Chapter 6

Ultimate Bearing Capacity
of Shallow Foundations

Omitted parts:
Section 6.7, 6.8



Ultimate Bearing Capacity of Shallow Foundations

To perform satisfactorily, shallow foundations must have two main
characteristics:

1. They have to be safe against overall shear failure in the soil that
supports them.
2. They cannot undergo excessive displacement, or excessive

settlement.

The term excessive is relative, because the degree of settlement
allowed for a structure depends on several considerations.



TYPES OF SHEAR FAILURE
L

Types of Shear Failure

Shear Failure: Also called “Bearing
capacity failure” and it’s occur when
the shear stresses in the soil exceed
the shear strength of the soil.

There are three types of shear failure
in the soil:

a) General Shear Failure

b) Local Shear Failure

c¢) Punching Shear Failure

Loadfunit area, g




GENERAL SHEAR FAILURE

The following are some characteristics of general Load
shear failure: »
O Occurs over dense sand or stiff cohesive soil.

QO Involves total rupture of the underlying soil. Initial Ground —>

O There is a continuous shear failure of the soil from
below the footing to the ground surface (solid lines in
the figure).

O When the (load / unit area) plotted versus settlement
of the footing, there is a distinct load at which the ! cadi
foundation fails (Q,) DROTHES. apoa 8

d The value of (Q,) divided by the area of the footing is
considered to be the ultimate bearing capacity of the q.
footing(q,).

O For general shear failure, the ultimate bearing capacity
has been defined as the bearing stress that causes a
sudden catastrophic failure of the foundation. |

O As shown in the figure, a general shear failure
ruptures occur and pushed up the soil on both sides of Scttiement
the footing (In laboratory).

Final Ground
Surface

\ Shear Surfaces

>




GENERAL SHEAR FAILURE
L

For actual failures on the field, the soil is often pushed up on only one side of
the footing with subsequent tilting of the structure as shown in figure below:




GENERAL SHEAR FAILURE
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GENERAL SHEAR FAILURE




LOCAL SHEAR FAILURE

The following are some characteristics of local Load
shear failure: g

. . Final
O Occurs over sand or clayey soil of medium "';e‘su(?f'é’é’é'd
compaction. Initial Ground— — —
. . . Surface
O Involves rupture of the soil only immediately
below the footing. A

O There is soil bulging on both sides of the
footing, but the bulging is not as significant as in
general shear. That's because the underlying
soil compacted less than the soil in general
shear.

O The failure surface of the soil will gradually (not
sudden) extend outward from the foundation
(not the ground surface) as shown by solid
lines in the figure.

O So, local shear failure can be considered as a v
transitional phase between general shear and Settlement
punching shear.




LOCAL SHEAR FAILURE

O Because of the transitional nature of local shear failure, the ultimate bearing
capacity could be defined as the firs failure load (q,,1) which occur at the point
which have the first measure nonlinearity in the load/unit area-settlement curve
(open circle), or at the point where the settlement starts rabidly increase (q,)
(closed circle).

4 This value of (q,) is the required (load/unit area) to extends the failure surface to
the ground surface (dashed lines in the figure).

4 In this type of failure, the value of (q,) is not the peak value so, this failure called
(Local Shear Failure).

O The actual local shear failure in field is proceed as shown in the figure below:




LOCAL SHEAR FAILURE
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PUNSHING SHEAR FAILURE

The following are some characteristics of punching

shear failure:

O Occurs over fairly loose soil.

O Punching shear failure does not develop the distinct
shear surfaces associated with a general shear
failure.

U The soil outside the loaded area remains relatively
uninvolved and there is a minimal movement of soil
on both sides of the footing. Load/unit area, g

O The process of deformation of the footing involves
compression of the soil directly below the footing as
well as the vertical shearing of soil around the
footing perimeter.

0 As shown in figure, the (q)-settlement curve does
not have a dramatic break and the bearing capacity Surface
is often defined as the first measure nonlinearity in y footing
the (q)-settlement curve(q,,1).

Shear Surfaces

Settlement



PUNSHING SHEAR FAILURE

O Beyond the ultimate failure (load/unit area) (q,,1), the (load/unit area)-
settlement curve will be steep and practically linear.

O The actual punching shear failure in field is proceed as shown in the figure
below:




PUNSHING SHEAR FAILURE
L
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Foundation Failures in Sand
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Modes of Foundation Failure in Sand

D, = relative density of sand

Dy = depth of foundation measured from the ground surface
_ 2BL

B B+l

B = width of foundation

L = length of foundation

1 4

Relative density, D,
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Modes of foundation failure in sand ( Vesic ,1973)



TERZAGHI'S BEARING CAPACITY THEORY

Terzaghi was the first to present a comprehensive theory for evaluation of the
ultimate bearing capacity of rough shallow foundation.
This theory is based on the following assumptions:

1. The foundation is considered to be shallow if (D;<B).

2. The foundation is considered to be strip or continuous if (B/L—0.0). (Width to
length ratio is very small and goes to zero), and the derivation of the equation is
to a strip footing.

3. The effect of soil above the bottom of the foundation may be assumed to be
replaced by an equivalent surcharge (q=yD;). So, the shearing resistance of this
soil along the failure surfaces is neglected (Lines Gl and HJ in the figure)

4. The failure surface of the soil is similar to general shear failure (i.e. equation
is derived for general shear failure) as shown in the figure.

Note:

1. In recent studies, investigators have suggested that, foundations are
considered to be shallow if [ D;<(3—4)B], otherwise, the foundation is deep.

2. Always the value of (q) is the effective stress at the bottom of the foundation.



TERZAGHI'S BEARING CAPACITY THEORY

5
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Lfmt weight =y
Cohesion =
Friction angle = 4'

Bearing capacity failure in soil under a rough rigid continuous (strip) foundation

The failure zone under the foundation can be separated into three parts:

1. The triangular zone ACD immediately under the foundation

2. The radial shear zones ADF and CDE with the curves DE and DF being
arcs of a logarithmic spiral

3. Two triangular Rankine passive zones AFH and CEG



TERZAGHI'S BEARING CAPACITY EQUATION

The equation was derived for a strip footing and general shear failure:
(for continuous or strip footing)

|
gs = "N + gh, + ETBJ'I.-'T

Where
q,=Ultimate bearing capacity of the soil (KN/m?)

c’=Cohesion of soil (KN/m?)

q = Effective stress at the bottom of the foundation (KN/m?2)

N, N, N,= Bearing capacity factors (non-dimensional) and are functions only
of the soil friction angle, ¢’

The variations of bearing capacity factors and underlying soil friction angle are

given in (Table 6.1) for general shear failure.



