
Chapter 3

Solving Problems by Search: Problem Formulation

1

Introduction

• The simplest reflex agents base their actions on a direct mapping
from states to actions.

• Such agents cannot operate well when this mapping is too large to
store and would take too long to learn.

• Goal-based agents consider future actions and the desirability of their
outcomes.

• One kind of goal-based agent is called a problem-solving agent.

• Problem-solving agents use atomic representations

2

Problem solving agents

• Many problems in AI can be modeled as search problems:

1. Toy problems:
• Puzzle-solving (8, 15-puzzle)

• Vacuum world

• 8-queens

3

Problem solving agents

• Many problems in AI can be modeled as search problems:
2. Real world problems

• Route-finding in airline travel planners
• Travelling Salesman Problem:
• planning drill movements for automatic circuit board drills

• Determine the optimal sequence of drill movements to create holes in a
circuit board.
• Determine the optimal sequence of drill movements to create holes in a circuit

board.
• States: Positions of the drill and the set of holes drilled so far.
• Actions: Move the drill to a new position and drill a hole.
• Goal: Drill all required holes with minimal movement time or distance.
• Cost: Time or distance traveled by the drill.

4

Problem solving agents

• VLSI layout (cell layout and channel routing)
• Problem: Arrange components (cells) on a chip and route connections between them

efficiently.
• States: Current arrangement of cells and routing paths.

• Actions: Move a cell or add a routing path.

• Goal: Minimize the chip area and ensure all connections are properly routed.

• Cost: Chip area, wire length, or number of routing layers.

5

Problem solving agents

• Automatic manufacturing (assembly sequencing)

• Problem: Determine the optimal sequence of steps to assemble a
product.

• Modeling as a Search Problem:
• States: Current state of the assembly (which parts are assembled).

• Actions: Add a new part or perform an assembly step.

• Goal: Complete the assembly with minimal time or cost.

• Cost: Time, cost, or number of steps.

6

Search Algorithms

• Uninformed search algorithms: are given no information about the
problem other than its definition
• Solve problem but not efficiently

• Informed search algorithms: are given some guidance on where to
look for solutions
• More efficient

7

Example

8

Goal: Getting to Bucharest

Goal formulation organizes behavior
by limiting objectives/actions

Problem formulation decides what
actions and states to consider,
given a goal:
actions at the level of “move the left foot
forward an inch” vs “move to city”

The process of looking for a sequence of actions that reaches the goal is called search.

Getting to Bucharest

9

Search Algorithms

• A search algorithm takes a problem as input and returns a solution in the
form of an action sequence.

• Once a solution is found, the actions it recommends can be carried out. This is
called the execution phase.

10

Problem definition: Modeling

• A search problem is defined by:
1. Initial state (State: information necessary to solve the problem)

2. Actions

3. Transition Model: Result(Current State, Action) = New State

4. Goal state(s): can be defined Explicitly (e.g. 8-puzzle) or Implicitly (e.g. chess)

5. Step cost (optional): the cost of each action

• The state space is a graph:
• nodes are states

• links between nodes are actions

• path is a sequence of states connected by a sequence of actions

• A solution is a sequence of actions leading from the initial state to a goal state

11

State Space

State space

• State space is the set of all states reachable from the initial state by
any sequence of actions.

• The state space constitutes a directed graph:
• Nodes are states
• Edges are actions.

• The state space can be very large :

• Eight puzzle:
9!

2
= 181,440 (why divide by 2?)

• Theorem Proving: Infinite

• Chess: 1047 possible states, 10120 possible games (in an average length game)

• Checkers: 1020 possible states, 1031 possible games

12

Example: the vacuum world

• States:

Agent location on map, dirt (yes,no), available map positions

2 * 2 * 2 = 8
13

Example: the vacuum world

• Initial state: any

• Actions: Left, Right, Suck

• Transition model: actions have their
expected effects, except:
• Left in the leftmost square

• Right in the rightmost square

• Sucking in a clean square

• Goal states: [(Clean,Clean), Location]

• Cost: 1 per action

14

Example: the 8-puzzle

15

• State space: 2D array representing the positions of the tiles, 𝑛! = 9!

• Initial state: given

• Actions: move blank left, right, up, down

• Transition model: Given a state and action, this returns the resulting state

• Goal states: all tiles ordered from 1 to 8 and the blank tile in the bottom right corner

• Cost: 1 per action

Example: the 8-puzzle

• State space: 2D array representing the positions of the tiles, 𝑛! = 9!

