
Chapter 3

Solving Problems by Search: Uninformed Search

1

Uninformed search algorithm

Uninformed strategies: use only the information available in the problem definition:

1. Breadth First Search (BFS)

2. Uniform Cost Search (UCS)

3. Depth First Search (DFS)

4. Depth Limited Search (DLS)

5. Iterative Deepening Search (IDS)

6. Bidirectional search

2

1. Breadth First Search (BFS)

• Main idea: Expand all nodes at depth 𝑖 before expanding nodes at depth 𝑖 + 1.
(Shallow nodes are expanded before deeper nodes)

• Implementation:
• The frontier list is a First-In-First-Out queue (FIFO).

• Test for goal before putting in FIFO.

3

1. Breadth First Search (BFS)

4

5

Breadth First Search (BFS)

1. BFS: Example

• Initial State = S, Path-Cost = 0

• Frontier:

• Explored:

6

S

A

B

C G

1

4

2

2

5

12

3

S

Recall: Evaluating search algorithms

1. Completeness: is the algorithm guaranteed to find a solution if one
exists?

2. Time complexity: number of operations (time) necessary to find a
solution.

3. Space complexity: memory requirement.

4. Optimality: if there are multiple solutions, does the algorithm find the
best one (minimum cost)?

• Time and space complexity are measured in terms of
• 𝒃: maximum branching factor of the search tree
• 𝒅: depth of the best solution
• 𝒎: maximum depth of the state space (may be infinite)

7

How to find complexity ?

• Take the worst possible example
and compute its running time

• Difficult to do with graphs: use
trees

• We use a complete tree with
branching factor 𝑏 and depth 𝑚.
The goal is at depth 𝑑.

• Example: 𝑏 = 2, 𝑚 = 4, 𝑑 = 2

8

Depth 0

Depth 1

Depth 2
Goal

Initial state

Depth 3

Depth 4

1. BFS Performance

. . .

.

𝑏 successors

𝑏 ∗ 𝑏 = 𝑏2 successors

. . .

. 𝑏 ∗ 𝑏 ∗ ⋯ ∗ 𝑏 = 𝑏𝑑 successors

𝑑 times

9

1. BFS Performance

• Completeness: Guaranteed for finite space. Guaranteed when a
solution exists.

• Optimality: Yes, if step-costs are equal, otherwise no.

• Time Complexity: Total number of nodes generated: 𝑂 𝑏𝑑

• What if the goal test was done when the node was selected for expansion
instead of added to the frontier? 𝑂 𝑏𝑑+1 (This is not BFS)

• Space Complexity: 𝑂(𝑏𝑑−1) nodes in the explored set and 𝑂(𝑏𝑑)
nodes in the frontier

10

1. BFS Complexity Bigger Problem

11

2. Uniform Cost Search (UCS)

• When all step costs are equal, breadth-first search is optimal

• it always expands the shallowest unexpanded node

• With any step cost function, an optimal algorithm expands the lowest path
cost 𝑔(𝑛), instead of expanding the shallowest node

UCS:

• Main idea: Expand the cheapest node, where the cost is the path cost 𝑔(𝑛)

• Implementation:

• The frontier list is a priority queue with 𝑔(𝑛) as the priority

12

2. UCS

13

2. UCS

14

2. UCS

15

Expand node with smallest cost

2. UCS

16

Check when expanded rather than
when generated, because what if it is
on a suboptimal path?

2. UCS

17

What if a better path is found?

18

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9]
[6]

[x] = g(n)

path cost of node n

Goal state

19

Uniform Cost Search (UCS)

25

[5] [2]

20

Uniform Cost Search (UCS)

25

1 7

[5] [2]

[9][3]

21

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

22

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9]
[6]

23

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9]

Goal state

path cost

g(n)=[6]

24

Uniform Cost Search (UCS)

25

1 7

4 5

[5] [2]

[9][3]

[7] [8]

1 4

[9]
[6]