TERZAGHI'S BEARING CAPACITY FACTORS

TABLE 6.1 Terzaghi's Bearing Capacity Factors—

Y N, N, N2 @ N, N, NS
o 570 1.00 0,00 26 27.08 14.21 .84
1 .00 1.10 0.01 27 29.24 15.90 11.60
2 £.30 1.22 0,04 28 11.61 17.81 1370
3 6.62 1.35 0,06 29 34,24 19.98 16.18
4 6.97 1.49 0.10 30 37,16 22.46 19.13
5 7.34 1.64 0.14 31 40.41 25.28 22.65
3 7.73 1.21 0,20 3z +4.04 28.52 26.87
7 B.15 2,00 0.27 a3 48.00 32,23 31.94
8 B.60 2.21 0.35 34 52.64 36.50 38.04
° 9.09 244 0.44 as 5775 4144 4541
10 .61 2.69 0,56 36 63.53 47.16 54.36
11 10,16 2,98 0,69 37 T0.01 53.80 65.27
12 10.76 3,29 0.85 38 TT7.50 61.55 78.61
13 11.41 3,63 1.04 39 85.97 T0.61 95.03
14 12.11 402 1.26 40 95.66 51.27 11531
15 12.86 4.45 1.52 41 106.81 93.85  140.51
16 13.68 492 1.82 42 119.67 10875 171.99
17 14.60 545 2.18 43 134,58 126.50 21156
18 1512 .04 2.59 44 151.95 147.74 26160
19 16.56 .70 2,07 45 172.28 17328 325.34
20 17.69 744 3,64 46 196.22 204,19 407.11
71 18.92 826 431 47 224.55 24180 51234
22 20,27 9,19 509 48 25828 IET.ES 65067
23 21.75 10,23 .00 49 29871 34463 83199
24 23.36 11.40 7.08 S0 347.50 415.14  1072.80
25 2513 1272 834
*From Kumbhojkar (1993)



TERZAGHI'S BEARING CAPACITY EQUATION

The equation above (for strip footing) was modified to be useful for both square and

circular footings as following:

For square footing:

g, = 1.3¢'N, + gN; + 0.4yBN,  (square foundation)

B=The dimension of each side of the foundation .

For circular footing:

g, = 1.3¢'N, + gN, + 0.3yBN, (circular foundation)

B=The diameter of the foundation .

Note:

These two equations are also for general shear failure, and all factors in the two

equations (except, B,) are the same as explained for strip footing.



FACTOR OF SAFETY

Ultimate bearing capacity is the maximum value the soil can bear it.

i.e. if the bearing stress from foundation exceeds the ultimate bearing capacity of the
soil, shear failure in soil will be occur.

so we must design a foundation for a bearing capacity less than the ultimate bearing
capacity to prevent shear failure in the soil. This bearing capacity is “Allowable
Bearing Capacity” and we design for it.

i.e. the applied stress from foundation must not exceed the allowable bearing capacity

of soil.
—_ Qu, gross

Qall,gross FS
Jai gross = Gross allowable bearing capacity
dQugross = Gross ultimate bearing capacity (Terzaghi equation)
FS = Factor of safety for bearing capacity =3

However, practicing engineers prefer to use the “net allowable bearing capacity” such

that: _q.—q

Qall (net) — F S

q=yD,



Example 6.1

EXAMPLE 6.1

A 2.0 m wide strip foundation is placed at a depth of 1.5 m within a sandy clay, where
¢ = 10 kN/m?, ¢'= 26°, and y = 19.0 kN/m’. Determine the maximum wall load

that can be allowed on the foundation with a factor of safety of 3, assuming general
shear failure. Use gross values.

SOLUTION
From Eq. (6.10),

g, = ¢'N. + gN; + 0.5yBN,
From Table 6.1, N, = 27.09, N, = 14.21, and N, = 9.84. Thus,

g, = (10)(27.09) + (19.0 X 1.5)(14.21) + (0.5)(19.0)(2.0)(9.84) = 862.8 kN/m’

Therefore, the maximum allowable load Q = 287.6 X 2 = 575 kN/m.



Example 6.2

EXAMPLE 6.2

A design requires placing a square foundation at 1.0 m depth to carry a column load
of 1500 kN. The soil properties are: ¢’ = 15 kN/m?, ¢' = 24°, and y = 18.5 kN/m".
What should be the width B of the foundation?

SOLUTION
From Eq. (6.19),

gy = 1.3¢'N, + gN, + 04BN,
From Table 6.1, N. = 23.36, N, = 11.40, and N, = 7.08.

q, = (1.3)(15)(23.36) + (18.5 x 1.0M(11.40) + (0.4)(18.5BX7.08)
=524 B + 666.4 kN/m"

_ g _ 524B + 666.4
FS 3

u = 17.5B + 222.1

1500 1500
e kN/m?. Therefore, B
By trnial and error (or use of a graphics calculator), B = 2.4 m.

The applied pressure to the ground is = 17.5B + 222.1.



Modification of Bearing Capacity Equations for Water Table

Terzaghi equation gives the ultimate bearing capacity based on the assumption
that the water table is located well below the foundation.

However, if the water table is close to the foundation, the bearing capacity will
decrease due to the effect of water table, so, some modification of the bearing
capacity equation will be necessary. |
ga = C'N: + gh + ETBJ""'?
The values which will be modified are:

1. q (for soil above the foundation) in the second term of equation.

2. y (for the underlying soil) in the third term of equation .



Modification of Bearing Capacity Equations for Water Table

There are three cases according to location of water table:

Case I. If the water table is located so that 0 = D, = Dy, the factor g in the bearing (N
capacity equations takes the form
g = effective surcharge = Dy + Dy — 7) iahle D,
R o Y T (Casel
where = D,
Ve = saturated unit weight of soil -« B —————> ¥
V,p = unit weight of water
Also, the value of -y in the last term of the equations has to be replaced by ¥ = v, — ¥, d
___L ______ Groundwater table , Case 11
Case II. For a water table located so that 0 = d = B, e ase
Vou = saturated
unit weight
q = vy

In this case, the factor 4 in the last term of the bearing capacity equations must be

replaced by the weighted average value of the effective unit weight within B below
the foundation, which 1s given by

L
T—T+E{T ¥')

Case III. When the water table is located so that d = B, the water will have no effect
on the ultimate bearing capacity.



TERZAGI’'S EQUATIONS SHORTCOMINGS

Terzagi’s equations shortcomings:

U They don’t deal with rectangular foundations (0<B/L<1).
U The equations do not take into account the shearing resistance along the

failure surface in soil above the bottom of the foundation.

O The inclination of the load on the foundation is not considered (if exist).



The General Bearing Capacity Equation
L

To account for all these shortcomings, Meyerhof suggested the following form of the

general bearing capacity equation:

Ga = ' NFoyFoaF o + GNF oF aF y + 3YBNFooF oy

& = cohesion
= effective stress at the level of the bottom of the foundation
¥ = unit weight of soil
B = width of foundation { = diameter for a circular foundation)

Fiys Fgr, Fop = shape factors

F o, Faa, Fog = depth factors

Foy F, Foyy = load inclination factors

N.. Ng N, = bearing capacity factors

In the case of inclined loading on a foundation, the general equation provides the

vertical component.



