Chapter 3

Solving Problems by Search: Problem Formulation

Introduction

* The simplest reflex agents base their actions on a direct mapping
from states to actions.

e Such agents cannot operate well when this mapping is too large to
store and would take too long to learn.

* Goal-based agents consider future actions and the desirability of their
outcomes.

* One kind of goal-based agent is called a problem-solving agent.
* Problem-solving agents use representations

Problem solving agents

* Many problems in Al can be modeled as search problems:

1. Toy problems:
* Puzzle-solving (8, 15-puzzle)
* Vacuum world
* 8-queens

Problem solving agents

* Many problems in Al can be modeled as search problems:

2. Real world problems
* Route-finding in airline travel planners
* Travelling Salesman Problem:
* planning drill movements for automatic circuit board drills

* Determine the optimal sequence of drill movements to create holes in a
circuit board.

* Determine the optimal sequence of drill movements to create holes in a circuit

board.

States: Positions of the drill and the set of holes drilled so far.

Actions: Move the drill to a new position and drill a hole.

Goal: Drill all required holes with minimal movement time or distance.
Cost: Time or distance traveled by the drill.

Problem solving agents

* VLSI layout (cell layout and channel routing)
* Problem: Arrange components (cells) on a chip and route connections between them
efficiently.
e States: Current arrangement of cells and routing paths.
e Actions: Move a cell or add a routing path.
e Goal: Minimize the chip area and ensure all connections are properly routed.
e Cost: Chip area, wire length, or number of routing layers.

Problem solving agents

e Automatic manufacturing (assembly sequencing)

* Problem: Determine the optimal sequence of steps to assemble a
product.

* Modeling as a Search Problem:
e States: Current state of the assembly (which parts are assembled).
e Actions: Add a new part or perform an assembly step.
* Goal: Complete the assembly with minimal time or cost.
* Cost: Time, cost, or number of steps.

Search Algorithms

* Uninformed search algorithms: are given no information about the
problem other than its definition

* Solve problem but not efficiently

* Informed search algorithms: are given some guidance on where to
look for solutions

* More efficient

Example

Goal: Getting to Bucharest

Goal formulation organizes behavior
by limiting objectives/actions

Problem formulation decides what
actions and states to consider,
given a goal:

actions at the level of “move the left foot
forward an inch” vs “move to city”

v ry ® Ny 4
4 Yo N R 1 N_ : Y%
+ *SATUMARE "+ / SUCEAVA s &2
A4 ' . I .
o BAIAMARE 7% . - PP
. l\(“aiagulung: %
. oldbvene --
" "« ORADEA * Bistrita e -
' CLUJ NAPOCA 2
& _ 8 °
2 * Bacau 3
- ! Targu Mures o
A4 ARAD : : <
B Alba lul‘la Sighisoara e 3 >
“. TIMISOARA : SIBIU Gheprghe - \E
= Deva -~ : Focsani . ¥ £
. * BRASOV . . et
_ 2 TR Galativ Ve .
Res.lta ¥ ok o ’ ;Q : Braila, S~
¥ Cu\l‘ltga de TUI;(.IEA
2 o + Arges . -
w ‘ Tatgq Jiu A4 Pl?i asti Buzau
@ 3 Valcea + Targoviste
ta-T Al
4) 5 que\ae 1 ll’xmu Pitesti =
& g - BUCHAREST
i y N Craiova ‘ &
4 | N - Oltenita, CONSTANTA
 a Giurgiu __F . M i
{ o i ' + Mangaha
RomaniaTourism.com ™ S 7 3 U L C AR ,Na =

The process of looking for a sequence of actions that reaches the goal is called search.

Getting to Bucharest

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seqg. an action sequence. mitially empty
state. some description of the current world state
goal. a goal. mitially null
problem. a problem formulation

state — UPDATE-STATE(state, percept)
if seq 1s empty then
goal — FORMULATE-GOAL(state)
problem — FORMULATE-PROBLEM(state. goal)
seq — SEARCH(problem)
if seq = failure then return a null action
action «— FIRST(seq)
seq+— REST(seq)
return action

Search Algorithms

e Asearch algorithm takes a problem as /inputand returns a solution in the
form of an action sequence.

* Once a solution is found, the actions it recommends can be carried out. This is
called the execution phase.

