Measure Theory

Mongi BLEL

King Saud University

March 27, 2024

Table of contents

- Introduction on Measures
- 2 Lebesgue-Stieltjes Measure
- 3 Complete Measure Space
- Outer Measure
- 5 Extension of Measures
- 6 Lebesgue Measure on \mathbb{R}
- **7** Lebesgue Measure on \mathbb{R}^n

Mongi BLEL Measure Theory

Introduction on Measures

Definition

Let (X, \mathscr{A}) be a measurable space. A measure (or a positive measure) on X is a function $\mu \colon \mathscr{A} \to [0, \infty]$ such that

- **1** $\mu(\emptyset) = 0;$
- **②** For any disjoint sequence $(A_n)_n \in \mathscr{A}$, (Countable additivity)

$$\mu(\bigcup_{n=1}^{+\infty}A_n) = \sum_{n=1}^{+\infty}\mu(A_n).$$
(1)

The set (X, \mathscr{A}, μ) will be called a measure space.

Mongi BLEL Measure Theory

Examples

- Let X be any non empty set and let A = P(X). For A ∈ A, we define µ(A) = #A the number of elements of A if A is finite and equal to +∞ otherwise. (#A is called also the cardinal of A). µ is then a measure on A. This measure is called the counting measure.
- δ_a(A) = 1 if a ∈ A and 0 otherwise. The measure δ_x is called the point mass at a or the Dirac measure at a.

$${f 3}$$
 Let μ defined on $\mathscr{P}({\Bbb R})$ by

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is finite} \\ +\infty & \text{otherwise} \end{cases}$$

 μ is finite additive but not countably additive since $\mathbb{N} = \bigcup_{n=1}^{+\infty} \{n\}$, but $\mu(\mathbb{N}) = +\infty \neq \sum_{n=1}^{+\infty} \mu(\{n\}) = 0$. μ is not a measure.

Theorem

Let (X, \mathscr{A}, μ) be a measure space. The measure μ fulfills the following basic properties

- μ is finitely additive For any finite subsets $A_1, \ldots, A_n \in \mathscr{A}$ of disjoints elements of \mathscr{A} , $\mu(\cup_{j=1}^n A_j) = \sum_{j=1}^n \mu(A_j)$.
- **2** μ is monotone If $A, B \in \mathscr{A}$ with $A \subset B$, then $\mu(A) \leq \mu(B)$.

$$\mu(A) \leq \sum_{n=1}^{+\infty} \mu(A_n)$$

Definition

- (Continuity from below:) If $(A_n)_n$ is an increasing sequence in \mathscr{A} , and $A = \bigcup_{n=1}^{+\infty} A_n$, then $\mu(A) = \lim_{n \to +\infty} \mu(A_n)$.
- µ is subtractive If A, B ∈ 𝔄 and A ⊂ B and µ(B) < +∞,
 then µ(B \ A) = µ(B) − µ(A). (µ(A) < ∞ suffices).
 </p>
- (Continuity from above:) If $(A_n)_n$ is a decreasing sequence in \mathscr{A} with $\mu(A_1) < \infty$, then $\mu(A) = \lim_{n \to +\infty} \mu(A_n)$, with

$$A=\cap_{n=1}^{+\infty}A_n=\lim_{n\to+\infty}A_n.$$

Proof

- This property is obvious.
- B = A ∪ (B \ A), then µ(B) = µ(A) + µ(B \ A) ≥ µ(A). We
 use the property 2) of the definition of measure.

• Let
$$B_1 = A_1$$
, and $B_n = A_n \setminus \bigcup_{j=1}^{n-1} B_j$, for $n \ge 2$. The sets $(B_n)_n$
are disjoints and $A = \bigcup_{n=1}^{+\infty} B_n = \bigcup_{n=1}^{+\infty} A_n$. So
 $\mu(A) = \sum_{n=1}^{+\infty} \mu(B_n) \le \sum_{n=1}^{+\infty} \mu(A_n)$.

• Let
$$(B_n)_n$$
 as in 3). Since $\bigcup_{j=1}^n A_j = \bigcup_{j=1}^n B_j$, then

$$\mu(A) = \mu(\bigcup_{n=1}^{+\infty} A_n) = \mu(\bigcup_{n=1}^{+\infty} B_n) = \sum_{n=1}^{+\infty} \mu(B_n) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(B_j)$$
$$= \lim_{n \to \infty} \mu(\bigcup_{j=1}^{n} B_j) = \lim_{n \to \infty} \mu(\bigcup_{j=1}^{n} A_j) = \lim_{n \to \infty} \mu(A_j)$$

•
$$\mu(B \setminus A) + \mu(A) = \mu(B)$$
. If $\mu(A) < \infty$ then $\mu(B \setminus A) = \mu(B) - \mu(A)$.

• Apply 3) to the sequence $(A_1 \setminus A_n)_n$.

Mongi BLEL Measure Theory

Exercise

Let (X, \mathscr{A}) be a measurable space and $\mu \colon \mathscr{A} \longrightarrow [0, +\infty]$ a set function. Prove that μ is a measure if and only if i) $\mu(\emptyset) = 0$ ii) $\mu(A \cup B) = \mu(A) + \mu(B)$, if $A \cap B = \emptyset$. iii) If $(A_n)_n$ is an increasing sequence in the σ -algebra \mathscr{A} , then

$$\mu(\bigcup_{n=1}^{+\infty}A_n)=\lim_{n\to+\infty}\mu(A_n).$$

Solution

If μ is a measure, the properties i) and ii) are evident. Let now $(A_n)_n$ be an increasing sequence of the σ -algebra \mathscr{A} , then the sequence $(B_n)_n$ defined by $B_1 = A_1$ and $B_n = A_n \setminus \bigcup_{j=1}^{n-1} A_j$ is disjoint and $\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} B_n$. Then

$$\mu\left(\bigcup_{n=1}^{+\infty}A_n\right) = \sum_{n=1}^{+\infty}\mu(B_n) = \lim_{n \to +\infty}\sum_{j=1}^{n}\mu(B_j)$$
$$= \lim_{n \to +\infty}\mu(\bigcup_{j=1}^{n}B_j) = \lim_{n \to +\infty}\mu(A_n).$$

Conversely, if μ fulfills the properties i), ii) and iii) and $(A_n)_n$ a sequence of disjoint measurable sets. Let $B_n = \bigcup_{\substack{j=1 \ j=1}}^n A_j$, for $n \in \mathbb{N}$. The sequence $(B_n)_n$ is increasing and $\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} B_n$. Then

$$\mu(\bigcup_{n=1}^{+\infty}A_n) = \lim_{n \to +\infty}\mu(B_n) = \lim_{n \to +\infty}\sum_{j=1}^n\mu(A_j) = \sum_{n=1}^{+\infty}\mu(A_n).$$

Definition

- We say that the measure μ is **finite** if $\mu(X) < +\infty$.
- We say that the measure μ is σ-finite if there exists an increasing sequence (A_n)_n of measurable subsets of finite measure and ^{+∞}_{n=1} A_n = X.
- A probability measure is a measure on (X, A) such that μ(X) = 1. In this case the σ-algebra A is called the space of events.

Remark

Let (X, \mathscr{A}) be a measurable space. We denote by $\mathscr{M}(X, \mathscr{A})$ or $\mathscr{M}(X)$ the set of measures on the measurable space (X, \mathscr{A}) . We have the following properties The set $\mathscr{M}(X)$ is a convex cone: If μ_1 and μ_2 are in $\mathscr{M}(X)$ and $\lambda \in \mathbb{R}^+$, then $\mu_1 + \mu_2$, $\lambda \mu_1$ are measures. We order the set $\mathscr{M}(X)$ by the relationship

$$\mu_1 \leq \mu_2 \iff \mu_1(A) \leq \mu_2(A); \ \forall A \in \mathscr{A}.$$

Theorem

Let (X, \mathscr{A}) be a measurable space. If $(\mu_n)_n$ is an increasing sequence of measures, then the set function $\mu \colon \mathscr{A} \longrightarrow [0, +\infty]$ defined by $\mu(A) = \lim_{n \to +\infty} \mu_n(A) = \sup_n \mu_n(A)$ for any $A \in \mathscr{A}$ is a measure on X.

Proof

It is clear that $\mu(\emptyset) = 0 = \lim_{n \to +\infty} \mu_n(\emptyset)$, and if A, B are two disjoints measurable sets, we have

$$\mu(A \cup B) = \lim_{n \to +\infty} \mu_n(A) + \lim_{n \to +\infty} \mu_n(B) = \mu(A) + \mu(B).$$

Let now $(A_n)_n$ be an increasing sequence of \mathscr{A} and $A = \bigcup_{n=1}^{+\infty} A_n$. We have

Mongi BLEL Measure Theory

$$\mu_j(A_n) \leq \mu(A_n) \leq \mu(A)$$
. Then
 $\mu_j(A) = \lim_{n \to +\infty} \mu_j(A_n) \leq \lim_{n \to +\infty} \mu(A_n) \leq \mu(A)$
and

$$\mu(A) = \lim_{j \to +\infty} \mu_j(A) \le \lim_{n \to +\infty} \mu(A_n) \le \mu(A).$$

Then $\mu(A) = \lim_{n \to +\infty} \mu(A_n)$.

