
Chapter 3

Solving Problems by Search: Informed
(Heuristic) Search

Problem with uniformed search

2

C* is the cost of the optimal solution

Informed (heuristic) search
• Uniformed search does not use any information specific to the

problem, only its definition.

• Consider the following example:

3

1 2 5

3 4 8

6 7

1 2 5

3 4 8

6 7

1 2 5

3 4

6 7 8

1 2

3 4 5

6 7 8

Current state Goal state

More promising action

Informed search

• Our knowledge about the 8-puzzle problem lets us choose the second
state because it is more promising

• For the 8 puzzle: number of misplaced tiles
• In the previous example, the first action leads to a state with misplaced tiles

= 5. The second action leads to misplaced tiles = 3

• Second action is more promising

4

1 2 5

3 4 8

6 7

1 2 5

3 4

6 7 8

1 2

3 4 5

6 7 8

Goal stateNext state 1 Next state 2

Informed (heuristic) search

• Idea: use a function ℎ that tells which state is better:
• For the 8 puzzle: number of misplaced tiles

• ℎ is called a heuristic function

• Algorithms that use a heuristic function (alone or combined with
other functions) are called heuristic algorithms

5

We will study 3 algorithms:

1. Greedy Best First Search

2. A*

3. Memory-bounded heuristic search

6

Informed (heuristic) search

1. Greedy best-first search

• Follows either the tree-search or graph-search pattern

• The list frontier is a priority queue with 𝑓 as the priority. 𝑓 is called an
evaluation function

• By changing 𝑓, we obtain different algorithms. For example:

• UCS is a best-first graph search with 𝑓 𝑛 = 𝑔 𝑛 , where 𝑔(𝑛) is the cost of the
current node starting from the initial state

• Greedy search is a best-first graph search with 𝑓(𝑛) = ℎ(𝑛)

• In the previous example of the 8-puzzle, we took: 𝑓(𝑛) = ℎ(𝑛) = 𝑚𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 𝑡𝑖𝑙𝑒𝑠

• A* is a best-first graph search with 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

• Assumptions: ℎ 𝑛 ≥ 0. If 𝑛 is a goal then ℎ(𝑛) = 0.

7

RECALL: UCS

8

𝑔(𝑛) UCS
ℎ(𝑛) Greedy
𝑔(𝑛) + ℎ(𝑛) A*

𝑓 𝑛 =

1. Greedy best-first search

• Take 𝑓(𝑛) = ℎ(𝑛)

• Always tries the node that seems closer to the goal

9

S

A

B

C G

1

4

2

2

5

12

3

State ℎ

S 7

A 6

B 2

C 1

G 0

1. Greedy best-first search example

• Example: Map of Romania
• Heuristic: ℎ𝑠𝑙𝑑 straight line distance

• Use greedy best-first graph search

10

ℎ𝑠𝑙𝑑

A

366

Frontier:

Explored:

1. Greedy best-first search example

11

ℎ𝑠𝑙𝑑

374

253

329

S T Z

253 329 374

Frontier:

A

366

Explored:

1. Greedy best-first search example

12

ℎ𝑠𝑙𝑑

374

176

329 193

380

F RV T Z O

176 193 329 374 380

A S

366 253

Explored:

Frontier:

1. Greedy best-first search example

13

ℎ𝑠𝑙𝑑

374

0

329 193

380

B RV T Z O

0 193 329 374 380

A S F

366 253 176

Explored:

Frontier:

1. Greedy best-first search Performance

• Completeness:
• Infinite graphs: No

• Finite graphs:

• Tree-search: No. It can get stuck in loops: Go from Iasi to Fagaras:

• Tree-search: Iasi → Neamt → Iasi → Neamt → …

• Graph-search: Yes

• Optimality: No, Rimnicu Vilcea and Pitesti path is shorter

• Time Complexity:
• 𝑂(𝑏𝑚), but a good heuristic can give dramatic improvement

• Space Complexity:
• 𝑂(𝑏𝑚), keeps all nodes in memory

14

2. A*

• 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
• 𝑔(𝑛) = cost so far to reach 𝑛

• ℎ(𝑛) = estimated cost from 𝑛 to goal

• 𝑓(𝑛) = estimated total cost of path through 𝑛 to goal

• Combine both cost from the initial state and estimate to the goal

• A* avoids expanding paths that are already expensive

• A* = UCS + Greedy best-first search

15

2. A* search example (tree-search)

16

2. A* search example (tree-search)

17

2. A* search example (tree-search)

18

2. A* search example (tree-search)

19

2. A* example

20

S

A

B

C G

1

4

2

2

5

12

3

State ℎ

S 7

A 6

B 2

C 1

G 0

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

S

0+7=7

(S)A (S,B)C

1+6=7 6+1=7

Frontier:

