
Chapter 3

Solving Problems by Search: Uninformed Search
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Uninformed search algorithm 

Uninformed strategies: use only the information available in the problem definition:

1. Breadth First Search (BFS)

2. Uniform Cost Search (UCS)

3. Depth First Search (DFS)

4. Depth Limited Search (DLS)

5. Iterative Deepening Search (IDS)

6. Bidirectional search
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1. Breadth First Search (BFS)

• Main idea: Expand all nodes at depth 𝑖 before expanding nodes at depth 𝑖 + 1. 
(Shallow nodes are expanded before deeper nodes)

• Implementation: 
• The frontier list is a First-In-First-Out queue (FIFO). 

• Test for goal before putting in FIFO.
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1. Breadth First Search (BFS)
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Breadth First Search (BFS)



1. BFS: Example 

• Initial State = S, Path-Cost = 0

• Frontier:

• Explored:
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Recall: Evaluating search algorithms

1. Completeness: is the algorithm guaranteed to find a solution if one 
exists?

2. Time complexity: number of operations (time) necessary to find a 
solution.

3. Space complexity: memory requirement.

4. Optimality: if there are multiple solutions, does the algorithm find the 
best one (minimum cost)?

• Time and space complexity are measured in terms of
• 𝒃: maximum branching factor of the search tree
• 𝒅: depth of the best solution
• 𝒎: maximum depth of the state space (may be infinite)
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How to find complexity ?

• Take the worst possible example 
and compute its running time

• Difficult to do with graphs: use 
trees

• We use a complete tree with 
branching factor 𝑏 and depth 𝑚. 
The goal is at depth 𝑑.

• Example: 𝑏 = 2, 𝑚 = 4, 𝑑 = 2
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1. BFS Performance

. . .

. . . . . .

𝑏 successors

𝑏 ∗ 𝑏 = 𝑏2 successors

. . .

. . . . . . . . . . . . 𝑏 ∗ 𝑏 ∗ ⋯ ∗ 𝑏 = 𝑏𝑑 successors

𝑑 times
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1. BFS Performance

• Completeness: Guaranteed for finite space. Guaranteed when a 
solution exists.

• Optimality: Yes, if step-costs are equal, otherwise no.

• Time Complexity: Total number of nodes generated: 𝑂 𝑏𝑑

• What if the goal test was done when the node was selected for expansion 
instead of added to the frontier? 𝑂 𝑏𝑑+1  (This is not BFS)

• Space Complexity: 𝑂(𝑏𝑑−1) nodes in the explored set and 𝑂(𝑏𝑑) 
nodes in the frontier 
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1. BFS Complexity Bigger Problem
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2. Uniform Cost Search (UCS)

• When all step costs are equal, breadth-first search is optimal 

• it always expands the shallowest unexpanded node

• With any step cost function, an optimal algorithm expands the lowest path 
cost 𝑔(𝑛), instead of expanding the shallowest node

UCS:

• Main idea: Expand the cheapest node, where the cost is the path cost 𝑔(𝑛)

• Implementation: 

• The frontier list is a priority queue with 𝑔(𝑛) as the priority

12



2. UCS
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2. UCS
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2. UCS

15

Expand node with smallest cost



2. UCS

16

Check when expanded rather than 
when generated, because what if it is 
on a suboptimal path?



2. UCS
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What if a better path is found?
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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2. UCS: Example

• Node = Sibiu

• Frontier

• Explored

25

S

0



2. UCS: Example

• Pop Node = Sibiu, Goal? No

• Frontier

• Explored
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2. UCS: Example

• Pop Node = R, Goal? No

• Frontier

• Explored

27

F P
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2. UCS: Example

• Pop Node = F, Goal? No

• Frontier

• Explored

28

P B

S R F

177 310

We added Bucharest, the goal



2. UCS: Example

• Pop Node = P, Goal? No

• Frontier

• Explored

29

B
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Cost changed



2. UCS: Example

• Pop Node = B, Goal? Yes

• Frontier

• Explored

30

S R F P

No need to add goal 
once it is found



2. UCS Performance

• Optimality: Yes, given that step costs are nonnegative

• Completeness: Yes, if the cost of every step exceeds some small 
positive constant 𝜀 > 0
• UCS does not care about the number of steps

• Gets stuck in an infinite loop if there is a path with an infinite sequence of 
zero-cost actions

• Time and Space Complexity:
• 𝐶∗ be the cost of the optimal solution

• Every action costs at least 𝜀

• 𝑂  𝑏1+ Τ𝐶∗ 𝜀  , if steps are equal: 𝑂(𝑏𝑑+1)
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3. Depth First Search (DFS)



3. Depth First Search 
(DFS)

• Main idea: Expand node at 
the deepest level (breaking 
ties left to right). 