Lebesgue-Stieltjes Measure

Definition

A Lebesgue-Stieltjes measure on \mathbb{R} is a measure on the Borel σ -algebra $\mathscr{B}_{\mathbb{R}}$ such that $\mu(I) < +\infty$ for all bounded interval I.

Proposition

Let μ be a Lebesgue-Stieltjes measure on \mathbb{R} . Define $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(b) - f(a) = \mu]a, b]$. For example, fix f(0) arbitrary and set

$$\begin{cases} f(x) - f(0) = \mu]0, x], & \text{if } x > 0, \\ f(0) - f(x) = \mu]x, 0], & \text{if } x < 0. \end{cases}$$

The function f is right continuous and increasing.

Mongi BLEL Measure Theory

Proof

Let a < b, $f(b) - f(a) = \mu]a, b] \ge 0$. Also, if $(x_n)_n$ is a decreasing sequence and converges to x, then $\lim_{n \to +\infty} \mu]x, x_n] = \lim_{n \to +\infty} f(x_n) - f(x) = 0$.

Remarks

• Let $a \in \mathbb{R}$,

$$\mu\{a\} = \lim_{n \to +\infty} \mu[a - \frac{1}{n}, a] = \lim_{n \to +\infty} f(a) - f(a - \frac{1}{n}) = f(a) - f(a - 1).$$

Then f is continuous at a if and only if $\mu{a} = 0$.

2
$$\mu([a, b]) = f(b) - f(a-),$$

 $\mu(]a, b[) = f(b-) - f(a),$
 $\mu([a, b[) = f(b-) - f(a-),$
 $\mu(]a, b]) = f(b) - f(a).$

Theorem

Let $f : \mathbb{R} \to \mathbb{R}^+$ an increasing right-continuous function. There is a unique measure μ on $\mathscr{R}_{\mathbb{R}}$ such that $\mu[a, b] = f(b) - f(a)$.

Proof

We know that $\sigma(\mathcal{I}) = \mathscr{B}_{\mathbb{R}}$. Let $\mathcal{I} = \{]a, b] : -\infty < a < b < \infty\}$. Set $f(+\infty) = \lim_{x \to +\infty} f(x)$ and $f(-\infty) = \lim_{x \to -\infty} f(x)$. These quantities exist since f is increasing. Define for any $\mu(]a, b]) = f(b) - f(a)$, for any $-\infty \leq a < b \leq \infty$. Suppose $]a, b] = \bigcup_{j=1}^{n} [a_j, b_j]$, where the union is disjoint, then $\mu(]a_j, b_j]) = f(b_j) - f(a_j)$ and

$$\sum_{j=1}^{n} \mu(]a_j, b_j]) = \sum_{j=1}^{n} f(b_j) - f(a_j) = f(b) - f(a) = \mu(]a, b]),$$

which proves that condition (i) holds.

For (ii), let $a, b \in \mathbb{R}$ and $]a, b] \subset \bigcup_{j=1}^{+\infty}]a_j, b_j]$ where the union is disjoint. (We can also order them if we want.) By right continuity of f, given $\varepsilon > 0$ there is $\delta > 0$ such that $f(a + \delta) - f(a) < \varepsilon$, or $f(a + \delta) < f(a) + \varepsilon$. Similarly, there is $\eta_i > 0$ such that $f(b_i + \eta_i) < f(b_i) + \frac{\varepsilon}{2i}$, for

Similarly, there is $\eta_j > 0$ such that $f(b_j + \eta_j) < f(b_j) + \frac{1}{2j}$, for all *j*. Now, $\{]a_j, b_j + \eta_j[\}$ forms an open cover for $[a + \delta, b]$. By compactness, there is a finite sub-cover. Thus,

 $[a + \delta, b] \subset \bigcup_{j=1}^{N}]a_j, b_j + \eta_j [\text{ and }]a + \delta, b] \subset \bigcup_{j=1}^{N}]a_j, b_j + \eta_j].$ Therefore

$$egin{aligned} f(b)-f(a+\delta) &\leq \sum_{j=1}^N \mu(]a_j,b_j+\eta_j]) = \sum_{j=1}^N f(b_j+\eta_j)-f(a_j) \ &= \sum_{j=1}^N f(b_j+\eta_j)-f(b_j)+f(b_j)-f(a_j) \ &\leq \sum_{j=1}^N rac{arepsilon}{2^j}+\sum_{j=1}^{+\infty}(f(b_j)-f(a_j)) \ &\leq arepsilon+\sum_{j=1}^{+\infty}(f(b_j)-f(a_j)). \end{aligned}$$

Therefore,

$$egin{aligned} \mu(]a,b]) &=& f(b)-f(a) \ &\leq& 2arepsilon+\sum_{j=1}^{+\infty}(f(b_j)-f(a_j)) \ &\leq& 2arepsilon+\sum_{j=1}^{+\infty}\mu(]a_j,b_j]). \end{aligned}$$

If $]a, b] \subset \bigcup_{j=1}^{+\infty}]a_j, b_j]$, a and b arbitrary, and $]c, d] \subset]a, b]$ for any $c, d \in \mathbb{R}$, we have by above

$$f(d) - f(c) \leq \sum_{j=1}^{+\infty} (f(b_j) - f(a_j))$$

and the result follows by taking limits.

Complete Measure Space

Definition

Let (X, \mathscr{A}, μ) be a measure space. A subset A of X is called **a null set or a negligible set** if A is contained in a measurable subset of measure zero.

Remark

Let (X, \mathscr{A}) be a measurable space such that $\forall x \in X$; $\{x\} \in \mathscr{A}$. If we take $\mu = \delta_a$, with $a \in X$; then any subset $A \in \mathscr{A}$ such that $a \notin A$ is a null set.

Remarks

We denote by ${\mathscr N}$ the set of null sets. We have the following

- Any subset of a null set is a null set. If A ⊂ B and B ∈ N, then there exists C ∈ B such that µ(C) = 0 and B ⊂ C; so A ⊂ C.
- A countable union of null sets is a null set. If $(A_n)_n$ is any sequence in \mathscr{N} . For each $n \in \mathbb{N}$ choose $B_n \in \mathscr{B}$ such that $A_n \subset B_n$ and $\mu(B_n) = 0$. Now $B = \bigcup_{n=1}^{+\infty} B_n \in \mathscr{B}$ and $\bigcup_{n=1}^{+\infty} A_n \subset \bigcup_{n=1}^{+\infty} B_n$, and $\mu(\bigcup_{n=1}^{+\infty} B_n) \leq \sum_{n=0}^{+\infty} \mu(B_n)$, so $\mu(\bigcup_{n=1}^{+\infty} B_n) = 0$.

Definition

If P(x) is some assertion applicable to numbers x of the set X, we say that

$$\mathsf{P}(x)$$
 for almost every $x \in X$ or $\mathsf{P}(x)$ a.e. (x)

or

$$P(x)$$
 for μ – almost every x , $P(x) \mu$ – a.e. (x) ,

to mean that

$$\{x \in X; P(x) \text{ is false}\}$$

is a null set.

Definition

A measure space (X, \mathscr{A}, μ) is said to be complete if any null set is measurable $(\mathscr{N} \subset \mathscr{A})$, we say that the measure μ is complete.

Theorem

Let (X, \mathscr{A}, μ) be a measure space, and let \mathscr{N} be the set of null subsets of X. Let $\mathscr{B} = \{A \cup B; A \in \mathscr{A} \text{ and } B \in \mathscr{N}\}$. \mathscr{B} is a σ -algebra on X and there exists a unique measure ν which extends the measure μ on the σ -algebra \mathscr{B} . The measure space (X, \mathscr{B}, ν) is complete.

Proof

 \mathscr{B} is evidently closed under countable union. It suffices to prove that it is closed under complementarity. Let $A' = A \cup N$ be an element of \mathscr{B} . As N is a null set there exists B in $\mathscr{A} \cap \mathscr{N}$ and $N \subset B$. We have

$$A'^{c} = (A \cup N)^{c} = (A \cup B)^{c} \cup (B \setminus (A \cup N)).$$

It follows that A'^c is an element of \mathscr{B} .

If the measure ν exists it is unique. Indeed we must have $\nu(N) = 0$ for any $N \in \mathcal{N}$, thus if $A' = A \cup N$ is an element of \mathcal{B} we shall have $\nu(A') = \mu(A)$.

