

3. LINEAR REGRESSION WITH MULTIPLE VARIABLES

CSC 462[HMLSKT:2,4]

MULTIPLE FEATURES (VARIABLES)

Size (feet 2) x_1	$\#$ of bedrooms x_2	$\#$ of floors x_3	Home age (years) x_4	Price (\$1000) y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	1 <i>7</i> 8
• • •	• • •	•••	• • •	• • •

Notation:

n: number of features

 $x^{(i)}$: input features of ith example

 $x_i^{(i)}$: value of feature j in ith example

HYPOTHESIS FOR MULTIVARIATE LR

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $\,x_0=1\,$

$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \mathbf{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 & \dots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \mathbf{\theta}^T \mathbf{x}$$

GRADIENT DESCENT FOR MULTIPLE VARIABLES

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

```
Repeat \Big\{ \theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n) \text{ simultaneously update for every } j=0,\dots,n \Big\}
```


GRADIENT DESCENT

Previously (n = 1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $\, heta_0, heta_1\,$)

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

simultaneously update $\; \theta_j \;$ for $\; j=0,\dots,n \;$

}

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

. . .

POLYNOMIAL REGRESSION

HOUSING PRICES PREDICTION

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Area:

x = frontage * depth

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

POLYNOMIAL REGRESSION

- Allows you to use the machinery of linear regression to fit complicated and nonlinear functions.
- For these prices, a quadratic function might be a better fit

So the model is *linear in the parameters* θ , even though it is nonlinear in the original feature (size).

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

 $x_2 = (size)^2$ Feature scaling is important since the range becomes huge

WHY IS SCALING IMPORTANT

When you create polynomial features:

- $x_1 = \text{size}$
- $x_2 = (\text{size})^2$
- $x_3 = (\text{size})^3$

If "size" is in the hundreds:

- $x_1 pprox 10^2$
- $x_2pprox 10^4$
- $x_3pprox 10^6$

Now your feature matrix XXX has columns with **vastly different ranges**. This causes two issues:

1. ELONGATED COST CONTOURS

The cost function $J(\theta)$ becomes highly stretched (like a very thin ellipse).

- For small-scale features, the cost is sensitive to changes in θ .
- For large-scale features, the cost changes slowly with θ .

Gradient descent updates move in small zig-zag paths across these elongated ellipses \rightarrow slow convergence.

2. LEARNING RATE IMBALANCE

- A single learning rate α work well for all features:
- If α is large enough for small-scale features, it overshoots for large-scale features.
- If α is safe (small enough) for large-scale features, it makes tiny, painfully slow updates for small-scale ones.

CHOICE OF FEATURES

EXAMPLE PYTHON IMPLEMENTATION

- Sklearn PolynomialFeatures() generates polynomial and interaction features.
- Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree.
- For example, if an input sample is two dimensional and of the form [a, b],
- the degree-2 polynomial features $are [1, a, b, a^2, ab, b^2]$.
- the degree-3 polynomial features $are [1, a, b, ab, a^2, b^2, ab^2, a^2b, a^3, b^3]$.

EXAMPLE

```
m = 100
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)

>>> from sklearn.preprocessing import PolynomialFeatures
>>> poly_features = PolynomialFeatures(degree=2, include_bias=False)
>>> X_poly = poly_features.fit_transform(X)
>>> X[0]
array([-0.75275929])
>>> X_poly[0]
array([-0.75275929, 0.56664654])

>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X_poly, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([1.78134581]), array([[0.93366893, 0.56456263]]))
```


NORMAL EQUATION METHOD

NORMAL EQUATION

- So far we've been using gradient descent
- Iterative algorithm which takes steps to converge
- For some linear regression problems the normal equation provides a better solution
- Normal equation solves heta analytically:
- a closed-form solution used to find the value of θ that minimizes the cost function.
- i.e., solve for the optimum value of theta in one step
- It has some advantages and disadvantages

EXAMPLE

m=4

\boldsymbol{x}_0	Size (feet 2) x_1	$\#$ of bedrooms x_2	$\#$ of floors x_3	Home age (yrs) x_4	Price (\$1000) <i>y</i>
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$m \times (n+1)$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$m \times 1$$

• The value of theta that minimizes the cost function is $\theta = (X^T X)^{-1} X^T y$

Note: The derivation of the normal equation is beyond the scope of this course.

For interested students, this site provides a simple explanation: https://prutor.ai/normal-equation-in-linear-regression/

MORE GENERALLY ...

ullet m examples $\left(x^{(1)},y^{(1)}
ight)$, ..., $\left(x^{(m)},y^{(m)}
ight)$, and n features

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \qquad X = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} \dots & x_n^{(2)} \\ x_0^{(3)} & x_1^{(3)} \dots & x_n^{(3)} \\ \vdots \\ x_0^{(m)} & x_1^{(m)} \dots & x_n^{(m)} \end{bmatrix} \text{-- Design matrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

NORMAL EQUATION

$$\theta = (X^T X)^{-1} X^T y$$

- $(X^TX)^{-1}$ is inverse of matrix X^TX
- You can use the inv() function from NumPy's Linear Algebra module (np.linalg) to compute the inverse of a matrix, and the dot() method for matrix multiplication:

$$X_b = np.c_{np.ones}((100, 1)), X] \# add x\theta = 1 to each instance$$

theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

*Feature scaling: is not necessary when using the normal equation method

•
$$0 < x_1 < 1$$
• $0 < x_2 < 10000$

ADVANTAGES AND DISADVANTAGES

Gradient Descent

- Need to choose lpha
- Needs many iterations
- Works well even when the number of features is large

Normal Equation

- No need to choose α
- Don't need to iterate
- Need to compute $(X^TX)^{-1}$
- X^TX is an $n \times n$ matrix, computing its inverse is $O(n^3)$
- Slow if the number of features is very large

```
n=100, ok n=1000, ok n=10000, meh, not so good
```


NORMAL EQUATION AND NON-INVERTIBILITY

Normal equation
$$\theta = (X^TX)^{-1}X^Ty$$

- What if X^TX is non-invertible? (singular/ degenerate matrices)
- The pseudoinverse of X (specifically the Moore-Penrose inverse).
 You can use np.linalg.pinv()

NORMAL EQUATION AND NON-INVERTIBILITY

What if X^TX is non-invertible?

- 1. Check for Redundant features (linearly dependent).
 - E.g. $x_1 = \text{size in feet}^2$ $x_2 = \text{size in m}^2$
- 2. Too many features (e.g. m < n).
 - Delete some features, or use regularization.