The General Bearing Capacity Equation

Notes:

1. This equation is valid for both general and local shear failure.

2. This equation is similar to original equation for ultimate bearing capacity (Terzaghi’s
equation) which was derived for continuous foundation, but the shape, depth, and load
inclination factors are added to Terzaghi’s equation to be suitable for any case may

exist.

Bearing Capacity Factors: N, N, N,
The angle a=¢’ (according Terzaghi theory) was replaced by a=45+¢’/2. So, the

bearing capacity factor will be changed.

The variations of bearing capacity factors (N, N,, N,) and underlying soil friction

angle (¢’) are given in Table 6.2.



The General Bearing Capacity Equation

TABLE 6.2 Bearing Capacity Factors From Egs. (6.30), (6.29), and (6.31)

'F N, H'l' NT # Ne Nl’ qu
o 514 1.00 0.00 11 5.80 2.71 144
1 5.38 1.09 0.07 12 9.28 2.97 1.69
2 5.63 1.20 015 13 9.81 3.26 1.97
3 5.00 131 0.24 14 10.37 3.50 2.29
4 619 1.43 .34 15 10.98 394 2.65
5 640 1.57 045 16 11.63 4,34 3,06
& 6.81 1.72 057 17 12.34 4,77 3.53
7 7.16 1.88 071 18 13.10 5.26 4.07
2 7.53 2.06 0,26 19 13.93 5.80 4,68
] 7.92 2.25 1.03 20 14.83 6.40 5.30
10 8.35 2.47 1.22 21 15.82 T7.07 .20
22 16.88 7.82 7.13 a7 35.63 4292 66.19
23 18205 B.66 .20 et 61.35 4803 78.03
24 19.32 9.60 944 39 6787 5596 92.25
25 20.72 10,66 10.88 40 75.31 b 210 109.41
26 22.25 11.E5 12.54 41 E3_B6 T3.00 130,22
7 23.94 13.20 14.47 42 9371 B5.38 155.55
28 25.80 14.72 16,72 43 105.11 99.02 1B6.54
20 27.86 16,44 19.34 “ 11837 11531 27464
30 30,14 18.40 2740 45 133.88 13488 27176
31 I6T 20.63 25.99 46 15210 158.51 33035
az 35.49 23,18 30,732 47 173,64 187.21 A03.67
33 364 26.00 35.19 48 19926 2322.3] 496,01
34 4216 2944 41.06 49 22993 265.51 613.16
35 4612 33.30 48.03 S0 266,89 319.07 TGLED
36 S0.59 3775 56.31




The General Bearing Capacity Equation

Shape Factors

Factor Relationship Reference
Shape R [5 H,,] DeBeer (1970)
o I F.:
Fa=1+ (%)tau '

Notes:
1. If the foundation is continuous or strip —B/L=0.0
2. If the foundation is circular—B=L=diameter—B/L=1



The General Bearing Capacity Equation

Depth Factors

Factor Relationship Referemce
Depth ﬁs . Hansen {1970)
B
Important Notes: Ford = 0: ,
1. If the value of (B) or (D;)is required, you should Fo=1+04 (F*’)
do the following: Foa=1
Assume (D;/B<1) and calculate depth factors in term Fpa=1
of (B) or (Dy). For &' > 0: .
Substitute in the general equation, then calculate Foa=Fo— H:m:f

(B) or (Dy).

After calculating the required value, you must check Fae =17 21an 471 = sin “’(‘J

B

your assumption—(D/B<1). e

If the assumption is true, the calculated value is the 2 >1

final required value. For ¢ = 0:

If the assumption is wrong, you must calculate Fum 1404 tan (ﬂ)

depth factors in case of (D{/B>1) and then calculate i

(B) or (D;) to get the true value. ol -
For ¢¢" ==

2. For both cases (D;/B<1)and(D/B>1) 1 — Fpa

if $>0— calculate F, firstly, because F 4 depends = Fo ™ Noan g

on qu- Fye=1+ 2tan &'(1 — sin ¢")*tan""’ (%)

—_—
racs

.Fﬁ=|



The General Bearing Capacity Equation

Inclination Factors

Factor Relationship Reference
Inclinafion gy Meyerhof (1963);
Fu=Fﬂ=[| _E) Hanna and Meyerhof
(1981}

By
Fy=(1-—=
" ( .,.-)

B = inclination of the load on the
foundation with respect to the vertical

Note:
If B°=¢p— F,; =0.0, so you don't need to calculate F,; and F 4, because
the last term in Meyerhof equation will be zero.



Example 6.3

Solve Example 6.1 using Eq. (6.28). EXAMPLE 6.1

A 2.0 m wide strip foundation is placed at a depth of 1.5 m within a sandy clay, where
¢’ = 10 kN/m?, ¢'= 26°, and y = 19.0 kN/m’. Determine the maximum wall load
that can be allowed on the foundation with a factor of safety of 3, assuming general
shear failure. Use gross values.

SOLUTION Q =575 KN

From Eq. (6.28), the ultimate bearing capacity is given by
Gy = CNFFyF o + Ny F o FygF i + 05yB N F FF
For ¢'= 26°, from Table 6.2, N, = 22.25, N, = 11.85, and N, = 12.54. Since the load

is vertical, the inclination factors are unity.
For strip foundation, L = B and. hence, all three shape factors are unity.

D 1.5
Fu=1+2tand'(l — sind,r’]z(Ef) =1+ 2tan 26(1 — sin26)* x — =123

2.0
| —Fy 1-1.23
Fog=Fy— —Ncmmﬁ' =123 - 7 25man 26 1.25
Hence,

g, = (10)(22.25) (1) (1.25)(1) + (19.0< 1.5) (11.85) (1) (1.23) (1.0)
+ (0.3)19.02.00 (12.54) (1) (1) (1)

= 031.8 kN/m*
g, 9318
=—=—"—=7310.6 kN/m*

Therefore, the maximum allowable load ¢ = 310.6 % 2 = 621 kN/m.



Example 6.4

EXAMPLE 6.4

A square foundation (B = B) has to be constructed as shown in Figure 6.11. Assume
that y = 16.5 kKN/M, y = 18.55 kN/m®, &' = 34°, Dy = 1.22 m, and D, = 0.61 m.
The gross allowable load, 0y, with FS = 3 is 667.2 kN. Determine the size of the

foundation. Use Eq. (6.28).

SOLUTION
We have
Ou 6672
=g =g

From Eq. (6.28) (with ¢’ = 0), for vertical loading, we obtain

g 1 1,
Gt =g = g(‘l"fp"'ot o BNyFan)

For ¢' = 34°, from Table 6.2, N, = 29.44 and N, = 41.06. Hence,
B oy
F=1 +Ztnn¢ =1 +1tan34 = 1.67

Fyp=1- 0.4(%) =1-04=06

7wl 4 St~ P = {4 2 A sa s = 14 LD
= B B B
F,‘=|

- §
o -
c'=10
X | |
BB
and
q=(2)(16.5) + 2(18.55 - 9.81) = 154 kN/m’
@ So
Ga = ; (15.4)(29.44)(1.67)(1 + %)
+ (%)(185 - 9.81)(8)(41.06)(0.6)(1)] (b)
= 25238 + ? + 35.898
Combining Egs. (2) and (b) results in
-62;-2-'3 =252.38 + -23-5— + 35.898

B
By trial and error, we find that B = 1.3 m.