10

Problem definition: Modeling

e Asearch problem is defined by:
1. Initial state (State: information necessary to solve the problem)

2. Actions =~ State Space
3. Transition Model: Result(Current State, Action) = New State)
4. Goal state(s): can be defined Explicitly (e.g. 8-puzzle) or Implicitly (e.g. chess)

o

Step cost (optional): the cost of each action

* The state space is a graph:
* nodes are states
> /inks between nodes are actions
* pathis a sequence of states connected by a sequence of actions

* A solution is a sequence of actions leading from the initial state to a goal state

11

State space

* State space is the set of all states reachable from the initial state by
any sequence of

* The state space constitutes a directed graph:
* Nodes are states
e Edges are

* The state space can be very large :
* Eight puzzle: 9;! = 181,440 (why divide by 27?)
* Theorem Proving: Infinite

* Chess: 10*’ possible states, 104" possible games (in an average length game)
 Checkers: 104" possible states, 10> possible games

12

Example: the vacuum world

R
(EELEED
2R | %2R 2R | 2R

L

s ;
(A : A (A e =)
=
(1= T T = -

&

* States:
Agent location on map, dirt (yes,no), available map positions
2%¥2*2=8

Example: the vacuum world

* Initial state: any
* Actions: Left, Right, Suck

* Transition model: actions have their
expected effects, except:

¢

« Leftin the leftmost square LCd‘ ., A QR LCEA | =A
* Rightin the rightmost square . = = =
o S 5] ()
* Sucking in a clean square s
. R
* Goal states: [(Clean,Clean), Location] A =A

* Cost: 1 per action

14

Example: the 8-puzzle

Start State Goal State

 State space: 2D array representing the positions of the tiles, n! = 9!

* Initial state: given

* Actions: move blank left, right, up, down

* Transition model: Given a state and action, this returns the resulting state

* Goal states: all tiles ordered from 1 to 8 and the blank tile in the bottom right corner
* Cost: 1 per action .

Example: the 8-puzzle

Note: state space is
two disconnected
components of the
same size, SO
realistically given an
initial state, can reach

9!
only - = 181,440

Start State Goal State

 State space: 2D array representing the positions of the tiles, n! = 9!

* Initial state: given

* Actions: move blank left, right, up, down

* Transition model: Given a state and action, this returns the resulting state

* Goal states: all tiles ordered from 1 to 8 and the blank tile in the bottom right corner
* Cost: 1 per action iy

Example: 8 Queens

» States: Any arrangement of 0 to 8
gueens on the board is a state

* |nitial state: No queens on the board

* Actions: Add a queen to any empty
square

* Transition model: Returns the board
with a queen added to the specified
square

* Goal test: 8 queens are on the board,
none attacked.

This is an incremental formulation, can also have complete-state formulation

17

Example: route navigation
How to find a route from Arad to Bucharest?

* States: cities
* |Initial state: Arad

* Actions: move from one city to an
adjacent city

* Transition Model: the current
location is the new location
chosen by the action

° Goal states: Bucharest

* Cost: the distance between two
adjacent cities

18

Missionaries & Cannibals

3 missionaries and 3 cannibals need to cross a river

1 boat that can carry 1 or 2 people

Find a way to get everyone to the other side, without ever
leaving the group of missionaries in one place outnumbered by
cannibals in that place

Check on this link:
s http://www.learn4good.com/games/puzzle/boat.htm

19

Problem Formulation

States:

= <m, ¢, b> representing the # of missionaries and the # of
cannibals, and the position of the boat

Initial state:
<3, 3, 1>
Actions:

=« take 1 missionary, 1 cannibal, 2 missionaries, 2 cannibals,
or 1 missionary and 1 cannibal across the river

Transition model:

= state after an action
Goal test:

« <0,0, 0>

Path cost:

= humber of crossing

20

Searching: Optimization

The principle:

1. Start from the initial state

2. Testifitisagoal

3. Generate the successors (or children) (node expanding)

4. Attach the successors to the parent = result in a tree : search tree
5. Choose the next node to expand: search strategy

6. Goto?2

Strategy = algorithm: different strategy means different algorithm

Searching: example

Fagaras

118 Vaslui

Rimnicu Vilcea

Pitesti

Hirsova
Urziceni

86
Bucharest

Eforie

Search tree

22

Searching: example

- ~ -
- ~ S=-a
— ~ ~—
- ~ -
- ~ —-———
- ~ e
- ~ -——
- ~ -——
- ~ S——
———— Lemm TR~ —————
’ ’
¢ Sibiu > _ Timisoara) (__Zerind
5= et rai
A Nt LAY ;N
- AY Sso ’ Ay A Y
- ’ N - s ~ ’ ~
- . AY S ’ ~ 7 ~
- s N ~~ ’ 0y 7 N
= S N ~~o s ~ s AN
- / N AT ; N e N

«Arad > < Fagaras » ¢ Oradea) < CRimnicVikea» < Arad__» < Lugoj » < Arad_ " Oradea

el I R~ 2 o R Green leaf nodes: Frontier nodes,
Generated

. P N . ~ - . , ~ . . N
1 S~ - ~ - ~ -~ I ~ - [= 1 ~

Lavender: Expanded

__Arad > < Fagaras » ¢ Oradea > < ijmcu‘nlcea v __Arad_ > < _Lugoj D <_Arad_ D Oradea R

~ - ~ - ~ L B <
< - ~ -
- ~ - ~ . ~ - ~
~ . N . N - H ~. L i ~ - \ ~

Repeated State

- - ~ - ~ ~ - ~ . ~ - - ~
ST TN p . . . P BN PR N y N P B ; N 23

Terminology

* Expanding a node: generate its successor.
* Explored set: contains expanded nodes.