• Implementation:  Same as 
UCS, but the frontier list is a 
stack, Last-In-First-Out 
(LIFO). 

• Grayed out means removed 
from memory
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3. DFS: Example 

• Initial State = S, Path-Cost = 0

• Frontier:

• Explored:
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3. DFS Performance

• Optimality: No

• Completeness: Guaranteed for finite space. (Tree search not 
complete!) 

• Time Complexity: generate 𝑂(𝑏𝑚) nodes in the search tree, where 𝑚 
is the maximum depth of any node
• 𝑚 itself can be much larger than 𝑑

• Space Complexity: 𝑂(𝑏 ∗ 𝑚) 
• 𝑏 branching factor 

• 𝑚 maximum depth
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4. Depth-Limited Search (DLS)

• Assume Depth limit = 2
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4. DLS

• It is simply DFS with a depth bound (limit)
•  Searching is not permitted beyond the depth bound

• Works well if we know what the depth of the solution is

• Termination is guaranteed

• If the solution is beneath the depth bound, the search cannot find the 
goal
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4. DLS
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4. DLS Performance

• Completeness: No

• Optimality: No

• Time Complexity: 𝑂(𝑏𝐿), where 𝐿 is the depth limit.

• Space Complexity: 𝑂(𝑏 ∗ 𝐿), where 𝐿 is the depth limit.
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5. Iterative Deepening Search (IDS)

• If the depth is unknown, use Iterative deepening search (IDS)
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5. IDS

• Main idea: Expand node at 
depth zero, if not goal, 
increase level

• Grayed out means removed 
from memory
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5. IDS Performance

• IDS combines the benefits of BFS and DFS: 
• Like DFS the memory requirements are very modest 𝑂(𝑏 ∗ 𝑑)
• Like BFS, it is complete when the branching factor is finite

• The total number of generated nodes: 
𝑁 IDS = 𝑑 𝑏 + 𝑑 − 1 𝑏2 + ⋯ + 1 𝑏𝑑

• In general, IDS is the preferred uninformed search method, when search 
space is large, and depth of solution is unknown

• Completeness: Yes (if b is finite).
• Optimality: Yes when the path cost is a non-decreasing function of depth.
• Time Complexity: 𝑂(𝑏𝑑)
• Space Complexity: 𝑂(𝑏 ∗ 𝑑)
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6. Bidirectional Search (BDS)

• Main idea: Start searching from both the initial state and the goal 
state (if applicable), meet in the middle (the frontiers intersect)

• Why? Because time (and space) complexity is 𝑏
𝑑

2 + 𝑏
𝑑

2 is much less 
than 𝑏𝑑  
• Area of the two small circles is less than the area of one big circle 
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6. Bidirectional Search (BDS)

• Use BFS or UCS for search

• Can not be used in implicit goals

• Difficult when the actions are not reversible

• Requires a method for computing predecessors
• Difficult when e.g. goal is no queen attacks another queen

• Easy in finding a route from a map 
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6. BDS Performance

• Completeness: Yes, if 𝑏 is finite and use BFS or UCS in both directions

• Optimality: Yes, if UCS is used in both directions or the step costs are 
all identical and BFS is used in both directions

• Time Complexity: 𝑂(𝑏
𝑑

2)

• Space Complexity: 𝑂(𝑏
𝑑

2)
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Summary
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Tutorial
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Blind Search Algorithms
Tree Search:

 BFS, DFS, DLS, IDS



Basic Search Algorithms
Breadth First Search

BFS
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Breadth First Search

◼ Application1: 

 Given the following state space (tree search), give the sequence 
of visited nodes when using BFS (assume that the nodeO is the 
goal state):

A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

◼ A,

A

B C ED
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Breadth First Search

◼ A,

◼ B,

A

B C ED

F G
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Breadth First Search

◼ A,

◼ B,C

A

B C ED

F G H
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Breadth First Search

◼ A,

◼ B,C,D

A

B C ED

F G H I J
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Breadth First Search

◼ A,

◼ B,C,D,E

A

B C ED

F G H I J
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,

A

B C ED

F G H I J
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G

A

B C ED

F G H I J

K L
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H

A

B C ED

F G H I J

K L
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I

A

B C ED

F G H I J

K L M
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

A

B C ED

F G H I J

K L M N
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K, A

B C ED

F G H I J

K L M N
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K,L A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K,L, M, A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K,L, M,N, A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K,L, M,N,