2. UCS: Example

• Node = Sibiu

• Frontier

• Explored

25

S

0

2. UCS: Example

• Pop Node = Sibiu, Goal? No

• Frontier

• Explored

26

R F

S

80 99

2. UCS: Example

• Pop Node = R, Goal? No

• Frontier

• Explored

27

F P

S R

99 177

2. UCS: Example

• Pop Node = F, Goal? No

• Frontier

• Explored

28

P B

S R F

177 310

We added Bucharest, the goal

2. UCS: Example

• Pop Node = P, Goal? No

• Frontier

• Explored

29

B

S R F P

278

Cost changed

2. UCS: Example

• Pop Node = B, Goal? Yes

• Frontier

• Explored

30

S R F P

No need to add goal
once it is found

2. UCS Performance

• Optimality: Yes, given that step costs are nonnegative

• Completeness: Yes, if the cost of every step exceeds some small
positive constant 𝜀 > 0
• UCS does not care about the number of steps

• Gets stuck in an infinite loop if there is a path with an infinite sequence of
zero-cost actions

• Time and Space Complexity:
• 𝐶∗ be the cost of the optimal solution

• Every action costs at least 𝜀

• 𝑂 𝑏1+ Τ𝐶∗ 𝜀 , if steps are equal: 𝑂(𝑏𝑑+1)

31

32

3. Depth First Search (DFS)

3. Depth First Search
(DFS)

• Main idea: Expand node at
the deepest level (breaking
ties left to right).

• Implementation: Same as
UCS, but the frontier list is a
stack, Last-In-First-Out
(LIFO).

• Grayed out means removed
from memory

33

3. DFS: Example

• Initial State = S, Path-Cost = 0

• Frontier:

• Explored:

34

S

A

B

C G

1

4

2

2

5

12

3 S

3. DFS Performance

• Optimality: No

• Completeness: Guaranteed for finite space. (Tree search not
complete!)

• Time Complexity: generate 𝑂(𝑏𝑚) nodes in the search tree, where 𝑚
is the maximum depth of any node
• 𝑚 itself can be much larger than 𝑑

• Space Complexity: 𝑂(𝑏 ∗ 𝑚)
• 𝑏 branching factor

• 𝑚 maximum depth

35

BFS
DFS: 156 KB

4. Depth-Limited Search (DLS)

• Assume Depth limit = 2

36

Depth

0

1

2

Students

4. DLS

• It is simply DFS with a depth bound (limit)
• Searching is not permitted beyond the depth bound

• Works well if we know what the depth of the solution is

• Termination is guaranteed

• If the solution is beneath the depth bound, the search cannot find the
goal

37

Students

4. DLS

38

Students

4. DLS Performance

• Completeness: No

• Optimality: No

• Time Complexity: 𝑂(𝑏𝐿), where 𝐿 is the depth limit.

• Space Complexity: 𝑂(𝑏 ∗ 𝐿), where 𝐿 is the depth limit.

39

Students

5. Iterative Deepening Search (IDS)

• If the depth is unknown, use Iterative deepening search (IDS)

40

Students

5. IDS

• Main idea: Expand node at
depth zero, if not goal,
increase level

• Grayed out means removed
from memory

41

Students

5. IDS Performance

• IDS combines the benefits of BFS and DFS:
• Like DFS the memory requirements are very modest 𝑂(𝑏 ∗ 𝑑)
• Like BFS, it is complete when the branching factor is finite

• The total number of generated nodes:
𝑁 IDS = 𝑑 𝑏 + 𝑑 − 1 𝑏2 + ⋯ + 1 𝑏𝑑

• In general, IDS is the preferred uninformed search method, when search
space is large, and depth of solution is unknown

• Completeness: Yes (if b is finite).
• Optimality: Yes when the path cost is a non-decreasing function of depth.
• Time Complexity: 𝑂(𝑏𝑑)
• Space Complexity: 𝑂(𝑏 ∗ 𝑑)

42

Students

6. Bidirectional Search (BDS)

• Main idea: Start searching from both the initial state and the goal
state (if applicable), meet in the middle (the frontiers intersect)

• Why? Because time (and space) complexity is 𝑏
𝑑

2 + 𝑏
𝑑

2 is much less
than 𝑏𝑑
• Area of the two small circles is less than the area of one big circle

43

Students

6. Bidirectional Search (BDS)

• Use BFS or UCS for search

• Can not be used in implicit goals

• Difficult when the actions are not reversible

• Requires a method for computing predecessors
• Difficult when e.g. goal is no queen attacks another queen