To show that ν is a mapping on \mathscr{B} , we must show that if $A_1 \cup N_1 = A_2 \cup N_2$ with $A_1, A_2 \in \mathscr{A}$ and $N_1, N_2 \in \mathscr{N}$, then $\mu(A_1) = \mu(A_2)$. So we have $A_1 \setminus A_2 \subset N_2$, then it is a null set. If $B = A_1 \cap A_2$, then $A_1 = B \cup (A_1 \setminus A_2)$ and $\mu(B) = \mu(A_1)$. In the same way we have $\mu(B) = \mu(A_2)$, then $\mu(A_1) = \mu(A_2)$. Let prove now that ν defines a measure on the σ -algebra \mathscr{B} . If $(A'_n)_n$ is a disjoint sequence in \mathscr{B} , with $A'_n = A_n \cup N_n$, $A_n \in \mathscr{A}$ and $N_n \in \mathscr{N}$: $\forall n \in \mathbb{N}$, we have Introduction on Measures Lebesgue-Stieltjes Measure **Complete Measure** Outer Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

$$\nu(\bigcup_{n=1}^{+\infty}A'_n) = \nu\left((\bigcup_{n=1}^{+\infty}A_n)\cup(\bigcup_{n=1}^{+\infty}N_n)\right) = \mu(\bigcup_{n=1}^{+\infty}A_n) = \sum_{n=1}^{+\infty}\mu(A_n) = \sum_{n=1}^{+\infty}\nu(A'_n)$$

Finally the measure space (X, \mathcal{B}, ν) is complete because the ν -null sets are elements of \mathcal{N} . It is evident that ν is the smallest complete extension of the measure μ .

Outer Measure

Definition

Let X be a non empty set. An outer measure or an exterior measure μ^* on X is a function $\mu^* \colon \mathscr{P}(X) \longrightarrow [0, \infty]$ which satisfies the following conditions i) $\mu^*(\emptyset) = 0$. ii) If $(A_n)_n$ is a sequence of subsets of X, then

$$\mu^*(\bigcup_{n=1}^{+\infty}A_n)\leq \sum_{n=1}^{+\infty}\mu^*(A_n).$$

iii) μ^* is increasing (i.e. $\mu^*(A) \le \mu^*(B)$ if $A \subset B$).

Remark

Any measure on $\mathscr{P}(X)$ is an outer measure.

Definition

Let X be a set and μ^* be an outer measure on X. A subset A of X is called $\mu^*-{\rm measurable}$ if

$$\forall B \subset X; \quad \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$$
 (2)

(The condition (2) is called the Caratheodory criterion.)

Mongi BLEL Measure Theory
We introduce now the most important method of constructing measures called the Caratheodory's construction.

Theorem

[Caratheodory's Construction]

Let X be a non empty set and μ^* be an outer measure on X. Then the set \mathscr{B} of μ^* -measurable subsets is a σ -algebra on X and the restriction of μ^* on \mathscr{B} denoted $\mu = \mu^*|_{\mathscr{B}}$ is a complete measure.

Proof

i) Ø is µ*-measurable since µ*(B∩Ø)+µ*(B∩Ø^c) = µ*(Ø)+µ*(B) = µ*(B).
ii) Let A be a µ*-measurable set and B a subset of X. It follows from the definition of the outer measure that µ*(B) = µ*(B∩A) + µ*(B∩A^c), then A^c is also µ*-measurable.
iii) Let A, B ∈ ℬ and E a subset of X. As A is measurable,

$$\mu^{*}(E \cap (A \cup B)) = \mu^{*}(E \cap (A \cup B) \cap A) + \mu^{*}(E \cap (A \cup B) \cap A^{c})$$

= $\mu^{*}(E \cap A) + \mu^{*}(E \cap B \cap A^{c})$ (3)

In use of the identity (3) and $A, B \in \mathcal{B}$, we have

Mongi BLEL Measure Theory

 $\mu^{*}(E \cap (A \cup B)) + \mu^{*}(E \cap (A \cup B)^{c}) = \mu^{*}(E \cap A) + \mu^{*}(E \cap B \cap A^{c}) + \mu^{*}(E \cap A) + \mu^{*}(E \cap A^{c}) = \mu^{*}(E \cap A) + \mu^{*}(E \cap A) + \mu^{*}(E \cap A) + \mu^{*}(E \cap A) = \mu^{*}(E \cap A) + \mu$

Then $A \cup B$ is measurable. iv) Let A_1, A_2 be two disjoint measurable sets, B a subset of X and $E = B \cap (A_1 \cup A_2)$. Since $E \cap (A_1 \cup A_2)^c = \emptyset$, we have

$$\mu^*(E) = \mu^*(E \cap (A_1 \cup A_2)) + \mu^*(E \cap (A_1 \cup A_2)^c) = \mu^*(E \cap A_1) + \mu^*$$
$$= \mu^*(B \cap A_1) + \mu^*$$

Thus

$$\mu^*(B \cap (A_1 \cup A_2)) = \mu^*(B \cap A_1) + \mu^*(B \cap A_2).$$

Let $(A_n)_n$ be a disjoint sequence in \mathscr{B} and $B \subset X$, we have

$$\mu^*(B) = \mu^*(B \cap \bigcup_{j=1}^n A_j) + \mu^*(B \cap (\bigcup_{j=1}^n A_j)^c)$$

$$\geq \mu^*(B \cap \bigcup_{j=1}^n A_j) + \mu^*(B \cap (\bigcup_{j=1}^{+\infty} A_j)^c)$$

$$\geq \sum_{j=1}^n \mu^*(B \cap A_j) + \mu^*(B \cap (\bigcup_{j=1}^{+\infty} A_j)^c).$$

Then

$$\mu^{*}(B) \geq \sum_{n=1}^{+\infty} \mu^{*}(B \cap A_{n}) + \mu^{*}(B \cap (\bigcup_{n=1}^{+\infty} A_{n})^{c})$$
(4)
$$\geq \mu^{*}(B \cap \bigcup_{n=1}^{+\infty} A_{n}) + \mu^{*}(B \cap (\bigcup_{n=1}^{+\infty} A_{n})^{c}).$$

The converse inequality results from the property of the outer measure μ^* .

To finish the proof we take a sequence $(B_n)_n$ in \mathscr{B} and set $A_1 = B_1$, $+\infty +\infty +\infty$

$$A_n = B_n \setminus \bigcup_{j=1} B_j$$
. We have $\bigcup_{n=1} A_n = \bigcup_{n=1} B_n$. Thus \mathscr{B} is a σ -algebra.

The restriction of μ^* on \mathscr{B} is a measure is deduced from (4). It remains to show that the measure μ^* is complete. To prove this, it suffices to prove that any null set A is measurable.

If A is a null set, then there exist $B \in \mathscr{B}$ such that $A \subset B$ and $\mu^*(B) = 0$. If E is a subset of X, $\mu^*(E \cap A) = 0$ and

$$\mu^*(E) \geq \mu^*(E \cap A^c) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

The other inequality results from the definition of the outer measure $\mu^*.$ Thus A is $\mu^*\text{-measurable}.$

Proposition

Let (X, \mathscr{A}, μ) be a measure space. We define the set function $\mu^* \colon \mathscr{P}(X) \longrightarrow [0, +\infty]$ by

$$\mu^*(A) = \inf\{\sum_{n=1}^{+\infty} \mu(A_n); A \subset \bigcup_{n=1}^{+\infty} A_n \text{ and } A_n \in \mathscr{A}\}.$$
(5)

 μ^* is an outer measure and any measurable set is $\mu^*\text{-measurable}$ and the restriction of μ^* on $\mathscr A$ is equal to the measure $\mu.$

Proof

It is easy to prove that $\mu^*(\emptyset) = 0$ and μ^* is increasing. Let $(A_n)_n$ be a sequence of subsets of X. We claim that

$$\mu^*(\bigcup_{n=1}^{+\infty}A_n)\leq \sum_{n=1}^{+\infty}\mu^*(A_n).$$

If there exists a subset A_n such that $\mu^*(A_n) = +\infty$, then the inequality is trivial.

Assume now that $\forall n \in \mathbb{N}$; $\mu^*(A_n) < +\infty$.

Mongi BLEL Measure Theory

For every $n \in \mathbb{N}$, and for every $\varepsilon > 0$, there exists a sequence $(A_{n,j})_j \in \mathscr{A}$, such that $\mu^*(A_n) \ge \sum_{j=1}^{+\infty} \mu(A_{n,j}) - \frac{\varepsilon}{2^n}$. Then the sequence $(A_{n,j})_{j,n\in\mathbb{N}}$ is a covering of the set $A = \bigcup_{j=1}^{+\infty} A_n$ and $\sum_{n=1}^{+\infty} \sum_{j=1}^{+\infty} \mu(A_{n,j}) \le \sum_{n=1}^{+\infty} \mu^*(A_n) + \varepsilon$. Then $\mu^*(A) \le \sum_{n=1}^{+\infty} \mu^*(A_n) + \varepsilon$, for all $\varepsilon > 0$ and thus $\mu^*(A) \le \sum_{n=1}^{+\infty} \mu^*(A_n)$, which proves that μ^* is an outer measure.