Example 6.5

EXAMPLE 6.5

A square column foundation (Figure 6.12) is to be constructed on a sand deposit. The
allowable load Q' will be inclined at an angle B = 20° with the vertical. The standard
penetration numbers N, obtained from the field are as follows. Determine (). Use
FS = 3, Eq. (3.13), Eq. (3.29), and Eq. (6.28).

Depth (m}) Nsa
1.5 3
3.0 6
4.5 9
6.0 10
1.5 10
9.0 8

Ic=ﬂ
y = 18 kN/m®

fe—5 = 1.25m—>] FIGURE 6.12




Example 6.5

SOLUTION
From Eq. (3.29),
¢’ (deg) = 27.1 + 0.3(N,)sp — 0.000534[(N,)so]*
The following is an estimation of ¢" in the field using Eq. (3.29).

C, from &' (°) from

Depthm) o/ (kNim?)  Eq.(3.13)  Ne Ve Eq.(329)
1.5 270 1.92 3 5.8 288
3.0 54.0 1.36 6 8.2 295
4.5 £1.0 1.11 9 10.0 30,0
6.0 108.0 0.96 10 9.6 209
1.5 135.0 0.86 10 8.6 29.6
0.0 162.0 0.79 8 6.3 29.0

Average ¢’ = 2057 = 30°

With ¢" = 0, the ultimate bearing capacity [Eq. (6.28)] becomes

1
Gu = GNoF o F qaF yi + S YBNF  F oo
g = (0.7)(18) = 12.6 kN/m*
vy = 18 kN/m’

From Table 6.2 for ¢ = 30°,
N, =184
N, =224



Example 6.5

From Table 6.3 (Note: B = L),

B
F.=1 +(—)tnn¢' =1+ 0577 = 1.577

L

F,=1- 0.4(%) =06

Fuu=1+2tan¢'(1 — sinqﬁ']z% =1+ —[ﬂlﬁ;ﬂ'ﬂ = 1162
Fy=1

(1= £ = (1-2) - o

I PR - Y P
F,J,,-—(l—‘#,) _(1—3[}) =0.11

Hence,
g, = (12.6)(18.4)(1.577)(1.162)(0.605) + (%)[18}(1.25}(22.4}([).6}(1}(11.1l}

= 273.66 kN/m*
g 27366 _
‘-‘1'-11—1:‘.3——3 = 01.22 kN/m*

MNow,
O cos 20 = g, B* = (91.22)(1.25)*
Q= 151.TkN



EFFECT OF SOIL COMPRESSIBILITY

The change of failure mode is due to soil compressibility.

Vesic (1973) proposed the following modification to the general

bearing capacity equation:

Gu = €' NFoFcaf oc + GNFooF oF gc + 7YBN,F oFoaF .

E.E

a- and F. are soil compressibility factors.



EFFECT OF SOIL COMPRESSIBILITY

Steps for calculating the soil compressibility factors:

Step 1. Calculate the rigidity index, I, of the soil at a depth approximately
B/2 below the bottom of the foundation, or

IL= G
"¢ 4 g tan @’
where
(5, = shear modulus of the soil
q' = effective overburden pressure at a depth of D;+ B/2
Step 2. The critical rigidity index, I, can be expressed as

TABLE 6.8 Variation of I;, with ¢' and B/L

e (R | I

Lin = 71exp| | 3.30 — 045 — ot |45 — — ¢

2 L 2 (deg) B/L=0 B/L=02 B/L=04 B/L=06 B/L=08 B/L=10
0 13.56 1230 1132 10.35 9.46 8.64

The variations of I, with B/L are given in Table 6.8. 5 1830 16.59 15.04 13.63 12.36 11.20
10 25.53 2203 2060 18.50 16.62 14.93
15 36.85 277 2914 25.92 23.05 20,49
20 55.66 4895  43.04 37.85 33.29 20.27
25 88.03 77.21 67.04 58.20 50.53 43.88
30 151.78 12088 11113 95.09 8136 69.62
35 283.20 23824 20041 168.59 14182 11931
40 503.00 488.07  403.13 332.35 27401 22590

45 1440.94 1159.56 933.19 750.90 604.26 486.26




EFFECT OF SOIL COMPRESSIBILITY

Steps for calculating the soil compressibility factors:

Step 3. If I, = I, then

LD
Fpo=Fe=F,=1

However, if I, < 4, then 0.8
500
- ! —
p i exp{( e 'ﬁ')“‘" o [(3.07ls1: ::(‘l:'g 21,)]} ?r.. 0.6
i 0.4 -

¢ =0, 0.2 - '
1=1
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EXAMPLE 6.6

EXAMPLE 6.6

For a shallow foundation, B = 0.6 m, L = 1.2 m, and D; = 0.6 m. The known soil
characteristics are

Soil:
¢’ = 25°
¢ = 48 kN/m’
v = 18 kN/m’

Modulus of elasticity, E, = 620 kN/m*
Poisson’s ratio, w, = 0.3
Calculate the ultimate bearing capacity.

SOLUTION
From Egq. (6.43),
G,
I’ = r (] (]
c +g'tand
However,
S
21 + )
So
E

L3

I =
" 2(1 4 plc’ + g tan @']



EXAMPLE 6.6

Now,
— 7(D,+ ’23) 18(06 e 026) 16.2 kN/m?
Thus,
620
e 2(1 + 0.3)[48 + 162tan 25] i
From Eq. (6.44),

T )
syl 2] -

Since Ity > I,, we use Egs. (6.45) and (6.47) to obtain

Fie=Fq = exp{(—4.4 + 0.6 %) tan ¢’ + 8- 071s1: ‘:lz:;”g(ﬂr)]}

0.6
- p{(-44+ 065> 2)tan25

3.07 si 2% 42
| [ 80Tz B log 2 }=o.347
1 +sin25

o 1-F
_ — g
Fee = Fee N_tan ¢'
Fox'd"— 5% N. — 01172 (ate: Tl 6.2): fhereons

F,=0347 - =934T __ 4279

20.72 tan 25



EXAMPLE 6.6

Now, from Eq. (6.42),

Gu = C'NeFFogFec + GNFouF gaF oc + YYBN,FooF e
From Table 62, for ¢’ =25°, N,=20.72, N,=1066, and N,= 10.88.