◼ Goal state: O

A

B C ED

F G H I J

K L

O

M N
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Breadth First Search

◼ The returned solution is the sequence of operators in the path:

     A, B, G, L, O

A

B C ED

F G H I J

K L

O

M N



Basic Search Algorithms
Depth First Search

DFS
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Depth First Search (DFS)

◼ Application2: 

 Given the following state space (tree search), give the sequence 
of visited nodes when using DFS (assume that the nodeO is the 
goal state):

A

B C ED

F G H I J

K L

O

M N
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Depth First Search

◼ A,

A

B C ED
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Depth First Search

◼ A,B,

A

B C ED

F G
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Depth First Search

◼ A,B,F,

A

B C ED

F G
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Depth First Search

◼ A,B,F,

◼ G,

A

B C ED

F G

K L
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Depth First Search

◼ A,B,F,

◼ G,K,

A

B C ED

F G

K L
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Depth First Search

◼ A,B,F,

◼ G,K,

◼ L,

A

B C ED

F G

K L

O
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Depth First Search

◼ A,B,F,

◼ G,K,

◼ L, O: Goal State

A

B C ED

F G

K L

O
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Depth First Search

The returned solution is the sequence of operators in the path: 
    A, B, G, L, O

A

B C ED

F G

K L

O



Basic Search Algorithms
Depth-Limited Search

DLS
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Depth-Limited Search (DLS)

◼ Application3: 

 Given the following state space (tree search), give the sequence 
of visited nodes when using DLS  (Limit = 2):

A

B C ED

F G H I J

K L

O

M N

Limit = 0

Limit = 1

Limit = 2
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Depth-Limited Search (DLS)

◼ A,

A

B C ED

Limit = 2
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Depth-Limited Search (DLS)

◼ A,B,

A

B C ED

F GLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

A

B C ED

F GLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

A

B C ED

F GLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,

A

B C ED

F G HLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

A

B C ED

F G HLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D, A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

◼ E

A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

◼ E, Failure

A

B C ED

F G H I JLimit = 2
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Depth-Limited Search (DLS)

◼ DLS algorithm returns Failure (no solution)

◼ The reason is that the goal is beyond the limit (Limit =2): the 
goal depth is (d=4)

A

B C ED

F G H I J

K L

O

M N

Limit = 2



Basic Search Algorithms
Iterative Deepening Search

IDS
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Iterative Deepening Search (IDS)

◼ Application4: 

 Given the following state space (tree search), give the sequence 
of visited nodes when using IDS:

A

B C ED

F G H I J

K L

O

M N

Limit = 0

Limit = 1

Limit = 2

Limit = 3

Limit = 4



Iterative Deepening Search 
(IDS)

DLS with bound = 0
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Iterative Deepening Search (IDS)

◼ A,

ALimit = 0
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Iterative Deepening Search (IDS)

◼ A, Failure

ALimit = 0



Iterative Deepening Search 
(IDS)

DLS with bound = 1
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Iterative Deepening Search (IDS)

◼ A,

A

B C EDLimit = 1
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Iterative Deepening Search (IDS)

◼ A,B,

A

B C EDLimit = 1
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Iterative Deepening Search (IDS)

◼ A,B,

◼ C,

A

B C EDLimit = 1
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Iterative Deepening Search (IDS)

◼ A,B,

◼ C,

◼ D,

A

B C EDLimit = 1
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Iterative Deepening Search (IDS)

◼ A,B

◼ C,

◼ D,

◼ E, A

B C EDLimit = 1
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Iterative Deepening Search (IDS)

◼ A,B,

◼ C,

◼ D,

◼ E, Failure A

B C EDLimit = 1
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Iterative Deepening Search (IDS)

◼ A,

A

B C ED

Limit = 2
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Iterative Deepening Search (IDS)

◼ A,B,

A

B C ED

F GLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

A

B C ED

F GLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

A

B C ED

F GLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,

A

B C ED

F G HLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

A

B C ED

F G HLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D, A

B C ED

F G H I JLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I A

B C ED

F G H I JLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

A

B C ED

F G H I JLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

◼ E

A

B C ED

F G H I JLimit = 2
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

◼ E, Failure

A

B C ED

F G H I J

K L

O

M N

Limit = 2



Iterative Deepening Search 
(IDS)

DLS with bound = 3
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Iterative Deepening Search (IDS)

◼ A,

A

B C ED

Limit = 3
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Iterative Deepening Search (IDS)