Let now proving that $\mu^* = \mu$ on \mathscr{A} . If $A \in \mathscr{A}$, then $\mu^*(A) \leq \mu(A)$, and if $\mu^*(A) = +\infty$ then $\mu^*(A) = \mu(A)$.

Assume now that $\mu^*(A) < +\infty$, then for every $\varepsilon > 0$, there exists a covering $(A_n)_n$ of A in \mathscr{A} such that

$$\mu^*(A) \geq \sum_{n=1}^{+\infty} \mu(A_n) - \varepsilon.$$

Since $\mu(A) \leq \sum_{n=1}^{+\infty} \mu(A_n)$, then $\mu(A) \leq \mu^*(A) + \varepsilon$ for every $\varepsilon > 0$. Thus $\mu(A) = \mu^*(A), \forall A \in \mathscr{A}$.

We claim to prove that any measurable set is μ^* -measurable. By definition of the outer measure, if $A \in \mathscr{A}$ and $B \subset X$

$$\mu^*(B) \leq \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

If $\mu^*(B) = +\infty$, then $\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$. Assume now that $\mu^*(B) < +\infty$, hence for $\varepsilon > 0$, there exists a covering $(B_n)_n$ of B in \mathscr{A} such that $\mu^*(B) \ge \sum_{n=1}^{+\infty} \mu(B_n) - \varepsilon$. Since μ is a measure $\mu(A \cap B_n) + \mu(A^c \cap B_n) = \mu(B_n)$, then

$$\mu^*(B) \geq \sum_{n=1}^{+\infty} \mu(B_n \cap A) + \sum_{n=1}^{+\infty} \mu(B_n \cap A^c) - \varepsilon \geq \mu^*(B \cap A) + \mu^*(B \cap A^c) - \varepsilon.$$

 $\label{eq:constraint} \begin{array}{l} \mbox{Introduction on Measures} \\ \mbox{Lebesgue-Stieltjes Measure} \\ \mbox{Complete Measure Measure} \\ \mbox{Extension of Measures} \\ \mbox{Lebesgue Measure on \mathbb{R}^n} \\ \mbox{Lebesgue Measure on \mathbb{R}^n} \end{array}$

We deduce that $\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$ and then $\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$. Which proves that A is μ^* measurable.

An outer measure can be also defined from any set function in the following sense

Proposition

Let $\mathcal{C} \subset \mathscr{P}(X)$ and $\rho \colon \mathcal{C} \longrightarrow [0, +\infty]$ be such that $\emptyset, X \in \mathcal{C}$ and $\rho(\emptyset) = 0$. For any $A \subset X$, define

$$\mu^*(A) = \inf\{\sum_{n=1}^{+\infty} \rho(A_n); A_n \in \mathcal{C} \text{ and } A \subset \cup_{n=1}^{+\infty} A_n\}.$$
(6)

Then μ^* is an outer measure.

Proof

For any $A \subset X$ there exists $(A_n)_n$ in \mathcal{C} such that $A \subset \bigcup_{n=1}^{+\infty} A_n$ (we can take $A_n = X$, then μ^* is well defined. Obviously $\mu^*(\emptyset) = 0$ and $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$. To prove the countable subadditivity, let $(A_n)_n$ in $\mathscr{H}(X)$ and $A = \bigcup_{n=1}^{+\infty} A_n$. Without loss of generality, we can assume that $\rho(A_n) < +\infty$ for all $n \in \mathbb{N}$. For $\varepsilon > 0$ and for all $n \in \mathbb{N}$, there is a sequence $(A_{n,k})_k$ in \mathcal{C} such that $A_n \subset \cup_{k=1}^{+\infty} A_{n,k}$ and $\sum_{k=1}^{\infty} \rho(A_{n,k}) \leq \mu^*(A_n) + \frac{\varepsilon}{2^n}$. We have $A \subset \cup_{n,k=1}^{+\infty} A_{n,k}$ and $\sum^{+\infty} \rho(A_{n,k}) \leq \sum^{+\infty} \mu^*(A_n) + \varepsilon.$

Theorem

Let (X, \mathscr{A}, μ) be a σ -finite measure space and let μ^* be the outer measure defined by

$$\mu^*(A) = \inf \{ \sum_{n=1}^{+\infty} \mu \ (A_n); \ A \subset \bigcup_{n=1}^{+\infty} A_n \text{ and } A_n \in \mathscr{A} \}.$$

We denote \mathscr{B} the complete σ -algebra and \mathscr{B}_0 the σ -algebra of the μ^* -measurable sets. Then $\mathscr{B} = \mathscr{B}_0$.

Proof

According to the Proposition (45) $\mathscr{A} \subset \mathscr{B}_0$. Let A be a null set, there exists a measurable set B such that $A \subset B$ and $\mu(B) = 0$. Let E be a subset of X; $\mu^*(E \cap A) \le \mu(B) = 0$ and $\mu^*(E \cap A^c) \le \mu^*(E)$, then $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$

and $\mathscr{B} \subset \mathscr{B}_0$.

Let $A \in \mathscr{B}_0$, assume that $\mu^*(A) < +\infty$, then for all $n \in \mathbb{N}$, there exists a covering $(A_{j,n})_j \in \mathscr{A}$ of A such that

$$\sum_{j=1}^{+\infty}\mu(A_{j,n})\leq \mu^*(A)+\frac{1}{n}.$$

We denote $B_n = \bigcup_{j=1}^{+\infty} A_{j,n}$. $A \subset B_n$ and $\mu(B_n) \leq \mu^*(A) + \frac{1}{n}$. Let

 $B = \bigcap_{n=1}^{+\infty} B_n, B \in \mathscr{A}. \text{ Since } A \subset B, \ \mu^*(A) \leq \mu(B). \text{ Moreover}$ $\mu(B) \leq \mu(B_n) \leq \mu^*(A) + \frac{1}{n}, \forall n \in \mathbb{N}. \text{ Thus } \mu(B) = \mu^*(A).$

Since $\mu^*(A) < \infty$, $\mu^*(B \setminus A) = 0$. Then $A = B \cap (B \setminus A)^c$ and $A^c = B^c \cup (B \setminus A)$. ($B \setminus A$) is a null set then it is in the σ -algebra \mathscr{B} . B is also in the σ -algebra \mathscr{B} . Then $A^c \in \mathscr{B}$ and also A.

If $\mu^*(A) = +\infty$. As μ is σ -finite, there exists a sequence $(E_n)_n$ of measurable sets such that $\mu(E_n) < +\infty$ and $\bigcup_{n=1}^{+\infty} E_n = X$. Then any $A \in \mathscr{B}_0$ is written as

$$A = igcup_{n=1}^{+\infty} A_n, \quad A_n \in \mathscr{B}_0, \, \, and \, \, \mu^*(A_n) < +\infty.$$

Then $A_n \in \mathscr{B}$ and $A \in \mathscr{B}$.

Extension of Measures

Theorem

Let μ_1 and μ_2 be two measures on a measurable space (X, \mathscr{B}) . Assume that there exists a class \mathscr{C} of measurable subsets such that a) \mathscr{C} is closed under finite intersection and that the σ -algebra generated by \mathscr{C} is equal to \mathscr{B} . b) There exists an increasing sequence $(E_n)_n$ in \mathscr{C} such that $\lim_{n \to +\infty} E_n = X$. c) $\mu_1(C) = \mu_2(C) < +\infty$, for any $C \in \mathscr{C}$. Then $\mu_1 = \mu_2$.

Proof

We suppose in the first case that $\mu_1(X) = \mu_2(X) < +\infty$. Let $\mathscr{A} = \{A \in \mathscr{B}; \ \mu_1(A) = \mu_2(A)\}$. By hypothesis $X \in \mathscr{C}$ and $\mathscr{C} \subset \mathscr{A}$. It is easy to prove that \mathscr{A} is a monotone class. (If $(A_n)_n$ is an increasing sequence of \mathscr{A} , then $\mu_1(A_n) = \mu_2(A_n)$ for all n, and then

$$\mu_1(\bigcup_{n=1}^{+\infty}A_n)=\mu_2(\bigcup_{n=1}^{+\infty}A_n)=\mu_1(\lim_{n\to+\infty}A_n)=\mu_2(\lim_{n\to+\infty}A_n).$$

If $(A_n)_n$ is a decreasing sequence of \mathscr{A} , then $\mu_1(A_n) = \mu_2(A_n)$ for all n, as $\mu_1(X) = \mu_2(X) < +\infty$, then $\mu_1(\bigcap_{n=1}^{+\infty} A_n) = \mu_2(\bigcap_{n=1}^{+\infty} A_n)$.) \mathscr{A} is a σ -algebra. (If $A, B \in \mathscr{A}$ with $A \subset B$, then $\mu_1(B \setminus A) = \mu_1(B) - \mu_1(A) = \mu_2(B) - \mu_2(A) = \mu_2(B \setminus A)$ and so $B \setminus A \in \mathscr{A}$. We use the fact that μ_1 , μ_2 are finite and $\mu_1(X) = \mu_2(X)$). Then $\sigma(\mathscr{C}) = \mathscr{B} \subset \mathscr{A}$ and $\mathscr{A} = \mathscr{B}$ and $\mu_1 = \mu_2$. In the general case we take $\mu_{j,n}$ the restriction of μ_j on E_n for all $n \in \mathbb{N}$. From the first case $\mu_{1,n} = \mu_{2,n}$, which gives $\mu_1 = \mu_2$, because $\mu_j = \lim_{n \to +\infty} \mu_{j,n}; j = 1, 2$.