Consequently,
N,\(B 10.66\(0.6
Fo=1+ (N)(L) =1 (20.72 1.2) =157
B o i 1.98 _
Fu=1+7 tan¢’ =1+ = tan25 = 1233
B 0.6
F.,,— 1 —0.4(1)— 1 —0'46_0'8
D
Fu=1+2tan¢'(1 — sin ¢')2(;’)
, 0.6
=1+ 2tan25(1 — smw(ﬁ) = 1.311
B — K 1—1311
Fet=Fua N,_.mn¢"l'3" 20.72 tan 25
=1.343
and
Thus,

. = (48)(20.72)(1.257)(1.343)(0.279) + (0.6 x 18)(10.66)(1.233)(1.311)
(0.347)+(2)(18)(0.6)(10.88)(0.8)(1)(0.347) = 549.32 kN/m?



ECCENTRICALLY LOADED FOUNDATION

If the load applied on the foundation is in the center of the foundation
without eccentricity, the bearing capacity of the soil will be uniform at any
point under the foundation (as shown in figure) because there is no any
moments on the foundation, and the general equation for stress under the

foundation is:
Stress q:%i]\i"y i]\?yx

y

In this case, the load is in the center of the foundation and there are no
moments so,

Stress q=§ (uniform at any point below the foundation)
Q




ECCENTRICALLY LOADED FOUNDATION

However, in several cases, as with the base of a retaining wall or neighbor
footing, the loads does not exist in the center, so foundations are subjected to
moments in addition to the vertical load (as shown in the figure).

In such cases, the distribution of pressure by the foundation on the soil is not
uniform because there is a moment applied on the foundation and the stress
under the foundation will be calculated from:

Stress g = Q. My Mx (two way eccentricity)
AT Iy
Stress g Z%i A?C one way eccentricity

Q
e
|
|
|
|
!
|
|
|
|
[

| BxL BxL



ONE WAY ECCENTRICITY

_9, Mc
A 1
one way eccentricity

Stress g

| BxL

Since the pressure under the foundation is not
uniform, there are maximum and minimum pressures
(under the two edges of the foundation) and we
concerned about calculating these two pressures.

Assume the eccentricity is in direction of (B)
A=BxL

M=Qxe
c=B/2 (maximum distance from the center)
B3L
I =—— (I is about the axis that resists the moment)

12

BxL




ONE WAY ECCENTRICITY

_ 0O QOF*B_ QO Q*e*6
T=B*L*5g3+; B*L g2+l
12

There are three cases for calculating maximum and minimum pressures
according to the values of (e and B/6 )

Q

Case I. (For e<B/6): o BgL(l +6e)
=9 -6
gm=per(1=F)

If eccentricity in (L) direction (For e<L/6):

_ O (146e
q B*L(1+L)
_ 0O q_6e
qw=pger =)

In this case, q,, is positive



ONE WAY ECCENTRICITY

Case Ill. (For e=B/6):

_ 0 6e
I-=ger*p)

= Q —])=
gu=—2-(1-1)=0

If eccentricity in (L) direction (For e= L/6):

gm=-2-(1+%)
0
q nin B*L(l H=0




ONE WAY ECCENTRICITY

Case lll. (For e>B/6):

As shown in the figure, the value of (q,,;,)
is negative (i.e. tension in soil), but we
know that soil can’t resist any tension,
thus, negative pressure must be
prevented by making (q,,;,=0) at distance
(x) from point (A) as shown in the figure,
and determine the new value of (q,,,.,) by
static equilibrium as following:

R=area of triangle*L
=0'5*qmax,new*X*L (1 )

2F,=0.0 -R=Q (2)

2M@A=0.0 —-Q*(B/2-e)=R*X/3

(but from Eq.2—>R=Q)—>X=3(B/2-¢)

Substitute by X in Eq. (1) —

R=Q=0.5* *3(B/2-e)*L

qmax,new

_)qmax,new=4Q/[3L(B_ze)]

/ 5
JE2 by
il o

v

Q
e~J+{Bi2-€)

.

qmax_.new




ONE WAY ECCENTRICITY

Case lll. (For e>B/6):

If eccentricity in (L) direction
(For e> L/6):

Omaxnew=4Q/[3B(L~2)]

Note: R
If the foundation is circular . :Q+Mc X
A 1
_ D2
A =1
_D
M
= 7Z'D4
6

Calculate q,,,, and q,,,



Ultimate Bearing Capacity under Eccentric
Loading One-Way Eccentricity

Effective Area Method:

If the load does not exist in the center of the foundation, or if the
foundation subjected to moment in addition to the vertical loads, the
stress distribution under the foundation is not uniform. So, to
calculate the ultimate (uniform) bearing capacity under the foundation,
new area should be determined to make the applied load in the center
of this area and to develop uniform pressure under this new area. This

new area is called Effective Area.




Meyerhof’s Effective Area Method

Step 1. Determine the effective dimensions of the foundation (Figure 6.20a): _ [

B' = effective width = B — 2¢
L' = effective length = L

d
L
d

Note that if the eccentricity were in the direction of the length of the

foundation, the value of L' would be equal to L — 2e. The value of B’ ! _I._

would equal B. The smaller of the two dimensions (i.e., L" and B") is Ta

the effective width of the foundation. e I I \E :
fo—8 — 20—+ f

Step 2. Use Eq. (6.28) for the ultimate bearing capacity:

G = O'NFoF oaF o + GNFoF gaf i + 7YB'N FoF iF b8 ] »
To evaluate F, Fy,, and F . use the relationships given in Table 6.3 ¢

with gffective length and gffective width dimensions instead of L and B,
respectively. To determine F ;. Fgq and ¥, use the relationships given

in Table 6.3. However, donot replace B with B'.
Step 3. The total ultimate load that the foundation can sustain is
AJ
r L) !
0.= o, B) L) L |

where A" = effective area. }q—jl-'-g 2aw]

Step 4.  The factor of safety against bearing capacity failure is (2}

FS = % GURE 6.20 Defimitian of g and g,

0



Meyerhof’s Effective Area Method

It 1s important to note that g, is the ultimate bearing capacity of a foundation of
width B’ = B — 2¢ with a centric load (Figure 6.20a). However, the actual distribu-
tion of soil reaction at ultimate load will be of the type shown in Figure 6.20b. In
Figure 6.20b, g, 1s the average load per unit area of the foundation. Thus,

_q(B—12¢)
Quie) = B




EXAMPLE 6.7

EXAMPLE 6.7

A continuous foundation is shown in Figure 6.24. If the load eccentricity is 0.2 m,
determine the ultimate load, Q,, per unit length of the foundation. Use Meyerhof’s
effective area method.

o

Sand

1.5m ¢’ = 40°
=0
y = 16.5 kN/m?

FIGURE 6.24 A continuous foundation with load
eccentricity

€ 2m >|



EXAMPLE 6.7

SOLUTION
, Meyerhof’s Effective Area Method
For ¢’ = 0, Eq. (6.55) gives

|
qu = qNF oiF gaF 4i + ETFB'NVFWFWFT*
where g = (16.5) (1.5) = 24.75 kN/m?.

