > Oum
o N O D

24

A* with an inconsistent heuristic

m h(n) £ c(n,n") + h(n")

h(A) £ c(4, B) + h(B)
6£2+2

OO O ™ > um
O r N O N

25

A* Properties

* The tree-search version of A* is optimal if h(n) is admissible
* The graph-search version is optimal if h(n) is consistent

26

Properties of A*: Completeness

* If C" is the cost of the optimal goal, then:
* A* expands all nodes with f(n) < C*
* A* expands some nodes with f(n) = C*
* A* expands no nodes with f(n) > C*

* If the number of nodes n with f(n) < C* is finite, then A* is

* This is true when all actions have cost > € > 0 and the branching
factor b is finite

Properties of A*: Optimality

* A* expands nodes in order of increasing f value.
* A* gradually adds "f-contours" of nodes

* For any contour, A* examines all nodes in the contour before looking
at any contours further out.

* If a solution exists, the goal node in the closest contour to the start
node will be found first.

A* Performance @

 Completeness:
* Yes, unless there are infinitely many nodes with f(n) < C*

* Optimality:
* Tree search: Yes, if h is admissible.
* Graph search: Yes, if h is consistent.

* Time complexity: exponential

* Space complexity: exponential (all nodes in the memory). Will run out
of space long before it runs out of time

29

3. Memory-bounded heuristic search

* Cutoff used is the f-cost (g + h) rather than the depth

* At each iteration, the cutoff value is the smallest f-cost of any node
that exceeded the cutoff on the previous iteration

* When the memory is full, SMA* drops the worstleaf node—the one
with the highest f-value

* Back-up the value of the forgotten node to its parent

The effect of heuristics on performance

* One way to characterize the quality of a heuristic is the effective
branching factor b”

* Assume N total nodes generated. At depth d, b™ is the branching
factor to contain N 4+ 1 nodes

N+1=1+b"+(b")*+ -+ (")

31

Effective Branching Factor b”*

Example:
* If Ax finds a solution at depth 5 using 52 nodes, then the effective
branching factor is 1.92

* If A* finds a solution at depth 4 using 52 nodes, then the effective
branching factor is 2.36

» A well- designed heuristic would have a value of b* close to 1,
allowing large problems to be solved at reasonable computational

cost

32

Comparing two heuristic functions

 Two common heuristics for the 8-puzzle:

* h{: The number misplaced tiles (Hamming distance)

* h,: The sum of the distances of tiles from their goal positions (total
Manhattan distance)

hy =2 h, =4 Goal state

3 1 3 1 1 2
| -

2 | 4 | 5 2 174 s 3|1 4] 5

6 7 8 6 7 8 6 7 8

Comparing two heuristic functions

Search Cost (nodes generated) Effective Branching Factor

d BFS A*(hy) Af(ho) BFS A*(hy) A*(ho)
] 128 24 19 2.01 1.42 1.34
3 368 48 31 1.91 1.40 1.30
10 1033 116 48 1.85 1.43 1.27
12 2672 279 84 1.80 1.45 1.28
14 6783 678 174 L.77 1.47 1.31
16 17270 1683 364 1.74 1.48 1.32
18 41558 4102 751 1.72 1.49 1.34
20 91493 9905 1318 1.69 1.50 1.34
22 173921 22955 2548 1.66 1.50 1.34
24 290082 53039 5733 1.62 1.50 1.36
26 393355 110372 10080 1.58 1.50 1.35
28 463234 202565 22055 1.53 1.49 1.36

34

Dominance

Better at estimating

* If h,(n) @hl (n) for all n, and both are admissible: then h,
h, and h, is better for search.

* Given any admissible heuristics h4, ..., h,;,, where none dominate the

others:
hpest(n) = max(hy(n), ..., hy, (1))

hpest () is also admissible and hy, .., h,

35

Relaxed problems

* Relaxed problem: problem with fewer restrictions on the actions
* There are added edges in the graph representing paths that are now allowed

e Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem

* |f the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h,(n) gives the shortest solution

* |f the rules of the 8-puzzle are relaxed so that a tile can move to any adjacent
square, then h,(n) gives the shortest solution.

* Key point: the cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

36

summary

* Heuristic functions estimate costs of shortest paths
* Good heuristics can dramatically reduce search cost

* Greedy best-first search expands lowest h
* incomplete and not optimal

* A* search expands lowest g + h
* complete and optimal if h is consistent (admissible for tree search)

e Admissible heuristics can be derived from exact solution of relaxed
problems

	Slide 1: Chapter 3
	Slide 2: Problem with uniformed search
	Slide 3: Informed (heuristic) search
	Slide 4: Informed search
	Slide 5: Informed (heuristic) search
	Slide 6: Informed (heuristic) search
	Slide 7: 1. Greedy best-first search
	Slide 8: RECALL: UCS
	Slide 9: 1. Greedy best-first search
	Slide 10: 1. Greedy best-first search example
	Slide 11: 1. Greedy best-first search example
	Slide 12: 1. Greedy best-first search example
	Slide 13: 1. Greedy best-first search example
	Slide 14: 1. Greedy best-first search Performance
	Slide 15: 2. A*
	Slide 16: 2. A* search example (tree-search)
	Slide 17: 2. A* search example (tree-search)
	Slide 18: 2. A* search example (tree-search)
	Slide 19: 2. A* search example (tree-search)
	Slide 20: 2. A* example
	Slide 21: 2. A* example
	Slide 22: A*: Conditions for Optimality
	Slide 23: A*: Conditions for Optimality
	Slide 24: A* with a non-admissible heuristic
	Slide 25: A* with an inconsistent heuristic
	Slide 26: A* Properties
	Slide 27: Properties of A*: Completeness
	Slide 28: Properties of A*: Optimality
	Slide 29: A* Performance
	Slide 30: 3. Memory-bounded heuristic search
	Slide 31: The effect of heuristics on performance
	Slide 32: Effective Branching Factor b to the asterisk operator
	Slide 33: Comparing two heuristic functions
	Slide 34: Comparing two heuristic functions
	Slide 35: Dominance
	Slide 36: Relaxed problems
	Slide 37: Summary