Definition

If
$$\mathcal{A} \subset \mathscr{N}(X)$$
 is an algebra and $\mu \colon \mathcal{A} \longrightarrow [0, +\infty]$ is called a pre-measure if
a) $\mu(\emptyset) = 0$
b) If $(A_n) \in \mathscr{N}$ is a disjoint sequence, then
 $\mu(\cup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} \mu(A_n).$

Remark

If μ is a pre-measure on an algebra $\mathcal{A} \subset P(X)$, it induces an outer measure on X defined by (6).

Proposition

If μ is a pre-measure on an algebra \mathcal{A} and μ^* is defined by (6), then a) $\mu^*_{\uparrow \mathcal{A}} = \mu$, b) every set in \mathcal{A} is μ^* measurable.

Mongi BLEL Measure Theory

Proof

a) Suppose $A \in \mathcal{A}$ and $A \subset \bigcup_{n=1}^{+\infty} A_n$, $A_n \in \mathcal{A}$ for all $n \in \mathbb{N}$. Let $B_n = A \cap (A_n \setminus \bigcup_{k=1}^{n-1} A_k)$. Then the sequence $(B_n)_n$ is disjoint in \mathcal{A} whose union is A (i.e $(B_n)_n$ is a partition of A), so $\mu(A) = \sum_{n=1}^{+\infty} \mu(B_n)$. It follows that $\mu(A) \leq \mu^*(A)$, and the reverse inequality is obvious since $A \subset \bigcup_{n=1}^{+\infty} A_n$, where $A_1 = A$ and $A_n = \emptyset$ for all n > 2.

b) If
$$A \in \mathcal{A}$$
, $B \subset X$, and $\varepsilon > 0$, there is a sequence $(B_n)_n \in \mathcal{A}$ with $B \subset \cup_{n=1}^{+\infty} B_n$ and $\sum_{n=1}^{+\infty} \mu(B_n) \le \mu^*(B) + \varepsilon$. Then

$$\mu^*(B\cap A) + \mu^*(B\cap A^c) \leq \sum_{n=1}^{+\infty} \mu(B_n \cap A) + \sum_{n=1}^{+\infty} \mu(B_n \cap A^c) \leq \mu^*(B) + \varepsilon.$$

Π

Since ε is arbitrary, A is μ^* measurable.

Mongi BLEL Measure Theory

Theorem

Let $\mathcal{A} \subset \mathscr{R}(X)$ be an algebra, μ_1 a pre-measure on \mathcal{A} , and \mathscr{A} the σ -algebra generated by \mathcal{A} . There exists a measure μ on \mathscr{A} whose restriction to \mathcal{A} is μ_1 , $\mu = \mu_1^*$ where μ_1^* is defined by (6) (relatively to μ_1). If ν is another measure on \mathscr{A} that extends μ_1 , then $\nu(\mathcal{A}) \leq \mu(\mathcal{A})$ for all $\mathcal{A} \in \mathscr{A}$ with equality when $\mu(\mathcal{A}) < \infty$. If μ_1 is σ -finite, then μ is the unique extension of μ to a measure on \mathscr{A} .

Proof

The first assertion follows from Caratheodory's theorem and Proposition (62) since the σ -algebra of μ^* -measurable sets includes \mathcal{A} and hence includes \mathscr{A} . For the second assertion, if $A \in \mathscr{A}$ and $A \subset \bigcup_{n=1}^{+\infty} A_n$, where $A_n \in \mathcal{A}$, $\nu(A) \leq \sum_{n=1}^{+\infty} \mu_1(A_n) = \sum_{n=1}^{+\infty} \mu(A_n)$, hence $\nu(A) \leq \mu^*(A) = \mu(A)$. Also, if $B = \bigcup_{n=1}^{+\infty} A_n$, we have

$$\nu(B) = \lim_{n \to +\infty} \nu(\bigcup_{k=1}^n A_k) = \lim_{n \to +\infty} \mu(\bigcup_{k=1}^n A_k) = \mu(B).$$

If $\mu(A) < +\infty$, we can choose the sequence $(A_n)_n$ so that $\mu(B) \le \mu(A) + \varepsilon$, hence $\mu(B \setminus A) \le \varepsilon$ and

$$\mu(A) \leq \mu(B) = \nu(B) = \nu(A) + \nu(B \setminus A) \leq \nu(A) + \mu(B \setminus A) \leq \nu(A) + \varepsilon.$$

Since ε is arbitrary, $\mu(A) = \nu(A)$. Finally, suppose $X = \bigcup_{n=1}^{+\infty} K_n$ with $\mu(K_n) < +\infty$, where we can assume that the K_n are disjoint. Then for any $A \in \mathcal{A}$,

$$\mu(A) = \sum_{n=1}^{+\infty} \mu(A \cap K_n) = \sum_{n=1}^{+\infty} \nu(A \cap K_n) = \nu(A),$$

so $\nu = \mu$.

Lebesgue Measure on \mathbb{R}

Theorem

There exists only and only one measure λ on $\mathscr{B}_{\mathbb{R}}$ satisfying i) λ invariant under translation. (i.e. $\forall x \in \mathbb{R}, \forall A \in \mathscr{B}_{\mathbb{R}}; \lambda(x + A) = \lambda(A)$). ii) $\lambda([0, 1]) = 1$.

Proof Uniqueness

Assume that there exists two measures μ and ν on $\mathscr{B}_{\mathbb{R}}$ satisfying (i) and (ii) then $\nu[0, \frac{1}{n}] \leq \frac{1}{n} \Rightarrow \nu\{0\} = 0$ and then any finite set or countable set is a null set and all the intervals [a, b], [a, b], [a, b] and]a, b[have the same measure and equal to b - a. (We treat the case of a and b rational and take the limit.)

We denote by \mathscr{E} the set of finite union of intervals of \mathbb{R} in the form $[a, b]; a, b \in \mathbb{R}$. The set \mathscr{E} is closed under finite intersection and $\mathbb{R} = \bigcup_{n} [-n, n]$. Then $\mu = \nu$ on \mathscr{E} . It follows from the uniqueness theorem (5) that μ and ν are equal on $\mathscr{B}_{\mathbb{R}}$. **Existence** We need the following lemma.

Lemma

Define for any subset A of \mathbb{R}

$$\mu^*(A) = \inf_{\mathscr{R}} \sum_{I \in \mathscr{R}} \mathscr{L}(I).$$

 \mathscr{R} describes the whole of finite or countable coverings of A by open intervals, and $\mathscr{L}(I)$ the length of I. μ^* fulfills the following properties.

- μ^* is an outer measure. We denote $\mathscr{B}^*_{\mathbb{R}}$ the σ -algebra of μ^* -measurable sets.
- **2** For all interval I of \mathbb{R} , $\mu^*(I) = \mathscr{L}(I)$.

Lemma

3 If Ω is an open set of \mathbb{R} and $(I_n)_n$ its connected components, then $\mu^*(\Omega) = \sum_{n=1}^{+\infty} \mathscr{L}(I_n)$.

• For any subset
$$A \subset \mathbb{R}$$
,

$$\mu^*(A) = \inf_{O \text{ open} \supset A} \mu^*(O).$$

Proof

- **(**) By proposition (51) μ^* is an outer measure.
- 2 If a and b are the endpoints of I and $\varepsilon > 0$, then $I \subset]a - \varepsilon, b + \varepsilon[$ and $\mu^*(I) < \mathcal{L}(I) + 2\varepsilon$. It follows that $\mu^*(I) < \mathcal{L}(I).$ Conversely let $(I_k)_k$ be an open covering of I, then $[a + \varepsilon, b - \varepsilon] \subset \bigcup_{k=1}^{+\infty} I_k$. As $[a + \varepsilon, b - \varepsilon]$ is compact, there exist a finite sub-covering $(I_k)_{1 \le k \le n}$ such that $[a + \varepsilon, b - \varepsilon] \subset \bigcup_{k=1}^{n} I_k$. It results that $b-a-2arepsilon\leq \sum_{k=1}^{n}\mathscr{L}(I_{k})\leq \sum_{k=1}^{+\infty}\mathscr{L}(I_{k}).$ Thus k-1 $b-a-2\varepsilon < \mu^*(I)$ for any $\varepsilon > 0$, hence $\mathscr{L}(I) = \mu^*(I)$.