◼ A,B,

A

B C ED

F G

Limit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

A

B C ED

F G

Limit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

A

B C ED

F G

K LLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

A

B C ED

F G

K LLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

A

B C ED

F G

K LLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C, A

B C ED

F G H

K LLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H, A

B C ED

F G H

K LLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,

A

B C ED

F G H I J

K LLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,

A

B C ED

F G H I J

K L MLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

A

B C ED

F G H I J

K L MLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

◼ J,

A

B C ED

F G H I J

K L M NLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

◼ J,N,

A

B C ED

F G H I J

K L M NLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

◼ J,N,

◼ E,

A

B C ED

F G H I J

K L M NLimit = 3
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

◼ J,N,

◼ E,Failure

A

B C ED

F G H I J

K L

O

M NLimit = 3



Iterative Deepening Search 
(IDS)

DLS with bound = 4



131

Iterative Deepening Search (IDS)

◼ A,

A

B C ED

Limit = 4
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Iterative Deepening Search (IDS)

◼ A,B,

A

B C ED

F G

Limit = 4
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Iterative Deepening Search (IDS)

◼ A,B,F,

A

B C ED

F G

Limit = 4
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

A

B C ED

F G

K L

Limit = 4
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

A

B C ED

F G

K L

Limit = 4
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

A

B C ED

F G

K L

OLimit = 4
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Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L, O: Goal State

A

B C ED

F G

K L

OLimit = 4
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Iterative Deepening Search (IDS)

The returned solution is the sequence of operators in the path: 
    A, B, G, L, O

A

B C ED

F G

K L

O
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Summary

✓ Search: process of constructing sequences of actions that achieve a goal given a problem.

✓ The studied methods assume that the environment is observable, deterministic, static and
completely known.

✓ Goal formulation is the first step in solving problems by searching. It facilitates problem
formulation.

✓ Formulating a problem requires specifying four components: Initial states, operators, goal test
and path cost function. Environment is represented as a state space.

✓ A solution is a path from the initial state to a goal state.

✓ Search algorithms are judged on the basis of completeness, optimality, time complexity and
space complexity.

✓ Several search strategies: BFS, DFS, DLS, IDS,…

✓ All uninformed searches have an exponential time complexity – hopeless as a viable problem 
solving mechanism (unless you have a quantum computer!)


