
Chapter 3

Solving Problems by Search: Informed 
(Heuristic) Search



Problem with uniformed search
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C* is the cost of the optimal solution



Informed (heuristic) search
• Uniformed search does not use any information specific to the 

problem, only its definition.

• Consider the following example:
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Informed search

• Our knowledge about the 8-puzzle problem lets us choose the second 
state because it is more promising

• For the 8 puzzle: number of misplaced tiles
• In the previous example, the first action leads to a state with misplaced tiles

= 5. The second action leads to misplaced tiles = 3

• Second action is more promising
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Informed (heuristic) search

• Idea: use a function ℎ that tells which state is better:
• For the 8 puzzle: number of misplaced tiles

• ℎ is called a heuristic function

• Algorithms that use a heuristic function (alone or combined with 
other functions) are called heuristic algorithms
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We will study 3 algorithms:

1. Greedy Best First Search

2. A*

3. Memory-bounded heuristic search 
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Informed (heuristic) search



1. Greedy best-first search

• Follows either the tree-search or graph-search pattern

• The list frontier is a priority queue with 𝑓 as the priority. 𝑓 is called an 
evaluation function

• By changing 𝑓, we obtain different algorithms. For example:

• UCS is a best-first graph search with 𝑓 𝑛 =  𝑔 𝑛 , where 𝑔(𝑛) is the cost of the 
current node starting from the initial state

• Greedy search is a best-first graph search with 𝑓(𝑛) = ℎ(𝑛)

• In the previous example of the 8-puzzle, we took: 𝑓(𝑛) = ℎ(𝑛) =  𝑚𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 𝑡𝑖𝑙𝑒𝑠

• A* is a best-first graph search with 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

• Assumptions: ℎ 𝑛 ≥ 0. If 𝑛 is a goal then ℎ(𝑛) = 0.
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RECALL: UCS
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1. Greedy best-first search

• Take 𝑓(𝑛) = ℎ(𝑛)

• Always tries the node that seems closer to the goal
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1. Greedy best-first search example

• Example: Map of Romania
• Heuristic: ℎ𝑠𝑙𝑑 straight line distance

• Use greedy best-first graph search
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1. Greedy best-first search example
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1. Greedy best-first search example
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1. Greedy best-first search example
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1. Greedy best-first search Performance

• Completeness: 
• Infinite graphs: No

• Finite graphs:

• Tree-search: No. It can get stuck in loops: Go from Iasi to Fagaras: 

• Tree-search: Iasi → Neamt → Iasi → Neamt → … 

• Graph-search:  Yes

• Optimality: No, Rimnicu Vilcea and Pitesti path is shorter

• Time Complexity:
• 𝑂(𝑏𝑚), but a good heuristic can give dramatic improvement

• Space Complexity:
• 𝑂(𝑏𝑚), keeps all nodes in memory
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2. A*

• 𝑓(𝑛)  =  𝑔(𝑛)  +  ℎ(𝑛)
• 𝑔(𝑛) = cost so far to reach 𝑛

• ℎ(𝑛) = estimated cost from 𝑛 to goal

• 𝑓(𝑛) = estimated total cost of path through 𝑛 to goal 

• Combine both cost from the initial state and estimate to the goal

• A* avoids expanding paths that are already expensive

• A* = UCS + Greedy best-first search
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2. A* search example (tree-search)
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2. A* search example (tree-search)
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2. A* search example (tree-search)
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2. A* search example (tree-search)
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2. A* example
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2. A* example
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A*: Conditions for Optimality

Condition 1: ℎ(𝑛) must be an admissible heuristic

•  An admissible heuristic never overestimates the cost to reach the 
goal: ℎ 𝑛 ≤ ℎ∗(𝑛) where ℎ∗(𝑛) is the true cost from 𝑛 to the 
nearest goal.
• ℎ𝑠𝑙𝑑(𝑛) never overestimates the actual road distance so it is an admissible 

heuristic

• Admissible heuristics are by nature optimistic because they think the 
cost of solving the problem is less than it actually is
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A*: Conditions for Optimality

• Condition 2: ℎ(𝑛) must be consistent (or monotone):
• ℎ(𝑛) is consistent if ℎ 𝑛 ≤ 𝑐 𝑛, 𝑛′ + ℎ(𝑛′) for very successor 𝑛’ of 𝑛

• Is the last example consistent?