• Easy in finding a route from a map

44

Students

6. BDS Performance

• Completeness: Yes, if 𝑏 is finite and use BFS or UCS in both directions

• Optimality: Yes, if UCS is used in both directions or the step costs are
all identical and BFS is used in both directions

• Time Complexity: 𝑂(𝑏
𝑑

2)

• Space Complexity: 𝑂(𝑏
𝑑

2)

45

Students

Summary

46

Students

Tutorial

47

Blind Search Algorithms
Tree Search:

 BFS, DFS, DLS, IDS

Basic Search Algorithms
Breadth First Search

BFS

50

Breadth First Search

◼ Application1:

 Given the following state space (tree search), give the sequence
of visited nodes when using BFS (assume that the nodeO is the
goal state):

A

B C ED

F G H I J

K L

O

M N

51

Breadth First Search

◼ A,

A

B C ED

52

Breadth First Search

◼ A,

◼ B,

A

B C ED

F G

53

Breadth First Search

◼ A,

◼ B,C

A

B C ED

F G H

54

Breadth First Search

◼ A,

◼ B,C,D

A

B C ED

F G H I J

55

Breadth First Search

◼ A,

◼ B,C,D,E

A

B C ED

F G H I J

56

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,

A

B C ED

F G H I J

57

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G

A

B C ED

F G H I J

K L

58

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H

A

B C ED

F G H I J

K L

59

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I

A

B C ED

F G H I J

K L M

60

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

A

B C ED

F G H I J

K L M N

61

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K, A

B C ED

F G H I J

K L M N

62

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K,L A

B C ED

F G H I J

K L

O

M N

63

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K,L, M, A

B C ED

F G H I J

K L

O

M N

64

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K,L, M,N, A

B C ED

F G H I J

K L

O

M N

65

Breadth First Search

◼ A,

◼ B,C,D,E,

◼ F,G,H,I,J,

◼ K,L, M,N,

◼ Goal state: O

A

B C ED

F G H I J

K L

O

M N

66

Breadth First Search

◼ The returned solution is the sequence of operators in the path:

 A, B, G, L, O

A

B C ED

F G H I J

K L

O

M N

Basic Search Algorithms
Depth First Search

DFS

68

Depth First Search (DFS)

◼ Application2:

 Given the following state space (tree search), give the sequence
of visited nodes when using DFS (assume that the nodeO is the
goal state):

A

B C ED

F G H I J

K L

O

M N

69

Depth First Search

◼ A,

A

B C ED

70

Depth First Search

◼ A,B,

A

B C ED

F G

71

Depth First Search

◼ A,B,F,

A

B C ED

F G

72

Depth First Search

◼ A,B,F,

◼ G,

A

B C ED

F G

K L

73

Depth First Search

◼ A,B,F,

◼ G,K,

A

B C ED

F G

K L

74

Depth First Search

◼ A,B,F,

◼ G,K,

◼ L,

A

B C ED

F G

K L

O

75

Depth First Search

◼ A,B,F,

◼ G,K,

◼ L, O: Goal State

A

B C ED

F G

K L

O

76

Depth First Search

The returned solution is the sequence of operators in the path:
 A, B, G, L, O

A

B C ED

F G

K L

O

Basic Search Algorithms
Depth-Limited Search

DLS

78

Depth-Limited Search (DLS)

◼ Application3:

 Given the following state space (tree search), give the sequence
of visited nodes when using DLS (Limit = 2):

A

B C ED

F G H I J

K L

O

M N

Limit = 0

Limit = 1

Limit = 2

79

Depth-Limited Search (DLS)

◼ A,

A

B C ED

Limit = 2

80

Depth-Limited Search (DLS)

◼ A,B,

A

B C ED

F GLimit = 2

81

Depth-Limited Search (DLS)

◼ A,B,F,

A

B C ED

F GLimit = 2

82

Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

A

B C ED

F GLimit = 2

83

Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,

A

B C ED

F G HLimit = 2

84

Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

A

B C ED

F G HLimit = 2

85

Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D, A

B C ED

F G H I JLimit = 2

86

Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I A

B C ED

F G H I JLimit = 2

87

Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

A

B C ED

F G H I JLimit = 2

88

Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

◼ E

A

B C ED

F G H I JLimit = 2

89

Depth-Limited Search (DLS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

◼ E, Failure

A

B C ED

F G H I JLimit = 2

90

Depth-Limited Search (DLS)