• Initial state: given

• Actions: move blank left, right, up, down

• Transition model: Given a state and action, this returns the resulting state

• Goal states: all tiles ordered from 1 to 8 and the blank tile in the bottom right corner

• Cost: 1 per action 16

Note: state space is
two disconnected
components of the
same size, so
realistically given an
initial state, can reach

only
9!

2
= 181,440

Example: 8 Queens

• States: Any arrangement of 0 to 8
queens on the board is a state

• Initial state: No queens on the board

• Actions: Add a queen to any empty
square

• Transition model: Returns the board
with a queen added to the specified
square

• Goal test: 8 queens are on the board,
none attacked.

17
This is an incremental formulation, can also have complete-state formulation

Example: route navigation
How to find a route from Arad to Bucharest?

• States: cities

• Initial state: Arad

• Actions: move from one city to an
adjacent city

• Transition Model: the current
location is the new location
chosen by the action

• Goal states: Bucharest

• Cost: the distance between two
adjacent cities

18

19

20

Searching: Optimization

The principle:

1. Start from the initial state

2. Test if it is a goal

3. Generate the successors (or children) (node expanding)

4. Attach the successors to the parent → result in a tree : search tree

5. Choose the next node to expand: search strategy

6. Go to 2

• Strategy = algorithm: different strategy means different algorithm

21

Searching: example

22

Search tree

Searching: example

23

Green leaf nodes: Frontier nodes,
Generated

Lavender: Expanded

Repeated State

Terminology

• Expanding a node: generate its successor.

• Explored set: contains expanded nodes.

• Frontier (or fringe) contains nodes that have been generated but not
yet expanded

24

Tree search vs. graph search

Search

Tree
search

Graph
search

25

• Tree search: allow repeated states.

• Graph search: avoid repeated states.

Tree Search: Repeated states 

26

Repeated State

Tree search

• Tree search is easy to implement

• Works only in certain search spaces: for instance trees

• If there are cycles it can loop forever (depending on the strategy)

• Duplicated states increase the size of the search space

27

Graph Search: No Repeated States ☺

28

Graph Search

29

No Repeated State

• In a graph search, the explored set is separated from the rest of the
graph by the frontier.

30

Infrastructure for search algorithms

• n.STATE: the state in the state space to which the node corresponds

• n.PARENT: the node in the search tree that generated this node

• n.ACTION: the action that was applied to the parent to generate the
node

• n.PATH-COST: the cost, traditionally denoted by 𝑔(𝑛), of the path
from the initial state to the node, as indicated by the parent pointers

31

Node vs. State

32

• Nodes are the data structures from which the search tree is constructed.

• Each node has a parent, a state, and other fields.

• Arrows point from child to parent.

Searching: remarks

• The search space can be:
• Explicit: map

• Implicit: 8-puzzle, chess etc.

• The search tree is always explicit: it must be stored in memory
somewhere.

33

34

Measuring problem-solving performance

We can evaluate an algorithm’s performance in four ways:

1. Completeness: Is the algorithm guaranteed to find a solution when
there is one?

2. Optimality: Does the strategy find the optimal solution?

3. Time complexity: How long does it take to find a solution?

4. Space complexity: How much memory is needed to perform the
search?

35

Measuring problem-solving performance

• Time and space complexity are measured in terms of
• 𝒃: maximum branching factor of the search tree

• 𝒅: depth of the best solution

• 𝒎: maximum depth of the state space (may be infinite)

36

	Slide 1: Chapter 3
	Slide 2: Introduction
	Slide 3: Problem solving agents
	Slide 4: Problem solving agents
	Slide 5: Problem solving agents
	Slide 6: Problem solving agents
	Slide 7: Search Algorithms
	Slide 8: Example
	Slide 9: Getting to Bucharest
	Slide 10: Search Algorithms
	Slide 11: Problem definition: Modeling
	Slide 12: State space
	Slide 13: Example: the vacuum world
	Slide 14: Example: the vacuum world
	Slide 15: Example: the 8-puzzle
	Slide 16: Example: the 8-puzzle
	Slide 17: Example: 8 Queens
	Slide 18: Example: route navigation How to find a route from Arad to Bucharest?
	Slide 19
	Slide 20
	Slide 21: Searching: Optimization
	Slide 22: Searching: example
	Slide 23: Searching: example
	Slide 24: Terminology
	Slide 25: Tree search vs. graph search
	Slide 26: Tree Search: Repeated states 
	Slide 27: Tree search
	Slide 28: Graph Search: No Repeated States 
	Slide 29: Graph Search
	Slide 30
	Slide 31: Infrastructure for search algorithms
	Slide 32: Node vs. State
	Slide 33: Searching: remarks
	Slide 34
	Slide 35: Measuring problem-solving performance
	Slide 36: Measuring problem-solving performance