Explored:

Frontier:

(S)B (S)A

4+2=6 1+6=7

S

7

Explored:

Frontier:

S B

7 6

Explored:

(S,B)C (S,A)G

6+1=7 13+0=13

Frontier:

S B A

7 6 7

Explored:

(S,A)C = (1+5)+1

2. A* example

21

S

A

B

C G

1

4

2

2

5

12

3

State ℎ

S 7

A 6

B 2

C 1

G 0

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

(S,B,C)G

9+0=9

Frontier:

S B A C

7 6 7 7

Explored:

Frontier:

S B A C

7 6 7 7

Explored:

But Wait!

S-A-B-C-G costs 1+2+2+3 = 8

What happened?

(S,A)G = 13+0

A*: Conditions for Optimality

Condition 1: ℎ(𝑛) must be an admissible heuristic

• An admissible heuristic never overestimates the cost to reach the
goal: ℎ 𝑛 ≤ ℎ∗(𝑛) where ℎ∗(𝑛) is the true cost from 𝑛 to the
nearest goal.
• ℎ𝑠𝑙𝑑(𝑛) never overestimates the actual road distance so it is an admissible

heuristic

• Admissible heuristics are by nature optimistic because they think the
cost of solving the problem is less than it actually is

22

A*: Conditions for Optimality

• Condition 2: ℎ(𝑛) must be consistent (or monotone):
• ℎ(𝑛) is consistent if ℎ 𝑛 ≤ 𝑐 𝑛, 𝑛′ + ℎ(𝑛′) for very successor 𝑛’ of 𝑛

• Is the last example consistent?

• If ℎ(𝑛) is consistent then ℎ(𝑛) is admissible. The inverse is not true

• When ℎ(𝑛) is consistent, the values of 𝑓(𝑛) along any path are
nondecreasing

• Consistency is a form of the general triangle inequality: each side of a triangle
cannot be longer than the sum of the other two sides

23

A* with a non-admissible heuristic

24

S

A

B

G

1

4

4

2

State ℎ

S 4

A 6

B 2

G 0

ℎ 𝑛 ≰ ℎ∗ 𝑛
6 ≰ 4

A* with an inconsistent heuristic

25

S

A

B

C G

1

4

2

2

5

12

3

State ℎ

S 7

A 6

B 2

C 1

G 0

ℎ 𝑛 ≰ 𝑐 𝑛, 𝑛′ + ℎ 𝑛′

ℎ 𝐴 ≰ 𝑐 𝐴, 𝐵 + ℎ(𝐵)
6 ≰ 2 + 2

A* Properties

• The tree-search version of A∗ is optimal if ℎ(𝑛) is admissible

• The graph-search version is optimal if ℎ(𝑛) is consistent

26

Properties of A*: Completeness

• If 𝐶∗ is the cost of the optimal goal, then:
• A* expands all nodes with 𝑓 𝑛 < 𝐶∗

• A* expands some nodes with 𝑓 𝑛 = 𝐶∗

• A* expands no nodes with 𝑓 𝑛 > 𝐶∗

• If the number of nodes 𝑛 with 𝑓 𝑛 ≤ 𝐶∗ is finite, then A* is
complete

• This is true when all actions have 𝑐𝑜𝑠𝑡 > 𝜀 > 0 and the branching
factor 𝑏 is finite

27

Properties of A*: Optimality

• A* expands nodes in order of increasing 𝑓 value.

• A* gradually adds "𝑓-contours" of nodes

• For any contour, A* examines all nodes in the contour before looking
at any contours further out.

• If a solution exists, the goal node in the closest contour to the start
node will be found first.

28

A* Performance

• Completeness:
• Yes, unless there are infinitely many nodes with 𝑓 𝑛 ≤ 𝐶∗

• Optimality:
• Tree search: Yes, if ℎ is admissible.

• Graph search: Yes, if ℎ is consistent.