Mongi BLEL Measure Theory
Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on Rⁿ

Let Ω be an open set of R and (I_n)_n its connected components, from the definition of μ*

$$\mu^*(\Omega) \le \sum_{n=1}^{+\infty} \mathscr{L}(I_n).$$
(7)

Conversely let $(J_k)_k$ be a covering of Ω by open intervals, we have $I_n = \bigcup_{k=1}^{+\infty} J_k \cap I_n$. It results that $\sum_{n=1}^{+\infty} \mathscr{L}(I_n) \leq \sum_{n=1}^{+\infty} \sum_{k=1}^{+\infty} \mathscr{L}(I_n \cap J_k) = \sum_{k=1}^{+\infty} \sum_{n=1}^{+\infty} \mathscr{L}(I_n \cap J_k).$ Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R^a

In the other hand the intervals
$$(I_n)_n$$
 are disjoints, then for any m , $\bigcup_{n=1}^{m} (J_k \cap I_n) \subset J_k$ and for all $m \in \mathbb{N}$;

$$\sum_{\substack{n=1\\+\infty}}^{m} \mathscr{L}(J_k \cap I_n) \leq \mathscr{L}(J_k).$$
 It results that
$$\sum_{\substack{n=1\\+\infty\\+\infty}}^{n=1} \mathscr{L}(I_n \cap J_k) \leq \sum_{k=1}^{+\infty} \mathscr{L}(J_k).$$
Then

$$\sum_{n=1}^{+\infty} \mathscr{L}(I_n) \le \mu^*(\Omega).$$
(8)

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on Rⁿ

So the relations (7) and (8) gives that $\mu^*(\Omega) = \sum_{n=1}^{+\infty} \mathscr{L}(I_n)$. • Let $A \subset \mathbb{R}$ and $(I_n)_n$ a countable covering of A by open intervals. If $\omega = \bigcup_{n=1}^{+\infty} I_n$, $\mu^*(A) \leq \mu^*(\omega) \leq \sum_{n=1}^{+\infty} \mathscr{L}(I_n)$. Then $\mu^*(A) \leq \inf_{\substack{O \text{ open} \supset A}} \mu^*(O)$. The converse inequality is evident if $\mu^*(A) = +\infty$. If $\mu^*(A) < +\infty$, for $\varepsilon > 0$, there exists a countable covering $(I_n)_n$ of A by open intervals such that $\sum \mathscr{L}(I_n) \leq \mu^*(A) + \varepsilon$. The open set $\Omega = \bigcup_{n=1}^{+\infty} I_n$ contains A and $\mu^*(\mathcal{O}) \leq \sum \mathscr{L}(I_n) \leq \mu^*(\mathcal{A}) + \varepsilon.$ Then $\inf_{\substack{O \text{ open } \supset A}} \overline{\mu^*}(O) \le \mu^*(A).$

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

Remark

The previous lemma proves also easily that μ^* is an outer measure on $\mathscr{P}(\mathbb{R})$. Indeed i) $\mu^*(\emptyset) = 0$. ii) If $A \subset B$, then $\mu^*(A) = \inf_{\omega(open) \supset A} \mu^*(\omega) \le \inf_{\omega(open) \supset B} \mu^*(\omega) = \mu^*(B)$. iii) If $(A_n)_n$ is a sequence of subsets of \mathbb{R} . It suffices to prove that

$$\mu^{*}(\cup_{n=1}^{+\infty}A_{n}) \leq \sum_{n=1}^{+\infty}\mu^{*}(A_{n}).$$
(9)

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measuress Lebesgue Measure on R Lebesgue Measure on Rⁿ

If there exists n_0 such that $\mu^*(A_{n_0}) = +\infty$, the inequality (9) is trivially fulfilled. If $\mu^*(A_n) < +\infty$ for all $n \in \mathbb{N}$, for $\varepsilon > 0$, then for any $n \in \mathbb{N}$ there

exists an open set ω_n containing A_n such that $\mu^*(\omega_n) \leq \mu^*(A_n) + \frac{\varepsilon}{2^n}$.

$$\mu^*(\cup_{n=1}^{+\infty}A_n) \le \mu^*(\cup_{n=1}^{+\infty}\omega_n) \le \sum_{n=1}^{+\infty}\mu^*(\omega_n) \le \sum_{n=1}^{+\infty}\mu^*(A_n) + \sum_{n=1}^{+\infty}\frac{\varepsilon}{2^n} = \sum_{n=1}^{+\infty}\mu^*$$
(10)
for any $\varepsilon > 0$, thus $\mu^*(\bigcup_{n=1}^{+\infty}A_n) \le \sum_{n=1}^{+\infty}\mu^*(A_n)$.

n=1

n=1

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on Rⁿ

Proposition

Any Borelian subset is Lebesgue measurable i.e $\mathscr{B}_{\mathbb{R}} \subset \mathscr{B}_{\mathbb{R}}^*$.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

Proof

It suffices to prove that $\forall a \in \mathbb{R}$, $]a, +\infty[\in \mathscr{B}^*_{\mathbb{R}}$. Let E be a subset of \mathbb{R} , our goal is to prove that

$$\mu^{*}(E) = \mu^{*}(E \cap]a, +\infty[) + \mu^{*}(E \cap] - \infty, a]).$$
(11)

Since μ^* is an outer measure, $\mu^*(E) \leq \mu^*(E \cap]a, +\infty[) + \mu^*(E \cap] - \infty, a])$. For the converse inequality the result is trivial if $\mu^*(E) = +\infty$. Assume that $\mu^*(E) < +\infty$. Let $\varepsilon > 0$ there exists an open set $\Omega_{\varepsilon} \supset E$ such that : $\mu^*(\Omega_{\varepsilon}) \leq \mu^*(E) + \varepsilon$. Assume in the first time that $a \notin \Omega_{\varepsilon}$.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on Rⁿ

$$\mu^*(\Omega_{\varepsilon}) = \sum_{I \in \mathcal{C}} \mathscr{L}(I) = \sum_{I \in \mathcal{C} \cap]\mathbf{a}, +\infty[} \mathscr{L}(I) + \sum_{I \in \mathcal{C} \cap]-\infty, \mathbf{a}[} \mathscr{L}(I) \quad (12)$$

with ${\mathcal C}$ the set of the connected components of $\Omega_{\varepsilon}.$ Then

 $\mu^*(\Omega_{\varepsilon}) = \mu^*(\Omega_{\varepsilon} \cap]a, +\infty[) + \mu^*(\Omega_{\varepsilon} \cap] - \infty, a[) \ge \mu^*(E \cap]a, +\infty[) + \mu^*(E \cap]$ Therefore $\mu^*(E) \ge \mu^*(E \cap]a, +\infty[) + \mu^*(E \cap] - \infty, a]).$ Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on Rⁿ

If now $a \in \Omega_{\varepsilon}$, let $\Omega'_{\varepsilon} = \Omega_{\varepsilon} \setminus \{a\}$. According to the first remark $\mu^*(\Omega'_{\varepsilon}) = \mu^*(\Omega_{\varepsilon})$.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

Proof

of theorem (6) According to the theorem (37), $\mathscr{B}_{\mathbb{R}}^*$ is a σ -algebra and $\lambda = \mu^*|_{\mathscr{B}_{\mathbb{R}}^*}$ is a complete measure. $\mathscr{B}_{\mathbb{R}}^*$ is called the **Lebesgue** σ -algebra and the elements of $\mathscr{B}_{\mathbb{R}}^*$ are called the **Lebesgue measurable sets**. The measure λ is complete and called the **Lebesgue measure** on \mathbb{R} . λ fulfills the theorem (6). Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R^a

Proposition

Let $\mathscr{B}^*_{\mathbb{R}}$ be the Lebesgue σ -algebra on \mathbb{R} , then $\forall \ A \in \mathscr{B}^*_{\mathbb{R}}$

$$\lambda(A) = \inf_{\omega \text{ open} \supset A} \lambda(\omega)$$

$$\lambda(A) = \sup_{K \ compact \subset A} \lambda(K).$$

We say that the measure λ is regular.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R

Proof

If A is bounded, there exists $n \in \mathbb{N}$ such that $A \subset [-n, n]$. For any $\varepsilon > 0$, the set $[-n, n] \setminus A$ is measurable, then there exists an open set $\omega \supset ([-n, n] \setminus A)$ such that

$$\lambda(\omega) \leq \lambda([-n,n] \setminus A) + \varepsilon = \lambda[-n,n] - \lambda(A) + \varepsilon$$

because $\lambda([-n, n] \setminus A) = \inf_{\omega \text{ open} \supset ([-n, n] \setminus A)} \lambda(\omega).$

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

Let $K = [-n, n] \cap \omega^c$. K is a compact in A.

$$2n = \lambda[-n, n] = \lambda([-n, n] \cap \omega^{c}) + \lambda([-n, n] \cap \omega) \leq \lambda(K) + \varepsilon + \lambda[-n, n] - \lambda(A)$$

Then $\lambda(A) \leq \lambda(K) + \varepsilon$ and $\lambda(A) = \sup_{K \text{ compact} \subset A} \lambda(K)$.
If A is not bounded, then $\forall n \in \mathbb{N}$ there exists a compact $K_n \subset [-n, n] \cap A$ such that

$$\lambda(K_n) \geq \lambda([-n,n] \cap A) - \frac{1}{n},$$

then

$$\sup_{K \text{ compact} \subset A} \lambda(K) \geq \sup_{n} (\lambda(K_n)) \geq \lim_{n \to +\infty} (\lambda([-n, n] \cap A) - \frac{1}{n}) = \lambda(A)$$

 \square

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on Rⁿ

Lebesgue Measure on \mathbb{R}^n

Lebesgue Outer Measure on \mathbb{R}^n

Definition

A subset R of ℝⁿ is called a rectangle if R = ∏_{j=1}ⁿ I_j, where I_j are intervals of ℝ.
 The rectangle R is called an open rectangle (resp closed rectangle) if the intervals (I_j)_j are open (resp closed).