◼ DLS algorithm returns Failure (no solution)

◼ The reason is that the goal is beyond the limit (Limit =2): the
goal depth is (d=4)

A

B C ED

F G H I J

K L

O

M N

Limit = 2

Basic Search Algorithms
Iterative Deepening Search

IDS

92

Iterative Deepening Search (IDS)

◼ Application4:

 Given the following state space (tree search), give the sequence
of visited nodes when using IDS:

A

B C ED

F G H I J

K L

O

M N

Limit = 0

Limit = 1

Limit = 2

Limit = 3

Limit = 4

Iterative Deepening Search
(IDS)

DLS with bound = 0

94

Iterative Deepening Search (IDS)

◼ A,

ALimit = 0

95

Iterative Deepening Search (IDS)

◼ A, Failure

ALimit = 0

Iterative Deepening Search
(IDS)

DLS with bound = 1

97

Iterative Deepening Search (IDS)

◼ A,

A

B C EDLimit = 1

98

Iterative Deepening Search (IDS)

◼ A,B,

A

B C EDLimit = 1

99

Iterative Deepening Search (IDS)

◼ A,B,

◼ C,

A

B C EDLimit = 1

100

Iterative Deepening Search (IDS)

◼ A,B,

◼ C,

◼ D,

A

B C EDLimit = 1

101

Iterative Deepening Search (IDS)

◼ A,B

◼ C,

◼ D,

◼ E, A

B C EDLimit = 1

102

Iterative Deepening Search (IDS)

◼ A,B,

◼ C,

◼ D,

◼ E, Failure A

B C EDLimit = 1

103

Iterative Deepening Search (IDS)

◼ A,

A

B C ED

Limit = 2

104

Iterative Deepening Search (IDS)

◼ A,B,

A

B C ED

F GLimit = 2

105

Iterative Deepening Search (IDS)

◼ A,B,F,

A

B C ED

F GLimit = 2

106

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

A

B C ED

F GLimit = 2

107

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,

A

B C ED

F G HLimit = 2

108

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

A

B C ED

F G HLimit = 2

109

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D, A

B C ED

F G H I JLimit = 2

110

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I A

B C ED

F G H I JLimit = 2

111

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

A

B C ED

F G H I JLimit = 2

112

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

◼ E

A

B C ED

F G H I JLimit = 2

113

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

◼ C,H,

◼ D,I

◼ J,

◼ E, Failure

A

B C ED

F G H I J

K L

O

M N

Limit = 2

Iterative Deepening Search
(IDS)

DLS with bound = 3

115

Iterative Deepening Search (IDS)

◼ A,

A

B C ED

Limit = 3

116

Iterative Deepening Search (IDS)

◼ A,B,

A

B C ED

F G

Limit = 3

117

Iterative Deepening Search (IDS)

◼ A,B,F,

A

B C ED

F G

Limit = 3

118

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

A

B C ED

F G

K LLimit = 3

119

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

A

B C ED

F G

K LLimit = 3

120

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

A

B C ED

F G

K LLimit = 3

121

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C, A

B C ED

F G H

K LLimit = 3

122

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H, A

B C ED

F G H

K LLimit = 3

123

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,

A

B C ED

F G H I J

K LLimit = 3

124

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,

A

B C ED

F G H I J

K L MLimit = 3

125

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

A

B C ED

F G H I J

K L MLimit = 3

126

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

◼ J,

A

B C ED

F G H I J

K L M NLimit = 3

127

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

◼ J,N,

A

B C ED

F G H I J

K L M NLimit = 3

128

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

◼ J,N,

◼ E,

A

B C ED

F G H I J

K L M NLimit = 3

129

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

◼ C,H,

◼ D,I,M,

◼ J,N,

◼ E,Failure

A

B C ED

F G H I J

K L

O

M NLimit = 3

Iterative Deepening Search
(IDS)

DLS with bound = 4

131

Iterative Deepening Search (IDS)