* Frontier (or fringe) contains nodes that have been generated but not
yet expanded

/ 5
/ b /

\\

A
-t = - T atS oo T e /”_7L7_“‘\
Fagaras Oradea Rimn (__Arad) (_Lugoj) < _ Arad) (_Oradea)
s e e o T o i v e TR
I~ # -~ ’ ~ LR B L B L B s, ~
~ »” A .~ S - I S - | haN ~ \"

PN

Tree search vs. graph search

| |
Tree Graph
search search

Tree search: allow repeated states.

Graph search: avoid repeated states.

25

Tree Search: Repeated states ®

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Repeated State

26

Tree search

* Tree search is easy to implement

* Works only in certain search spaces: for instance trees

* If there are cycles it can loop forever (depending on the strategy)
* Duplicated states increase the size of the search space

Graph Search: No Repeated States ©

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Graph Search

* In a graph search, the explored set is separated from the rest of the
graph by the frontier.

No Repeated State

.
—‘—h—k—_“

_» _Oradea
TR

29

Graph Search Examples

B 5 B ﬁ*\

(a) (b) (c)

Figure 3.9 FILES: figures/graph-separation.eps. The separation property of GRAPH-SEARCH.
illustrated on a rectangular-grid problem. The frontier (white nodes) always separates the explored
region of the state space (black nodes) from the unexplored region (gray nodes). In (a). just the root has
been expanded. In (b). one leaf node has been expanded. In (¢). the remaming successors of the root
have been expanded in clockwise order.

30

Infrastructure for search algorithms

* n.STATE: the state in the state space to which the node corresponds
* n.PARENT: the node in the search tree that generated this node

* n.ACTION: the action that was applied to the parent to generate the
node

* n.PATH-COST: the cost, traditionally denoted by g(n), of the path
from the initial state to the node, as indicated by the parent pointers

Node vs. State

e Nodes are the data structures from which the search tree is constructed.

 Each node has a parent, a state, and other fields.

* Arrows point from child to parent.

‘5‘4 \ Node

|— STATE

ACTION = Right
PATH-COST = 6

32

Searching: remarks

* The can be:
* Explicit: map
* Implicit: 8-puzzle, chess etc.

* The search tree is always . it must be stored in memory
somewhere.

Search Strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
» completeness: does it always find a solution if one exists?
« optimality: does it always find a least-cost solution?

« time complexity: number of nodes generated
s space complexity: maximum number of nodes in memory

Time and space complexity are measured in terms of
» b: maximum branching factor of the search tree

» d: depth of the least-cost solution

= m: maximum depth of the state space (may be o)

Search cost (time), total cost (time+space)

34

Measuring problem-solving performance

We can evaluate an algorithm’s performance in four ways:

. Is the algorithm guaranteed to find a solution when
there is one?

: Does the strategy find the optimal solution?
: How long does it take to find a solution?

: How much memory is needed to perform the
search?

Measuring problem-solving performance

* Time and space complexity are measured in terms of

* b: maximum branching factor of the search tree
* d: depth of the best solution
 m: maximum depth of the state space (may be infinite)

	Slide 1: Chapter 3
	Slide 2: Introduction
	Slide 3: Problem solving agents
	Slide 4: Problem solving agents
	Slide 5: Problem solving agents
	Slide 6: Problem solving agents
	Slide 7: Search Algorithms
	Slide 8: Example
	Slide 9: Getting to Bucharest
	Slide 10: Search Algorithms
	Slide 11: Problem definition: Modeling
	Slide 12: State space
	Slide 13: Example: the vacuum world
	Slide 14: Example: the vacuum world
	Slide 15: Example: the 8-puzzle
	Slide 16: Example: the 8-puzzle
	Slide 17: Example: 8 Queens
	Slide 18: Example: route navigation How to find a route from Arad to Bucharest?
	Slide 19
	Slide 20
	Slide 21: Searching: Optimization
	Slide 22: Searching: example
	Slide 23: Searching: example
	Slide 24: Terminology
	Slide 25: Tree search vs. graph search
	Slide 26: Tree Search: Repeated states 
	Slide 27: Tree search
	Slide 28: Graph Search: No Repeated States 
	Slide 29: Graph Search
	Slide 30
	Slide 31: Infrastructure for search algorithms
	Slide 32: Node vs. State
	Slide 33: Searching: remarks
	Slide 34
	Slide 35: Measuring problem-solving performance
	Slide 36: Measuring problem-solving performance