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on R

Definition

If R is a closed rectangle defined by R = {x ∈ ℝⁿ; a_j ≤ x_j ≤ b_j, 1 ≤ j ≤ n}, we set Vol(R) = $\prod_{j=1}^{n} (b_j - a_j)$ called the volume of R. If the rectangle is not closed we take the same volume that the one of its closure. Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

Definition

Let $A \subset \mathbb{R}^n$. We say that a family of rectangles $(R_j)_{j \in I}$ is a covering of A if $A \subset \bigcup_{j \in I} R_j$. If each of the rectangle R_j in the covering is open (resp. closed), the covering is called an open (resp. closed) covering of A.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R^m

Remark

Any subset of \mathbb{R}^n admits a countable covering of rectangles. (We can take the rectangle of rational sides and centered at points with rational coordinates.)

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on Rⁿ

Exercise

If a rectangle $R \subset \bigcup_{j=1}^{m} R_j$, then $\operatorname{Vol}(R) \leq \sum_{j=1}^{m} \operatorname{Vol}(R_j)$.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

Definition

A collection of rectangles $(R_j)_j$ is called almost disjoint if the interiors of R_j are pairwise disjoint (disjoint for simplicity).

Lemma

If a rectangle $R = \bigcup_{j=1}^{m} R_j$ such that R_j are pairwise almost disjoint, then $\operatorname{Vol}(R) = \sum_{j=1}^{m} \operatorname{Vol}(R_j)$.

Mongi BLEL Measure Theory

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R[®]

Proof

It is obvious that $\operatorname{Vol}(R) \leq \sum_{j=1}^{m} \operatorname{Vol}(R_j)$. Moreover $\bigcup_{j=1}^{m} \stackrel{o}{R_j} \subset \stackrel{o}{R}$ and the union is disjoint. Then $\sum_{j=1}^{m} \operatorname{Vol}(R_j) \leq \operatorname{Vol}(R)$ and then $\operatorname{Vol}(R) = \sum_{j=1}^{m} \operatorname{Vol}(R_j)$.

П

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R

Remark

An open subset $\Omega \subset \mathbb{R}^n$, for $n \geq 2$ is not in general a countable union of pairwise disjoint rectangles. But in \mathbb{R} we know that for every open subset $\Omega \subset \mathbb{R}$, there exists a unique countable family of open intervals I_j such that $\Omega = \bigcup_{n=1}^{+\infty} I_n$ where $(I_n)_n$ are pairwise disjoint. (The intervals I_n are the connected components of Ω).

Theorem

For every open subset $\Omega \subset \mathbb{R}^n$, there exists a countable family of almost disjoint closed rectangles $(R_n)_n$ such that $\Omega = \bigcup_{n=1}^{+\infty} R_n$.

Mongi BLEL Measure Theory

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R

Proof

We consider the closed rectangles in \mathbb{R}^n of side length 1 and whose vertices have integer coordinates. The number of rectangles is countable and they are almost disjoint. We denote by \mathcal{C}_1 those which are contained in Ω .

We bisect the rectangles of the family $C' = \mathcal{R}_1 \setminus C_1$ which intersect both Ω and Ω^c in to 2^n rectangles of side length $\frac{1}{2}$. Again we consider the family C_2 which are contained in Ω .

Repeating this procedure, we have a countable collection $(\mathcal{C}_k)_k$ of almost disjoint rectangles in Ω . By construction, $\bigcup_{R \in \bigcup_{k=1}^{+\infty} \mathcal{C}_k} R \subset \Omega$. For $x \in \Omega$, there is a rectangle of side length $\frac{1}{2^m}$ in $\mathcal{C} = \bigcup_{k=1}^{+\infty} \mathcal{C}_k$ which contains x, thus, $\bigcup_{R \in \mathcal{C}} R = \Omega$. Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on Rⁿ

Theorem and Definition

For any subset A of \mathbb{R}^n we define the following set function $\lambda_n^*(A)$ as,

$$\lambda_n^*(A) = \inf \sum_{k=1}^{+\infty} \operatorname{Vol}(R_k),$$

the infimum being taken over all countable coverings of A by rectangles.

 λ_n^* is an outer measure called the Lebesgue outer measure.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on R

Lemma

The outer measure λ_n^* is unchanging if we restrict ourselves to open covering or closed covering, i.e., for every subset $A \subset \mathbb{R}^n$,

$$\lambda_n^*(A) = \inf \sum_{k=1}^{+\infty} \operatorname{Vol}(R_k),$$

where the infimum is taken over all possible countable closed or open coverings $(R_k)_k$ of A.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measuress Lebesgue Measure on Rⁿ

Proof

It suffices to solve the problem for bounded subsets. Let $A \subset \mathbb{R}^n$ be a bounded subset. For every $\varepsilon > 0$, there is a covering $(R_k)_k$ of A and $+\infty$

 $\sum_{k=1} \operatorname{Vol}(R_k) \leq \lambda_n^*(A) + \varepsilon.$ The sequence of closed rectangles $(\overline{R_k})_k$

is a covering of A and $\sum_{k=1}^{+\infty} \operatorname{Vol}(\overline{R_k}) = \sum_{k=1}^{+\infty} \operatorname{Vol}(R_k) \le \lambda_n^*(A) + \varepsilon$. If $(a_{j,k})_j$, $(b_{j,k})_j$, $j = 1 \dots n$ are the edges of the rectangle R_k , we define the rectangle $\tilde{R_k} = \prod_{j=1}^n [a_{j,k} - \delta_k, b_{j,k} + \delta_k]$ such that $\operatorname{Vol}(\tilde{R_k}) \le \operatorname{Vol}(R_k) + \frac{\varepsilon}{2^k}$. (The rectangle R_k is not necessary open or closed). Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on R

The sequence of open rectangles $(\tilde{R}_k)_k$ is a covering of A and $\sum_{k=1}^{+\infty} \operatorname{Vol}(\tilde{R}_k) \leq \sum_{k=1}^{+\infty} \operatorname{Vol}(R_k) + \sum_{k=1}^{+\infty} \frac{\varepsilon}{2^k} \leq \lambda_n^*(A) + 2\varepsilon.$

Lemma

If R is a rectangle in \mathbb{R}^n , then $\lambda_n^*(R) = \operatorname{Vol}(R)$.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R

Proof

It is evident that $\lambda_n^*(R) \leq \operatorname{Vol}(R)$. Conversely let $\varepsilon > 0$ and let $(R_k)_k$ be a covering of R by open rectangles. We denote by R_{ε} a rectangle obtained by dilation of the sides of R such that $\operatorname{Vol}(R) \leq \operatorname{Vol}(\overline{R_{\varepsilon}}) + \varepsilon$ and $\overline{R_{\varepsilon}} \subset R \subset \bigcup^{\sim} R_k$. Since $\overline{R_{\varepsilon}}$ is compact, k=1there exists a finite sub-covering $(R_k)_{1 \le k \le m}$ of $\overline{R_{\varepsilon}}$. Thus $\operatorname{Vol}(\overline{R_{\varepsilon}}) \le C$ $\sum \operatorname{Vol}(R_k) \leq \sum \operatorname{Vol}(R_k)$. It results that $\operatorname{Vol}(R) - \varepsilon \leq \lambda_n^*(R)$, for $\overset{k=1}{\text{all }\varepsilon} > 0. \text{ Then } \overset{k=1}{\text{Vol}(R)} = \lambda_n^*(R).$

Π

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on Rⁿ

Remark

For $n \ge 2$, $\lambda_n^*(\mathbb{R}^{n-1}) = 0$, where \mathbb{R}^{n-1} considered as subset of \mathbb{R}^n . Choose a covering $(R_j)_j$ of \mathbb{R}^{n-1} in \mathbb{R}^{n-1} such that $\operatorname{Vol}(R_j)_{n-1} = 1$. Then $A_j = R_j \times] - \frac{\varepsilon}{2^j}, \frac{\varepsilon}{2^j} [$ is a covering of \mathbb{R}^{n-1} in \mathbb{R}^n . Thus, $\lambda_n^*(\mathbb{R}^{n-1}) \le \sum_{j=1}^{+\infty} \operatorname{Vol}(A_j) = \sum_{j=1}^{+\infty} \frac{2\varepsilon}{2^j} = 2\varepsilon.$ Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on R