For ¢’ = 40°, from Table 6.2, N, = 64.2 and N,, = 109.41. Also,
B"'=2—-(2)02)=1.6m

Because the foundation in question is a continuous foundation, B’ /L’ is zero. Hence,
Fe.=1, Fw = 1. From Table 6.3,

Fy=F,=1
— I = rEDf_ 15 —
Foa=1+2tan¢'(1 = sin¢'f'—r = 1+ 0214 —) = 116

Fa=1
and
q. = (24.75)(64.2)(1)(1.16)(1)
+ (%)(16.5)(1.6)(109.41)(1)(1)(1) = 3287.39 kN/m?
Consequently,

Q, = B"')I)g') = (1.6)(1)(3287.39) = 5260 kN



Prakash and Saran Theory

The ultimate load per unit length of a continuous foundation

1
Qu = GueyB = B[‘? Ne) T+ qNye) + ?BN,{E}}

where N, Nye). Ny, = bearing capacity factors under eccentric loading.



Prakash and Saran Theory

U - T ' ' 0.1 363
mn
Friction engle, &' (deg) 0.4 18.15

FIGURE 6.21 Variation of N, with ¢



Prakash and Saran Theory

m_

40 -
effi=0
FL e

L
1.5

B N

i 8127
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0.x 45 18

0 T T T 1

@ i 2 0 m .3 3018
Frictios angle, & {deg) .4 1 5.0

FIGURE 622 Variation of N,
with &



Prakash and Saran Theory

60
40 -
eB=0
N
0t
0
$ =
/B N,
a 115.80
0.1 TL80
0.2 41.60
0

0 03 18.50
anonnde &' (deg) 0.4 4.62

FIGURE 6.23 Variatson of X, with "



EXAMPLE 6.8

EXAMPLE 6.8

Solve Example 6.7 using Eq. (6.58).

Prakash and Saran Theory

EXAMPLE 6.7

A continuous foundation is shown in Figure 6.24. If the load eccentricity 1s 0.2 m,
determine the ultimate load, Q,, per unit length of the foundation. Use Meyerhof’s
effective area method.

T Sand
1.5m ¢ =40°
L c'=0 X
= 16.5 kN/
Y o FIGURE 6.24 A continuous foundation with load
<« om—>]

eccentricity



EXAMPLE 6.8

Prakash and Saran Theory

SOLUTION

Since ¢’ = 0,
|

e 0.2
—=—=0.1
B 2

For ¢" = 40° and e/B = 0.1, Figures 6.22 and 6.23 give N, = 56.09 and NT(E] =~
71.8. Hence,

0, = 2[(24.75)(56.09) + (1(16.5)(2)(71.8)] = 5146 kN



Reduction Factor Method

Granular Soil

Purkayastha and Char (1977) (continuous foundations on sand )

where
R, = reduction factor

Guie) = average ultimate bearing capacity of eccentrically loaded continuous
foundations (See Figure 6.20.)

g, = ultimate bearing capacity of centrally loaded continuous foundations
The magnitude of R, can be expressed as

k
€
R, =al—
=d3)
where a and k are functions of the embedment ratio D_ffB {Table 6.9).

TABLE 6.9 Variations of a and k [Eq. (6.64)]

D,/B a k
0.00 1.862 0.73
0.25 1811 0.785
0.50 1754 0.80

1.00 1.820 0.888




Reduction Factor Method

Granular Soil

Guie) = '?H(l o Rk) = ‘Iu|:l T a(%)k]

1
qu = qNeFqa + 5 ¥YBN,Fra

where

The relationships for F,; and F.,; are given in Table 6.3.
Based on several laboratory model tests, Patra et al. (2012a) have concluded that

(2
'gH(e] q. B

The ultimate load per unit length of the foundation can then be given as

Qu - Bq:.l(e}



EXAMPLE 6.9
Solve Example 6.7 using Eq. (6.67).

Reduction Factor Method

EXAMPLE 6.7

A continuous foundation is shown in Figure 6.24. If the load eccentricity 1s 0.2 m,

determine the ultimate load, Q,, per unit length of the foundation. Use Meyerhof’s
effective area method.

Sand

I.ij @' = 40°
L

c'=0
y = 16.5 kN/m’

FIGURE 6.24 A continuous foundation with load
eccentricity

€ 2m >|



EXAMPLE 6.9

Reduction Factor Method

SOLUTION
With ¢ = 0,
Quiey = GNFoa + %’YBMFwd
For ¢’ = 40°. N, = 64.2 and N? = 109.41 (see Table 6.2). Hence,

Fyy=1.16 and F,; = 1 (see Example 6.7)
q., = (24.75)(64.2)(1.16) + 516.5)(2)(109.41)(1)

= 1843.18 + 1805.27 = 3648.45 kN/m*

2
":Tu{e} qu B

e o]

= 2018.76 kN/m?
Q. = Bqu = (2)(2918.76) = 5838 kN

From Eq. (6.67),



The Ultimate Load Qu

Method Qu
Meyerhof’s Effective Area Method 5260 kN
Prakash and Saran Theory 5146 kN

Reduction Factor Method 5838 kN



Ultimate Bearing Capacity under Eccentric Loading
Two-Way Eccentricity

This condition is equivalent to a load Q, placed Béoenn'icall}r on

the foundation with x = egand y = ¢; (Figure 6.25d). Note that
M

_ Y

£ = E
M,
o,

If Q, is needed, it can be obtained from Eq. (6.56); that is,

€ =

Q. =qA’

where, from Eq. (6.53),

4= ONF o FoiF i+ GNFoF oF s + 3YB'NF F G,

A" = effective area = B'L’

N
(a) M
BxL
——
AY | I
| | |
| | |
I ", =
L O w0 O P 5 N R I O
IQ. x Qul/ M, !_ €L,
i | | |
—5—]
(b) (c) (d)

FIGURE 6.25 Analysis of foundation with two-way eccentricity



Ultimate Bearing Capacity under Eccentric Loading
Two-Way Eccentricity

Case I. e, /L = ; and ey/B = ;. The effective area for this condition is shown in

Figure 6.26, or
A= '},’BILI
where
ep
B,=B|15——
os=5)
and
SEL
L=LI15——
=)
The effective length L' is the larger of the two dimensions B, and L,. So the effective
width is
Ai’
B'=—
LF
on

S U s
Al

i FIGURE 6.26 Effective area for the case of
' B ? eL.FLEé—mdzB!Ba!;




Ultimate Bearing Capacity under Eccentric Loading
Two-Way Eccentricity

Effective

|"_R_"| Brea
Case II. ; <e, /L <035 and e,/B < ;. The effective area for this case, shown in E +ﬁKT
Figure 6.27a, is \Q.< _{f_ L
A D N

A= i{""l + L,)B \ JL
The magnitudes of L; and L, can be determined from Figure 6.27b. The effective - I
width is @

Af
B = : .
LyorL, (whicheveris larger)

The effective length 1s

el

L' =L,orL, (whicheveris larger)

FIGURE 6.27 Effective area for case Il where ;< /L < 0.5 and eg/B < 1



Ultimate Bearing Capacity under Eccentric Loading
Two-Way Eccentricity

CaseIll. e;/L < tand} < ey/B < 0.5. The effective area, shown in Figure 6.28a, is

"=3(B, + B)L
The effective width 1s
Ai’
B'=—
L
The effective length is
L'=L

The magnitudes of B, and B, can be determined from Figure 6.28b.

