
3. LINEAR REGRESSION WITH 
MULTIPLE VARIABLES

CSC 462[HMLSKT:2,4]
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Size (feet2)

𝒙𝟏

# of bedrooms

𝒙𝟐

# of floors

𝒙𝟑

Home age (years)

𝒙𝟒

Price ($1000)

𝒚

2104 5 1 45 460

1416 3 2 40 232

1534 3 2 30 315

852 2 1 36 178

… … … … …

MULTIPLE FEATURES (VARIABLES)
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Notation:

𝑛: number of features

𝑥(𝑖): input features of ith example

𝑥𝑗
(𝑖)

: value of feature 𝑗 in ith example



For convenience of notation, define               

HYPOTHESIS FOR MULTIVARIATE LR
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Hypothesis:

Cost function:

Parameters:

simultaneously update for every

Repeat

Gradient descent:

GRADIENT DESCENT FOR MULTIPLE VARIABLES
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(simultaneously update             )

Repeat

Previously (𝑛 = 1):

New algorithm (𝑛 ≥ 1):

Repeat

simultaneously update        for     

GRADIENT DESCENT
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POLYNOMIAL REGRESSION
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Area:

𝑥 =  𝑓𝑟𝑜𝑛𝑡𝑎𝑔𝑒 ∗  𝑑𝑒𝑝𝑡ℎ

HOUSING PRICES PREDICTION
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POLYNOMIAL REGRESSION

• Allows you to use the machinery of linear regression to fit complicated and nonlinear 
functions.

• For these prices, a quadratic function might be a better fit

8Size (x)

Price

(y)



Price

(y)

Size (x)
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Feature scaling is important since the range becomes huge

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥2

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥2 + 𝜃3𝑥3

Multivariate Linear Regression hypothesis

So the model is linear in the parameters θ, even though it is nonlinear in 

the original feature (size).



WHY IS SCALING IMPORTANT
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Now your feature matrix XXX has columns with vastly different ranges.

This causes two issues:



1. ELONGATED COST CONTOURS
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2. LEARNING RATE IMBALANCE

• A single learning rate α work well for all features:

• If α is large enough for small-scale features, it overshoots for large-scale features.

• If α is safe (small enough) for large-scale features, it makes tiny, painfully slow 
updates for small-scale ones.
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CHOICE OF FEATURES
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Size (x)

Price

(y)



EXAMPLE PYTHON IMPLEMENTATION

• Sklearn PolynomialFeatures() generates polynomial and interaction features. 

•Generate a new feature matrix consisting of all polynomial combinations of the 
features with degree less than or equal to the specified degree. 

• For example, if an input sample is two dimensional and of the form [a, b], 

 the degree-2 polynomial features 𝑎𝑟𝑒 [1, 𝑎, 𝑏, 𝑎2, 𝑎𝑏, 𝑏2].

 the degree-3 polynomial features 𝑎𝑟𝑒 [1, 𝑎, 𝑏, 𝑎𝑏, 𝑎2, 𝑏2, 𝑎𝑏2, 𝑎2𝑏, 𝑎3, 𝑏3].
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EXAMPLE
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NORMAL EQUATION METHOD
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NORMAL EQUATION

• So far we've been using gradient descent

 Iterative algorithm which takes steps to converge

• For some linear regression problems the normal equation provides a better solution

• Normal equation solves 𝜃 analytically: 

 a closed-form solution used to find the value of θ that minimizes the cost function.

 i.e., solve for the optimum value of theta in one step

• It has some advantages and disadvantages
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EXAMPLE
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𝑚 ×  (𝑛 + 1) 𝑚 × 1

𝒙0
Size (feet2)

𝒙𝟏

# of bedrooms

𝒙𝟐

# of floors

𝒙𝟑

Home age (yrs)

𝒙𝟒

Price ($1000)

𝒚

1 2104 5 1 45 460

1 1416 3 2 40 232

1 1534 3 2 30 315

1 852 2 1 36 178

𝑚 = 4

• The value of theta that minimizes the cost function is 𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦
Note: The derivation of the normal equation is beyond the scope of this course. 

For interested students, this site provides a simple explanation: https://prutor.ai/normal-equation-in-linear-regression/ 

https://prutor.ai/normal-equation-in-linear-regression/


MORE GENERALLY ..

• 𝑚 examples 𝑥 1 , 𝑦 1 , … , 𝑥 𝑚 , 𝑦 𝑚  , and 𝑛 features
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Design matrix

𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦



NORMAL EQUATION

𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

• (𝑋𝑇𝑋)−1 is inverse of matrix 𝑋𝑇𝑋

• You can use the inv() function from NumPy’s Linear Algebra module (np.linalg) to 
compute the inverse of a matrix, and the dot() method for matrix multiplication:

 Feature scaling: is not necessary when using the normal equation method

 0 < 𝑥1 < 1

 0 < 𝑥2 < 10000
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OK



ADVANTAGES AND DISADVANTAGES

Gradient Descent

• Need to choose 𝛼 

• Needs many iterations

• Works well even when the number of 
features is large

Normal Equation

• No need to choose 𝛼

• Don’t need to iterate

• Need to compute (𝑋𝑇𝑋)−1

 𝑋𝑇𝑋 is an 𝑛 × 𝑛 matrix, computing its inverse is 𝑂(𝑛3)

• Slow if the number of features is very large

𝑛 = 100, ok

𝑛 = 1000, ok

𝑛 = 10000, meh, not so good
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Normal equation

▪ What if             is non-invertible? (singular/ degenerate matrices)

▪ The pseudoinverse of X (specifically the Moore-Penrose inverse). 

You can use np.linalg.pinv()

NORMAL EQUATION AND NON-INVERTIBILITY
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What if           is non-invertible?

1. Check for Redundant features (linearly dependent).

- E.g.            size in feet2

                   size in m2

2. Too many features (e.g. 𝑚 < 𝑛).

- Delete some features, or use regularization.

NORMAL EQUATION AND NON-INVERTIBILITY
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