• Time complexity: exponential

• Space complexity: exponential (all nodes in the memory). Will run out
of space long before it runs out of time

29

3. Memory-bounded heuristic search

IDA*: Difference between IDA* and standard IDS

• Cutoff used is the 𝑓-cost (𝑔 + ℎ) rather than the depth

• At each iteration, the cutoff value is the smallest 𝑓-cost of any node
that exceeded the cutoff on the previous iteration

SMA* (Simplified Memory bounded A*)

• When the memory is full, SMA* drops the worst leaf node—the one
with the highest 𝑓-value

• Back-up the value of the forgotten node to its parent

30

The effect of heuristics on performance

• One way to characterize the quality of a heuristic is the effective
branching factor 𝑏∗

• Assume 𝑁 total nodes generated. At depth 𝑑, 𝑏∗ is the branching
factor to contain 𝑁 + 1 nodes

𝑁 + 1 = 1 + 𝑏∗ + 𝑏∗ 2 + ⋯ + 𝑏∗ 𝑑

31

Effective Branching Factor 𝑏∗

Example:

• If A∗ finds a solution at depth 5 using 52 nodes, then the effective
branching factor is 1.92

• If A∗ finds a solution at depth 4 using 52 nodes, then the effective
branching factor is 2.36

➢A well- designed heuristic would have a value of 𝑏∗ close to 1,
allowing large problems to be solved at reasonable computational
cost

32

Comparing two heuristic functions

• Two common heuristics for the 8-puzzle:
• ℎ1: The number misplaced tiles (Hamming distance)

• ℎ2: The sum of the distances of tiles from their goal positions (total
Manhattan distance)

33

1 2

3 4 5

6 7 8

Goal stateℎ1 = 2

3 1

2 4 5

6 7 8

ℎ2 = 4

3 1

2 4 5

6 7 8

Comparing two heuristic functions

34

Dominance

• If ℎ2(𝑛) ≥ ℎ1(𝑛) for all 𝑛, and both are admissible: then ℎ2
dominates ℎ1 and ℎ2 is better for search.

• Given any admissible heuristics ℎ1, … , ℎ𝑚, where none dominate the
others:

ℎ𝑏𝑒𝑠𝑡(𝑛) = max(ℎ1(𝑛), … , ℎ𝑚 (𝑛))

ℎ𝑏𝑒𝑠𝑡(𝑛) is also admissible and dominates ℎ1, … , ℎ𝑚

35

Better at estimating

Relaxed problems

• Relaxed problem: problem with fewer restrictions on the actions
• There are added edges in the graph representing paths that are now allowed

• Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then

ℎ1(𝑛) gives the shortest solution

• If the rules of the 8-puzzle are relaxed so that a tile can move to any adjacent
square, then ℎ2(𝑛) gives the shortest solution.

• Key point: the cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

36

Summary

• Heuristic functions estimate costs of shortest paths

• Good heuristics can dramatically reduce search cost

• Greedy best-first search expands lowest ℎ
• incomplete and not optimal

• A* search expands lowest 𝑔 + ℎ
• complete and optimal if ℎ is consistent (admissible for tree search)

• Admissible heuristics can be derived from exact solution of relaxed
problems

37

	Slide 1: Chapter 3
	Slide 2: Problem with uniformed search
	Slide 3: Informed (heuristic) search
	Slide 4: Informed search
	Slide 5: Informed (heuristic) search
	Slide 6: Informed (heuristic) search
	Slide 7: 1. Greedy best-first search
	Slide 8: RECALL: UCS
	Slide 9: 1. Greedy best-first search
	Slide 10: 1. Greedy best-first search example
	Slide 11: 1. Greedy best-first search example
	Slide 12: 1. Greedy best-first search example
	Slide 13: 1. Greedy best-first search example
	Slide 14: 1. Greedy best-first search Performance
	Slide 15: 2. A*
	Slide 16: 2. A* search example (tree-search)
	Slide 17: 2. A* search example (tree-search)
	Slide 18: 2. A* search example (tree-search)
	Slide 19: 2. A* search example (tree-search)
	Slide 20: 2. A* example
	Slide 21: 2. A* example
	Slide 22: A*: Conditions for Optimality
	Slide 23: A*: Conditions for Optimality
	Slide 24: A* with a non-admissible heuristic
	Slide 25: A* with an inconsistent heuristic
	Slide 26: A* Properties
	Slide 27: Properties of A*: Completeness
	Slide 28: Properties of A*: Optimality
	Slide 29: A* Performance
	Slide 30: 3. Memory-bounded heuristic search
	Slide 31: The effect of heuristics on performance
	Slide 32: Effective Branching Factor b to the asterisk operator
	Slide 33: Comparing two heuristic functions
	Slide 34: Comparing two heuristic functions
	Slide 35: Dominance
	Slide 36: Relaxed problems
	Slide 37: Summary