'EEE

FIGURE 6.28 Effective area for case IIl where e,/L < £ and & < e;/B < 0.5



Ultimate Bearing Capacity under Eccentric Loading
Two-Way Eccentricity

Case IV, e,/L < +and /B < L. Figure 6.29a shows the effective area for this case.
The ratio B,/B, and thus B, can be determined by using the e; /L curves that slope
upward. Similarly, the ratio /L, and thus L,, can be determined by using the ¢, /L
curves that slope downward. The effective area is then

A'=LB+3B+B)L-L)

The effective width 1s

The effective length 1s

0.20

0.15 1

0.05 1

FIGURE 6.29 Effective area for case [V where e, /L < + and e;/B < £



Ultimate Bearing Capacity under Eccentric Loading
Two-Way Eccentricity

Case V. (Circular Foundation) In the case of circular foundations under eccentric
loading (Figure 6.30a), the eccentricity is always one way. The effective area A’
and the effective width B’ for a circular foundation are given in a nondimensional

form in Table 6.10. Once A’ and B’ are determined, the effective length can be

obtained as
LA
B
TABLE 6.10 Variation of A’ /R* and B’ /R with
€g/R for Circular Foundations
eg /R A'/R* B'/R

0.1 28 1.85
02 24 1.32
0.3 2.0 1.2
0.4 1.61 0.80
0.5 1.23 0.67
0.6 0.93 0.50
0.7 0.62 0.37
0.8 0.35 0.23
0.9 0.12 0.12
1.0 0 0

FIGURE 6.30 Effective area for circular
foundation



EXAMPLE 6.10

A square foundation is shown in Figure 6.31, with ¢, = 0.3 m and ez = 0.15 m.
Assume two-way eccentricity, and determine the ultimate load, (,.

[N
!
[t e
T Sand
0.7m ¥ = 18 kN/m*
r =3r
ll 15m*x15m | =0
|
* i
ez =015m
|
L]
13m i ey 31_13111
_______i__i____
|
2 i FIGURE 6.31 An eccentrically

1.5 m—»] loaded foundation



EXAMPLE 6.10

SOLUTION
We have
g U3 _
L o152
and
015 _
B s
This case is similar to that shown in Figure 6 27a. From Figure 6.27b, for ¢, /L = 0.2
mfdﬂ=uqll L CHEE II_ é{eﬂff_,{ﬂﬁ ﬂ]'.ld Eﬂfﬂ‘:%-
—' =085 L, =(085)(15)=1275m
and
L, . _ _
T-- 0.21; L, = (0.21)(1.5) = 0315 m
From Eq. (6.75),
- %{L, + L)B = {;[1.2?5 +0.315)(1.5) = 1.193 m*
From Eq. (6.77),

L'=Li=1215m

From Eq. (6.76),

Note from Eq. (6.55) with ¢’ = 0,
Gu = GNFoFyF i + TYB'NF F aF
where g = (0.7)(18) = 12.6 kN/m®.
For ¢' = 30°, from Table 6.2, N, = 18.4 and N, = 22.4. Thus from Table 6.3,

B 0.936
Fo=1+ 30° = 1.424
@ (L')"’"'t’ (1275)“’“
B 0936
F —1—04(L) - 04(12ﬁ) 0.706
D 0.289)(0.7
Fu=1+2tnd¢'(l - sing'f 2 = 1 + LBIOD _ 55
B 15
and
So

Q. = A'qy = A'(GN,FoF oy + 5¥B'N,F .F )
= (1.193)[(12.6)(18.4)(1.424)(1.135)
+ (0.5)(18)(0.936)(22.4)(0.706)(1)] = 606 kN



EXAMPLE 6.11

Consider the foundation shown in Figure 6.31 with the following changes:

e, =0.18m
eg=0.12m
For the soil, y = 16.5 kN/m’.
¢F — 259
¢’ = 25 kN/m*
Determine the ultimate load, (..
b
T y = 16.5 kN/m’.
0.7 m &' =25°
l| 15m*15m | ¢ =25kNim?
i |
i'a"c': ¢, =0.18m
15m i‘:T es=012m
Y S i

[
! FIGURE 6.31 An eccentrically

1.5 m—»] loaded foundation



EXAMPLE 6.11

SOLUTION Case IV. e, /L < tandey/B <}
e 018 e 012
L 15 0.1 B 15 0.08
This is the case shown in Figure 6.29a. From Figure 6.29b,
By Ly
2~01; Z=032
B L
So
B,=(0.1)1.5 =0.15m
L, = (0.32)(1.5) = 048 m
From Eq. (6.81),
LB+ %w + B)(L— Ly = (048)(1.5) + %-:1.5 +0.15)(1.5 — 0.48)
=0.72 + 0.8415 = 1.5615 m?
. A 15615
B="T="75=10m
L'=15m
From Eq. (6.55),

. 1

For ¢' = 25° Table 6.2 gives N =20.72, N, = 10.66, and N, = 10.88. From
Table 6.3,

e B[22

F—l+( ) (m)tanﬁ:l.ﬂ-i

o) -om

Fyg=1+2tan ¢'(1 - sin¢’) ( )=l+2tnn25{l—sm25]( ;)_1145

I—Fqﬂ 1 —1.145
Fy=Fy— N o =1.145 - m—l.lﬁ
Fy=1
Hence,

= (25 {zn 72)(1.357)(1.16) + (16.5 x 0.7)(10.66)(1.324)(1.145)
+E(15.5}[1.{141 (10.88)(0.722)(1)

= 815.39 + 186.65 + 67.46 = 1069.5 kN/m®
0,=A'g, = (1069.5)(1.5615) = 1670 kN



Simple Approach for Bearing Capacity with
Two-Way Eccentricity

Meyerhof’s suggestion, by neglecting the light yellow area in the figure, the load is
acting at the centroid of the remaining area. The light yellow area consists of two
strips of widths 2ep and 2¢;, as shown in the figure. The effective area of the founda-
tion is thus B’ x L'. As discussed in Section 6.12, in the bearing capacity equation
and in computing the shape factors, B’ and L' should be used. In computing the
depth factors, B should be used. In computing the column load, the effective area of
the foundation must be used.

el
T

B2 B2

I . ]
< Ll i >

FIGURE 6.32 Effective area of a foundation with two-way eccentricity



EXAMPLE 6.12

A 2 m % 3 m foundation is expected to carry a column load with eccentricities ey =
0.15 m and ¢, = 0.2 m. It is placed in a soil where ¢’ = 10.0 kN/m?, ¢'= 22°, and

= 18.0kN/m*, at 1.0 m depth. Determine the maximum load the foundation can
carry with factor of safety of 3.