• If ℎ(𝑛) is consistent then ℎ(𝑛) is admissible. The inverse is not true

• When ℎ(𝑛) is consistent,  the values of 𝑓(𝑛) along any path are 
nondecreasing

• Consistency is a form of the general triangle inequality: each side of a triangle 
cannot be longer than the sum of the other two sides 
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A* with a non-admissible heuristic
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A* with an inconsistent heuristic
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A* Properties

• The tree-search version of A∗ is optimal if ℎ(𝑛) is admissible

• The graph-search version is optimal if ℎ(𝑛) is consistent 
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Properties of A*: Completeness

• If 𝐶∗ is the cost of the optimal goal, then:
• A* expands all nodes with 𝑓 𝑛 < 𝐶∗

• A* expands some nodes with 𝑓 𝑛 = 𝐶∗

• A* expands no nodes with 𝑓 𝑛 > 𝐶∗

• If the number of nodes 𝑛  with 𝑓 𝑛 ≤ 𝐶∗ is finite, then A* is 
complete

• This is true when all actions have 𝑐𝑜𝑠𝑡 > 𝜀 > 0 and the branching 
factor 𝑏 is finite
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Properties of A*: Optimality

• A* expands nodes in order of increasing 𝑓 value.

• A* gradually adds "𝑓-contours" of nodes 

• For any contour,  A* examines all nodes in the contour before looking 
at any contours further out.

• If a solution exists, the goal node in the closest contour to the start 
node will be found first.
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A* Performance

• Completeness: 
• Yes, unless there are infinitely many nodes with 𝑓 𝑛 ≤ 𝐶∗

• Optimality: 
• Tree search: Yes, if ℎ is admissible.

• Graph search: Yes, if ℎ is consistent.

• Time complexity: exponential

• Space complexity: exponential (all nodes in the memory). Will run out 
of space long before it runs out of time
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3. Memory-bounded heuristic search

IDA*: Difference between IDA* and standard IDS

• Cutoff used is the 𝑓-cost (𝑔 + ℎ) rather than the depth

• At each iteration, the cutoff value is the smallest 𝑓-cost of any node 
that exceeded the cutoff on the previous iteration 

SMA* (Simplified Memory bounded A*)

• When the memory is full, SMA* drops the worst leaf node—the one 
with the highest 𝑓-value 

• Back-up the value of the forgotten node to its parent
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The effect of heuristics on performance

• One way to characterize the quality of a heuristic is the effective 
branching factor 𝑏∗ 

• Assume 𝑁 total nodes generated. At depth 𝑑, 𝑏∗ is the branching 
factor to contain 𝑁 + 1 nodes

𝑁 + 1 = 1 + 𝑏∗ + 𝑏∗ 2 + ⋯ + 𝑏∗ 𝑑
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Effective Branching Factor 𝑏∗

Example:

• If A∗ finds a solution at depth 5 using 52 nodes, then the effective 
branching factor is 1.92 

• If A∗ finds a solution at depth 4 using 52 nodes, then the effective 
branching factor is 2.36

➢A well- designed heuristic would have a value of 𝑏∗ close to 1, 
allowing large problems to be solved at reasonable computational 
cost 

32



Comparing two heuristic functions

• Two common heuristics for the 8-puzzle:
• ℎ1: The number misplaced tiles (Hamming distance)

• ℎ2: The sum of the distances of tiles from their goal positions (total 
Manhattan distance)
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Comparing two heuristic functions
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Dominance

• If ℎ2(𝑛)  ≥  ℎ1(𝑛) for all 𝑛, and both are admissible: then ℎ2 
dominates ℎ1 and ℎ2 is better for search.

• Given any admissible heuristics ℎ1, … , ℎ𝑚, where none dominate the 
others:

ℎ𝑏𝑒𝑠𝑡(𝑛)  =  max(ℎ1(𝑛), … , ℎ𝑚 (𝑛))

ℎ𝑏𝑒𝑠𝑡(𝑛) is also admissible and dominates ℎ1, … , ℎ𝑚
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Relaxed problems

• Relaxed problem: problem with fewer restrictions on the actions
• There are added edges in the graph representing paths that are now allowed

• Admissible heuristics can be derived from the exact solution cost of a 
relaxed version of the problem 
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then 

ℎ1(𝑛) gives the shortest solution

• If the rules of the 8-puzzle are relaxed so that a tile can move to any adjacent 
square, then ℎ2(𝑛) gives the shortest solution.

• Key point: the cost of an optimal solution to a relaxed problem is an 
admissible heuristic for the original problem 
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Summary

• Heuristic functions estimate costs of shortest paths

• Good heuristics can dramatically reduce search cost

• Greedy best-first search expands lowest ℎ
•  incomplete and not optimal

• A* search expands lowest 𝑔 +  ℎ
• complete and optimal if ℎ is consistent (admissible for tree search)

• Admissible heuristics can be derived from exact solution of relaxed 
problems
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