◼ A,

A

B C ED

Limit = 4

132

Iterative Deepening Search (IDS)

◼ A,B,

A

B C ED

F G

Limit = 4

133

Iterative Deepening Search (IDS)

◼ A,B,F,

A

B C ED

F G

Limit = 4

134

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,

A

B C ED

F G

K L

Limit = 4

135

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

A

B C ED

F G

K L

Limit = 4

136

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L,

A

B C ED

F G

K L

OLimit = 4

137

Iterative Deepening Search (IDS)

◼ A,B,F,

◼ G,K,

◼ L, O: Goal State

A

B C ED

F G

K L

OLimit = 4

138

Iterative Deepening Search (IDS)

The returned solution is the sequence of operators in the path:
 A, B, G, L, O

A

B C ED

F G

K L

O

139

Summary

✓ Search: process of constructing sequences of actions that achieve a goal given a problem.

✓ The studied methods assume that the environment is observable, deterministic, static and
completely known.

✓ Goal formulation is the first step in solving problems by searching. It facilitates problem
formulation.

✓ Formulating a problem requires specifying four components: Initial states, operators, goal test
and path cost function. Environment is represented as a state space.

✓ A solution is a path from the initial state to a goal state.

✓ Search algorithms are judged on the basis of completeness, optimality, time complexity and
space complexity.

✓ Several search strategies: BFS, DFS, DLS, IDS,…

✓ All uninformed searches have an exponential time complexity – hopeless as a viable problem
solving mechanism (unless you have a quantum computer!)