SOLUTION

B=20m,andL =3.0m
eg=0.15m,and ¢, = 0.20 m
B=B—2e,=20-2x015=170m; L' =L —2¢; =3.0—-2x 020 =2.60m

For ¢' = 22°, from Table 6.2, N, = 16.88, N, = 7.82, and N, = 7.13.
Shape factors:

B'\[N, 1.70\/ 7.82
Fa=1+ (F)(N ) = (ﬁ)(lﬁ.ﬂs) =130
—_ rF — 7 —_—
= L— tan ' = ——|tan22 = 1.26

v
F,=1-0 (—)—1—04(1—)={I.T4



EXAMPLE 6.12

Depth factors:
D
Foa=1+2tan (1 — sin #}:Ef: 1 + 2tan 22(1 — sin 22}2%= 1.16

1 —Fy 1-1.16
Fy=F,————=116— =1.18
“@ T8N tan ¢’ 16.88 tan 22
F=100
With the load being vertical, F; = F,; = F.; = 1. From Eq. (6.55),
@y = O'NFFoiF i + qQNF o FyiF i + 0.5yB'FF JF.,

g, = (10.0)(16.88)(1.30)(1.18)(1) + (18 x 1)(7.82)(1.26)(1.16)(1)
+ 0.5(18)(1.70)(0.74)(1.0)(1)

= 258.9 + 205.7 + 11.3 = 475.9 kN/m*

The effective area A’ = B' % L' = 1.70 % 2.60 = 4.42 m". Therefore, Q, = 475.0 %
442 = 2103.5 kN. The allowable load, with FS = 3, is 2103.5/3 = 701 kN.




Bearing Capacity of a Continuous Foundation
Subjected to Eccentrically Inclined Loading

ﬂq&; Qlﬂ(ﬂf,'l
| i h-./
| |
| |
| |
! !
[ -
e— e —| le— ¢ —|
< B » e B >|
(a) (b

FIGURE 6.33 Continuous foundation subjected to eccentrically inclined load: {(a) partially
compensated case and (b) reinforced case

Partially Compensated Case
Meyerhof’s effective area method can be used to determine the ultimate load Qu(er).

- 1
g, = ¢C HEFMF“- + QNq.Fqu; + ETNTBFF"FFF'F
g, = the vertical component of the soil reaction.

for continuous foundations, F, = F,=F = 1l,and B' = B — 2e.

_ (q)@B)(1) _ quB — 2e)

cos B cos B

Quiei



Bearing Capacity of a Continuous Foundation
Subjected to Eccentrically Inclined Loading

Patra et al. (2012a) proposed a reduction factor to estimate Qu(ei) for a foundation on
granular soil:

Quien) = quB(RF)

where RF = reduction factor

g, = ultimate bearing capacity of the foundation with centric vertical load-
ing (ie,e=0,8=0)

The reduction factor can be expressed as

B e Bo 2— (D8
S

~ e B° 1-1DyB)
Qﬂfef} - ql.rﬂ(] - zﬁ)(l - E)

Reinforced Case (Granular Soil)
Patra et al. (2012b) conducted several model tests on continuous foundations on granular soil and gave the
following correlation to estimate Qu( er)

- e E 15— 0.7(D/B)
aneﬂ - -I'}',,H(l - ZE)(I o :f‘.r)



EXAMPLE 6.13

From Table 6.2 for &' = 35°, N, = 33.3,and N, = 48,3, we have

A continoous foundation is shown in Figure 6.34. Estimate the inclined ultimate

i i |
]-unl:l,Q.m,.pHunﬂlmgﬂ:ufﬁefumu:htmmUmEqs.{ﬁ.ﬂﬁ}mdiﬁ.Sﬁ}. F,,-=1+1t!n¢'[|—sin¢-r]’(ﬂ)=1+2tnn35{1— i 35)1(_)= -
| G = CNF oo + GNFoFy + SyN B F, B 15

_ @)B)1) _ quB — 2) Fy=

cos 2
Bu)z { m)z
F. =ll-—]| =|1-—| =0.605
(-5
1 1
F'I'=(I_E;) = I—E) ={.184
¢/ |\
HGURE 6.34 r l
e g, = (16)(333)(1.17)(0.605) + (E)(lﬁ}{l.i}[ﬁm][l}{ﬂ-m} = 46198 kN’
From Eq. (6.85) with ¢" = 0, we have
ro__ l H'"d
6o = GNFFy + oy B N, F i, CQB-2¢)  (46198)(12) 8095 kN = 590 KN
g = Dy = (16)(1) = 16 kN/m? Qg = s os2

B'=B—2=15—(20.15)=12m



EXAMPLE 6.14

Solve Example 6.13 using Eq. (6.89).  , =M(1 - zi)(1 _E;)z—uym

B\ "%
SOLUTION
From Eq. (6.28) with ¢ = 0, we have |
F,, = F,, = 1 (continuous foundation) -
Fy = Fy = 1 (vertical centric loading) ”!";"mv
and 1 T ! y = 16 KNm?
Gu = GNgF g + SyBN Fy Rl :::5'
From Example 6.13, g = 16 kKN/m?, N, = 3.3, N, = 48.03, F,y = 1.17,and F,y = 1.
Herce, 1
g, = (16)(33.3)(1.17) + (%)(1&]{1.5][43.03}[1} = 1199.74 kN/m* —ﬂ-{l S
and [ -]j m .‘-—I

R
s -afig) - (9

= 465 KN/m



IMPORTANT NOTES

1. The soil above the bottom of the foundation are used only to calculate the
term (q) in the second term of bearing capacity equations (Terzaghi and
Meyerhof) and all other factors are calculated for the underlying soil.

2. Always the value of (q) is the effective stress at the level of the bottom of
the foundation.

3. For the underlying soil, if the value of (c=cohesion=0.0) you don’t have to
calculate factors in the first term in equations (N_ in Terzaghi’s equations)
and (N, F_., F_4, F.; in Meyerhof equation).

4. For the underlying soil, if the value of ($=0.0) you don’t have to calculate
factors in the last term in equations (N, in Terzaghi’s equations) and

(N,, F.q,F 4 F,; in Meyerhof equation).

5. If the load applied on the foundation is inclined with an angle (B=¢). The
value of (F,;) will be zero, so you don’t have to calculate factors in the last
term of Meyerhof equation (N,, F ,F. ).



IMPORTANT NOTES

6. Always if we want to calculate the eccentricity, it’s calculated as following:

— Overall Moment
Vertical Loads

7. If the foundation is square, strip or circular, you may calculate (q,) from
Terzaghi or Meyerhof equations (should be specified in the problem).

8. But, if the foundation is rectangular, you must calculate (q,) from Meyerhof
general equation.

9. If the foundation width (B) is required, and there exist water table below
the foundation at distance (d), you should assume d<B, and calculate B, then
make a check for your assumption.



THE END
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