	Slide 1: Chapter 3 
	Slide 2: Uninformed search algorithm 
	Slide 3: 1. Breadth First Search (BFS)
	Slide 4: 1. Breadth First Search (BFS)
	Slide 5: Breadth First Search (BFS)
	Slide 6: 1. BFS: Example 
	Slide 7: Recall: Evaluating search algorithms
	Slide 8: How to find complexity ?
	Slide 9: 1. BFS Performance
	Slide 10: 1. BFS Performance
	Slide 11: 1. BFS Complexity
	Slide 12: 2. Uniform Cost Search (UCS)
	Slide 13: 2. UCS
	Slide 14: 2. UCS
	Slide 15: 2. UCS
	Slide 16: 2. UCS
	Slide 17: 2. UCS
	Slide 18: Uniform Cost Search (UCS)
	Slide 19: Uniform Cost Search (UCS)
	Slide 20: Uniform Cost Search (UCS)
	Slide 21: Uniform Cost Search (UCS)
	Slide 22: Uniform Cost Search (UCS)
	Slide 23: Uniform Cost Search (UCS)
	Slide 24: Uniform Cost Search (UCS)
	Slide 25: 2. UCS: Example
	Slide 26: 2. UCS: Example
	Slide 27: 2. UCS: Example
	Slide 28: 2. UCS: Example
	Slide 29: 2. UCS: Example
	Slide 30: 2. UCS: Example
	Slide 31: 2. UCS Performance
	Slide 32: 3. Depth First Search (DFS)
	Slide 33: 3. Depth First Search (DFS)
	Slide 34: 3. DFS: Example 
	Slide 35: 3. DFS Performance
	Slide 36: 4. Depth-Limited Search (DLS)
	Slide 37: 4. DLS
	Slide 38: 4. DLS
	Slide 39: 4. DLS Performance
	Slide 40: 5. Iterative Deepening Search (IDS)
	Slide 41: 5. IDS
	Slide 42: 5. IDS Performance
	Slide 43: 6. Bidirectional Search (BDS)
	Slide 44: 6. Bidirectional Search (BDS)
	Slide 45: 6. BDS Performance
	Slide 46: Summary
	Slide 47: Tutorial
	Slide 48: Blind Search Algorithms
	Slide 49: Basic Search Algorithms
	Slide 50: Breadth First Search
	Slide 51: Breadth First Search
	Slide 52: Breadth First Search
	Slide 53: Breadth First Search
	Slide 54: Breadth First Search
	Slide 55: Breadth First Search
	Slide 56: Breadth First Search
	Slide 57: Breadth First Search
	Slide 58: Breadth First Search
	Slide 59: Breadth First Search
	Slide 60: Breadth First Search
	Slide 61: Breadth First Search
	Slide 62: Breadth First Search
	Slide 63: Breadth First Search
	Slide 64: Breadth First Search
	Slide 65: Breadth First Search
	Slide 66: Breadth First Search
	Slide 67: Basic Search Algorithms
	Slide 68: Depth First Search (DFS)
	Slide 69: Depth First Search
	Slide 70: Depth First Search
	Slide 71: Depth First Search
	Slide 72: Depth First Search
	Slide 73: Depth First Search
	Slide 74: Depth First Search
	Slide 75: Depth First Search
	Slide 76: Depth First Search
	Slide 77: Basic Search Algorithms
	Slide 78: Depth-Limited Search (DLS)
	Slide 79: Depth-Limited Search (DLS)
	Slide 80: Depth-Limited Search (DLS)
	Slide 81: Depth-Limited Search (DLS)
	Slide 82: Depth-Limited Search (DLS)
	Slide 83: Depth-Limited Search (DLS)
	Slide 84: Depth-Limited Search (DLS)
	Slide 85: Depth-Limited Search (DLS)
	Slide 86: Depth-Limited Search (DLS)
	Slide 87: Depth-Limited Search (DLS)
	Slide 88: Depth-Limited Search (DLS)
	Slide 89: Depth-Limited Search (DLS)
	Slide 90: Depth-Limited Search (DLS)
	Slide 91: Basic Search Algorithms
	Slide 92: Iterative Deepening Search (IDS)
	Slide 93: Iterative Deepening Search (IDS)
	Slide 94: Iterative Deepening Search (IDS)
	Slide 95: Iterative Deepening Search (IDS)
	Slide 96: Iterative Deepening Search (IDS)
	Slide 97: Iterative Deepening Search (IDS)
	Slide 98: Iterative Deepening Search (IDS)
	Slide 99: Iterative Deepening Search (IDS)
	Slide 100: Iterative Deepening Search (IDS)
	Slide 101: Iterative Deepening Search (IDS)
	Slide 102: Iterative Deepening Search (IDS)
	Slide 103: Iterative Deepening Search (IDS)
	Slide 104: Iterative Deepening Search (IDS)
	Slide 105: Iterative Deepening Search (IDS)
	Slide 106: Iterative Deepening Search (IDS)
	Slide 107: Iterative Deepening Search (IDS)
	Slide 108: Iterative Deepening Search (IDS)
	Slide 109: Iterative Deepening Search (IDS)
	Slide 110: Iterative Deepening Search (IDS)
	Slide 111: Iterative Deepening Search (IDS)
	Slide 112: Iterative Deepening Search (IDS)
	Slide 113: Iterative Deepening Search (IDS)
	Slide 114: Iterative Deepening Search (IDS)
	Slide 115: Iterative Deepening Search (IDS)
	Slide 116: Iterative Deepening Search (IDS)
	Slide 117: Iterative Deepening Search (IDS)
	Slide 118: Iterative Deepening Search (IDS)
	Slide 119: Iterative Deepening Search (IDS)
	Slide 120: Iterative Deepening Search (IDS)
	Slide 121: Iterative Deepening Search (IDS)
	Slide 122: Iterative Deepening Search (IDS)
	Slide 123: Iterative Deepening Search (IDS)
	Slide 124: Iterative Deepening Search (IDS)
	Slide 125: Iterative Deepening Search (IDS)
	Slide 126: Iterative Deepening Search (IDS)
	Slide 127: Iterative Deepening Search (IDS)
	Slide 128: Iterative Deepening Search (IDS)
	Slide 129: Iterative Deepening Search (IDS)
	Slide 130: Iterative Deepening Search (IDS)
	Slide 131: Iterative Deepening Search (IDS)
	Slide 132: Iterative Deepening Search (IDS)
	Slide 133: Iterative Deepening Search (IDS)
	Slide 134: Iterative Deepening Search (IDS)
	Slide 135: Iterative Deepening Search (IDS)
	Slide 136: Iterative Deepening Search (IDS)
	Slide 137: Iterative Deepening Search (IDS)
	Slide 138: Iterative Deepening Search (IDS)
	Slide 139: Summary

