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MULTIPLE VARTABLES

3. LINEAR REGRESSION WITH



MULTIPLE FEATURES (VARIABLES)

Size (feet?) # of bedrooms # of floors Home age (years) Price ($1000)
X1 X2 X3 X4 y
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178
Notation:

number of features

input features of i example

*th

value of feature j in i™ example






22 GRADIENT DESCENT FOR MULTIPLE VARIABLES

Hypothesis: hg(g;) — 01y = Ooxo + 0121 + Osz0 + -+ 0,2,

Parameters: §,.60,,...,0,
1 m
. ) 1)\ 2
Cost function: J (09,01, 0n) = — Z(hg(:c@) — )
1=1
Gradient descent:
Repeat {
9j t= 9j — Q%J(Qo ,,,,, Qn) simultaneously update for everyj =0, ...,




L GRADIENT DESCENT

Previously (n = 1):

.‘ Repeat {

1 , a
= - — (’l) . ('L) (’L)
91 : 91 Ozm E (he(aj ) Y )ZIZ

1=1

(simultaneously update 6, 01 )

New algorithm (n = 1):

Repeat {
1 | L
bj =0 —a— > (he(a) = y)at?)
1=1
simultaneously update Hj for ] = 0, N ()
0 := 0o — at Y " (hy(a™) - y)apy)
1=1
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POLYNOMIAL REGRESSION |



(2 HOUSING PRICES PREDICTION
-' g hg(a:) =60y + 01 X frontage + 05 x depth

x = frontage * depth

L 0 hg(z) = 0 + Oha




POLYNOMIAL REGRESSION

<

o

&

* Allows you to use the machinery of linear regression to fit complicated and nonlinear
functions.

.°.‘"' * For these prices, a quadratic function might be a better fit

Price X
(y) %

Size (x)l



_ hg(x) = 0p + O1x + O,x°
Price \\\\
(y) N
hg(x) = 6y + 0,x + 0,x% + B3x3
éize (x) |
h@(fﬁ) = 90 + 9155'1 + 92332 + 93333 Multivariate Linear Regression hypothesis

= O + 01 (size) + O (size)? + O3(size)?

So the model is linear in the parameters 6, even though it is nonlinear in
the original feature (size).

—_—

T = (size)

XTo = (8@26)2 — Feature scaling is important since the range becomes huge




WHY IS SCALING IMPORTANT

When you create polynomial features:
* x| = size
o xo = (size)?

o 3 = (size)®

If “size” is in the hundreds:
o 11 ~ 107
o x9 ~ 104
o 23~ 10°

Now your feature matrix XXX has columns with vastly different ranges.
This causes two issues:



1. ELONGATED COST CONTOURS

The cost function J(Q) becomes highly stretched (like a very thin ellipse).
 For small-scale features, the cost is sensitive to changes in 6.

 For large-scale features, the cost changes slowly with 6.

Gradient descent updates move in small zig-zag paths across these elongated

ellipses — slow convergence.



ZHJgth Anisotropic Quadratic Cost (Thi

15}
1.0

O5F

—05}
-1.0

=18 F

n Elliptical Contours)
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—~2:0







ho(x) = 0y + 01(size) + 021/ (size)

ilg(x) = 0 + 01 (size) + 0a(size)?




* For example, if an input sample is two dimensional and of the form [q, b],
* the degree-2 polynomial features are [1,a, b, a?, ab, bz].
. *the degree-3 polynomial features are [1, a, b, ab, a’, b? ab?, a®b,a’, b3].




EXAMPLE

100
X =6 * np.random.rand(m, 1) - 3
6.5 * X**2 + X + 2 + np.random.randn(m, 1)

=
I

b
Il

»>>> from sklearn.preprocessing import PolynomialFeatures

>>> poly_features = PolynomialFeatures(degree=2, include_bias=False)
>>> X_poly = poly_features.fit_transform(X)

=>> X[0]

array([-0.75275929])

=>> X_poly[0]

array([-0.75275929, 0.56664654])

>>> lin_reg = LinearRegression()

>>> lin_reg.fit(X_poly, y)

>>> lin_reg.intercept_, lin_reg.coef_
(array([1.78134581]), array([[0.93366893, 0.56456263]]))

10
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NORMAL EQUATION METHOD |



NORMAL EQUATION

* So far we've been using gradient descent

" Iterative algorithm which takes steps to converge
i * For some linear regression problems the normal equation provides a better solution

* Normal equation solves 8 analytically:
* a closed-form solution used to find the value of O that minimizes the cost function.

" i.e., solve for the optimum value of theta in one step

* It has some advantages and disadvantages



* 3 EXAMPLE

., m = 4 Size (feet?) # of bedrooms # of floors Home age (yrs) Price ($1000)
X0

X1 X2 X3 X4 y
1 2104 5 1 45 460
1 1416 3 2 40 232
1 1534 3 2 30 315
1 852 2 1 36 178

1 2104 5 1 45] 460 ]

Y — 1 1416 3 2 40 1232

“ 1 1534 3 2 30 Y7315

1 82 2 1 36 178

) m X (n+ 1) ] mx 1

* The value of theta that minimizes the cost functionis 8 = (X' X) " 1XTy

Note: The derivation of the normal equation is beyond the scope of this course.
e For interested students, this site provides a simple explanation:

21


https://prutor.ai/normal-equation-in-linear-regression/

'x(()i)' [ :1:81) 2V 2T
z gl) :1:[(]2) :r:?) vz
x(z) — xg’) c Rn—l—l X = ,E[(]3) 11’153)--- TE} «— Design matrix
(2) _m[(]m) mg:rn} N .’I:.‘(,,;m)_
| L

6 =XTX)"1XTy




NORMAL EQUATION

9 = (XTX) 1xTy
..-:': « (XTX) ! is inverse of matrix X' X
..'.'i * You can use the inv() function from NumPy’s Linear Algebra module (np.linalg) to
compute the inverse of a matrix, and the dot() method for matrix multiplication:

X b = np.c_[np.ones((186, 1)), X] # add x@ = 1 to each instance
theta_besit = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

! - Feature scaling: is not necessary when using the normal equation method

}w

23



ADVANTAGES AND DISADVANTAGES

Gradient Descent Normal Equation

%!« Need to choose @ * No need to choose
* Don’t need to iterate

* Need to compute (XTX)™!

= XTX is an n X n matrix, computing its inverse is 0 (n>)

* Needs many iterations

* Works well even when the number of
features is large
* Slow if the number of features is very large

n = 100, ok
n = 1000, ok
n = 10000, meh, not so good

24




(%I NORMAL EQUATION AND NON-INVERTIBILITY
Normal equation ] = (XTX)_lXTy

A 'a'.‘; " What if XTX is non-invertible? (singular/ degenerate matrices)
" The pseudoinverse of X (specifically the Moore-Penrose inverse).
You can use np.linalg.piny()




(3/2ANORMAL EQUATION AND NON-INVERTIBILITY

, What if XTX is non-invertible?

1. Check for Redundant features (linearly dependent).
- E.g. 1 = size in feet?

L9 = size in m?

i 2. Too many features (e.g. m < n).

- Delete some features, or use regularization.
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