	Slide 1: Chapter 3
	Slide 2: Uninformed search algorithm
	Slide 3: 1. Breadth First Search (BFS)
	Slide 4: 1. Breadth First Search (BFS)
	Slide 5: Breadth First Search (BFS)
	Slide 6: 1. BFS: Example
	Slide 7: Recall: Evaluating search algorithms
	Slide 8: How to find complexity ?
	Slide 9: 1. BFS Performance
	Slide 10: 1. BFS Performance
	Slide 11: 1. BFS Complexity
	Slide 12: 2. Uniform Cost Search (UCS)
	Slide 13: 2. UCS
	Slide 14: 2. UCS
	Slide 15: 2. UCS
	Slide 16: 2. UCS
	Slide 17: 2. UCS
	Slide 18: Uniform Cost Search (UCS)
	Slide 19: Uniform Cost Search (UCS)
	Slide 20: Uniform Cost Search (UCS)
	Slide 21: Uniform Cost Search (UCS)
	Slide 22: Uniform Cost Search (UCS)
	Slide 23: Uniform Cost Search (UCS)
	Slide 24: Uniform Cost Search (UCS)
	Slide 25: 2. UCS: Example
	Slide 26: 2. UCS: Example
	Slide 27: 2. UCS: Example
	Slide 28: 2. UCS: Example
	Slide 29: 2. UCS: Example
	Slide 30: 2. UCS: Example
	Slide 31: 2. UCS Performance
	Slide 32: 3. Depth First Search (DFS)
	Slide 33: 3. Depth First Search (DFS)
	Slide 34: 3. DFS: Example
	Slide 35: 3. DFS Performance
	Slide 36: 4. Depth-Limited Search (DLS)
	Slide 37: 4. DLS
	Slide 38: 4. DLS
	Slide 39: 4. DLS Performance
	Slide 40: 5. Iterative Deepening Search (IDS)
	Slide 41: 5. IDS
	Slide 42: 5. IDS Performance
	Slide 43: 6. Bidirectional Search (BDS)
	Slide 44: 6. Bidirectional Search (BDS)
	Slide 45: 6. BDS Performance
	Slide 46: Summary
	Slide 47: Tutorial
	Slide 48: Blind Search Algorithms
	Slide 49: Basic Search Algorithms
	Slide 50: Breadth First Search
	Slide 51: Breadth First Search
	Slide 52: Breadth First Search
	Slide 53: Breadth First Search
	Slide 54: Breadth First Search
	Slide 55: Breadth First Search
	Slide 56: Breadth First Search
	Slide 57: Breadth First Search
	Slide 58: Breadth First Search
	Slide 59: Breadth First Search
	Slide 60: Breadth First Search
	Slide 61: Breadth First Search
	Slide 62: Breadth First Search
	Slide 63: Breadth First Search
	Slide 64: Breadth First Search
	Slide 65: Breadth First Search
	Slide 66: Breadth First Search
	Slide 67: Basic Search Algorithms
	Slide 68: Depth First Search (DFS)
	Slide 69: Depth First Search
	Slide 70: Depth First Search
	Slide 71: Depth First Search
	Slide 72: Depth First Search
	Slide 73: Depth First Search
	Slide 74: Depth First Search
	Slide 75: Depth First Search
	Slide 76: Depth First Search
	Slide 77: Basic Search Algorithms
	Slide 78: Depth-Limited Search (DLS)
	Slide 79: Depth-Limited Search (DLS)
	Slide 80: Depth-Limited Search (DLS)
	Slide 81: Depth-Limited Search (DLS)
	Slide 82: Depth-Limited Search (DLS)
	Slide 83: Depth-Limited Search (DLS)
	Slide 84: Depth-Limited Search (DLS)
	Slide 85: Depth-Limited Search (DLS)
	Slide 86: Depth-Limited Search (DLS)
	Slide 87: Depth-Limited Search (DLS)
	Slide 88: Depth-Limited Search (DLS)
	Slide 89: Depth-Limited Search (DLS)
	Slide 90: Depth-Limited Search (DLS)
	Slide 91: Basic Search Algorithms
	Slide 92: Iterative Deepening Search (IDS)
	Slide 93: Iterative Deepening Search (IDS)
	Slide 94: Iterative Deepening Search (IDS)
	Slide 95: Iterative Deepening Search (IDS)
	Slide 96: Iterative Deepening Search (IDS)
	Slide 97: Iterative Deepening Search (IDS)
	Slide 98: Iterative Deepening Search (IDS)
	Slide 99: Iterative Deepening Search (IDS)
	Slide 100: Iterative Deepening Search (IDS)
	Slide 101: Iterative Deepening Search (IDS)
	Slide 102: Iterative Deepening Search (IDS)
	Slide 103: Iterative Deepening Search (IDS)
	Slide 104: Iterative Deepening Search (IDS)
	Slide 105: Iterative Deepening Search (IDS)
	Slide 106: Iterative Deepening Search (IDS)
	Slide 107: Iterative Deepening Search (IDS)
	Slide 108: Iterative Deepening Search (IDS)
	Slide 109: Iterative Deepening Search (IDS)
	Slide 110: Iterative Deepening Search (IDS)
	Slide 111: Iterative Deepening Search (IDS)
	Slide 112: Iterative Deepening Search (IDS)
	Slide 113: Iterative Deepening Search (IDS)
	Slide 114: Iterative Deepening Search (IDS)
	Slide 115: Iterative Deepening Search (IDS)
	Slide 116: Iterative Deepening Search (IDS)
	Slide 117: Iterative Deepening Search (IDS)
	Slide 118: Iterative Deepening Search (IDS)
	Slide 119: Iterative Deepening Search (IDS)
	Slide 120: Iterative Deepening Search (IDS)
	Slide 121: Iterative Deepening Search (IDS)
	Slide 122: Iterative Deepening Search (IDS)
	Slide 123: Iterative Deepening Search (IDS)
	Slide 124: Iterative Deepening Search (IDS)
	Slide 125: Iterative Deepening Search (IDS)
	Slide 126: Iterative Deepening Search (IDS)
	Slide 127: Iterative Deepening Search (IDS)
	Slide 128: Iterative Deepening Search (IDS)
	Slide 129: Iterative Deepening Search (IDS)
	Slide 130: Iterative Deepening Search (IDS)
	Slide 131: Iterative Deepening Search (IDS)
	Slide 132: Iterative Deepening Search (IDS)
	Slide 133: Iterative Deepening Search (IDS)
	Slide 134: Iterative Deepening Search (IDS)
	Slide 135: Iterative Deepening Search (IDS)
	Slide 136: Iterative Deepening Search (IDS)
	Slide 137: Iterative Deepening Search (IDS)
	Slide 138: Iterative Deepening Search (IDS)
	Slide 139: Summary