Theorem

[Outer Regularity] If $A \subset \mathbb{R}^n$ is a subset of \mathbb{R}^n , then $\lambda_n^*(A) = \inf_{\Omega \supset A} \lambda_n^*(\Omega)$, where Ω are open sets containing A.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R[®]

Proof

By monotonicity, $\lambda_n^*(A) \leq \lambda_n^*(\Omega)$ for all open set Ω containing A. Thus, $\lambda_n^*(A) \leq \inf \lambda_n^*(\Omega)$. Conversely, for $\varepsilon > 0$ there exists an open covering of rectangles $(R_j)_j$ of A such that $\sum_{j=1}^{+\infty} \operatorname{Vol}(R_j) \leq \lambda_n^*(A) + \varepsilon$. The open set $\Omega = \bigcup_{j=1}^{+\infty} R_j$ contains A and $\lambda_n^*(\Omega) \leq \sum_{j=1}^{+\infty} \operatorname{Vol}(R_j) \leq \lambda_n^*(A) + \varepsilon$. Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

Definition

A subset A is said to be \mathscr{G}_{δ} if it is a countable intersection of open sets in \mathbb{R}^n . We say A is \mathcal{F}_{σ} if it is a countable union of closed sets in \mathbb{R}^n .

Corollary

For every subset $A \subset \mathbb{R}^n$ there exists a \mathscr{G}_{δ} subset G of \mathbb{R}^n such that $G \supset A$ and $\lambda_n^*(A) = \lambda_n^*(G)$.

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on R[®]

Proof

By Theorem (101), for every $k \in \mathbb{N}$ there is an open set $\Omega_k \supset A$ such that $\lambda_n^*(\Omega_k) \leq \lambda_n^*(A) + \frac{1}{k}$. The set $G = \bigcap_{k=1}^{+\infty} \Omega_k$ is a \mathscr{G}_{δ} set and contains A and hence $\lambda_n^*(A) \leq \lambda_n^*(G)$. For the reverse inequality, we note that $G \subset \Omega_k$, for all k, and by monotonicity $\lambda_n^*(G) \leq \lambda_n^*(\Omega_k) \leq \lambda_n^*(A) + \frac{1}{k}$, for all k. Thus, $\lambda_n^*(G) = \lambda_n^*(A)$. \Box Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on R

Definition

An outer measure μ^* on a metric space (X, d) is called a metric outer measure if for all $A, B \subset X$ such that d(A, B) > 0, then $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$.

Proposition

If A and B are subsets of \mathbb{R}^n such that d(A, B) > 0, then $\lambda_n^*(A \cup B) = \lambda_n^*(A) + \lambda_n^*(B)$. (i.e. λ_n^* is a metric outer measure). Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Extension of Measures Lebesgue Measure on Rⁿ

Proof

We have $\lambda_n^*(A \cup B) \leq \lambda_n^*(A) + \lambda_n^*(B)$. For $\varepsilon > 0$, there is a covering $(R_j)_j$ of $A \cup B$ such that $\sum_{j=1}^{+\infty} \operatorname{Vol}(R_j) \leq \lambda_n^*(A \cup B) + \varepsilon$. Without loss of generality, we can assume that the diameter of R_j are less then d(A, B). (For all $j \in \mathbb{N}$, there is a finite covering of R_j by rectangles of diameter less then d(A, B). We have also $\sum_{j=1}^{+\infty} \operatorname{Vol}(R_j) \leq \lambda_n^*(A \cup B) + \varepsilon$). Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on R Lebesgue Measure on R

It results that there no rectangle R_j which intersects A and B at the same time. Let $I = \{j; R_j \cap A \neq \emptyset\}$ and $J = \{j; R_j \cap B \neq \emptyset\}$. I and J are disjoint. Thus, $(R_j)_{j \in I}$ is an open covering of A and $(R_j)_{j \in J}$ is an open covering of B. Thus,

$$\lambda_n^*(A) + \lambda_n^*(B) \leq \sum_{j \in I} \operatorname{Vol}(R_j) + \sum_{j \in J} \operatorname{Vol}(R_j) \leq \sum_{j=1}^{+\infty} \operatorname{Vol}(R_j) \leq \lambda_n^*(A \cup B) + \varepsilon,$$

which proves that $\lambda_n^*(A) + \lambda_n^*(B) \le \lambda_n^*(A \cup B)$.

Mongi BLEL Measure Theory

Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measure Extension of Measures Lebesgue Measure on R

Proposition

If $(R_j)_j$ is a sequence of almost disjoint closed rectangles, then

$$\lambda_n^*(\cup_{j=1}^{+\infty}R_j)=\sum_{j=1}^{+\infty}\operatorname{Vol}(R_j).$$

Proof

If
$$A = \bigcup_{j=1}^{+\infty} R_j$$
, then $\lambda_n^*(A) \leq \sum_{j=1}^{+\infty} \operatorname{Vol}(R_j)$.
For $\varepsilon > 0$, let $S_j \subset R_j$ be open rectangle such that
i) $\operatorname{Vol}(R_j) \leq \operatorname{Vol}(S_j) + \frac{\varepsilon}{2^j}$
ii) $d(S_j, S_k) > 0$, for all $j \neq k$.
Then by Proposition (105), $\lambda_n^*(\bigcup_{j=1}^k S_j) = \sum_{j=1}^k \operatorname{Vol}(S_j)$ for all $k \in \mathbb{N}$.
Since $\bigcup_{j=1}^k S_j \subset A$,
 $\lambda_n^*(A) \geq \lambda_n^*(\bigcup_{j=1}^k S_j) = \sum_{j=1}^k \operatorname{Vol}(S_j) \geq \sum_{j=1}^k \operatorname{Vol}(R_j) - \frac{\varepsilon}{2^j}$.
 $+\infty$
MONGY BLEL $+\infty$
Heasure Theory

Corollary

If Ω is an open set and $\Omega = \bigcup_{j=1}^{+\infty} R_j$, where $(R_j)_j$ is an almost disjoint closed rectangles, then

$$\lambda_n^*(\Omega) = \sum_{j=1}^{+\infty} \operatorname{Vol}(R_j).$$

Theorem

Let $\mathscr{B}_{\mathbb{R}^n}^*$ be the σ -algebra of λ_n^* -measurable sets. The restriction of λ_n^* on the σ -algebra $\mathscr{B}_{\mathbb{R}^n}^*$ is a measure called the **Lebesgue measure** on \mathbb{R}^n and denoted by λ_n . The σ -algebra $\mathscr{B}_{\mathbb{R}^n}^*$ contains the Borel σ -algebra $\mathscr{B}_{\mathbb{R}^n}^*$. Moreover the measure λ_n is the unique measure invariant under translation on \mathbb{R}^n . Moreover the measure λ_n is regular.

Proof

Let
$$\Omega = \bigcup_{k=1}^{m} R_k$$
 be a finite union of disjoint rectangles, then
 $\lambda_n^*(\Omega) = \sum_{k=1}^{m} \operatorname{Vol}(R_k)$. Indeed it is evident that $\lambda_n^*(\bigcup_{k=1}^{m} R_k) \leq \sum_{k=1}^{m} \operatorname{Vol}(R_k)$ where the rectangles can be opens or not, it suffices to take the closure of R_k .

k=1

Conversely if $(Q_k)_k$ is a covering of Ω by rectangles, then $R_j = \bigcup_{k=1}^{+\infty} (Q_k \cap R_j) \Rightarrow \operatorname{Vol}(R_j) = \lambda_n^*(R_j) \leq \sum_k \operatorname{Vol}(Q_k \cap R_j)$ and since

 $(R_j)_j$ are disjoints; $\sum_{j=1}^{\cdots} \operatorname{Vol}(Q_k \cap R_j) = \operatorname{Vol}(Q_k)$. It results that

 $\sum_{k=1}^{N} \operatorname{Vol}(R_k) \leq \lambda_n^* (\bigcup_{k=1}^m R_k), \text{ this which yields the result. The result}$

remains valid if we have a sequence $(R_k)_k$ of disjoints rectangles and if $E = \begin{bmatrix} -\infty \\ -\infty \end{bmatrix} R_k$, then $\lambda_n^*(E) = \sum_k \operatorname{Vol}(R_k)$. Introduction on Measures Lebesgue-Stieltjes Measure Complete Measure Space Outer Measures Lebesgue Measure on R Lebesgue Measure on Rⁿ

Let
$$A \in \mathscr{B}_{\mathbb{R}^n}^*$$
 and $(R_k)_k$ a covering of A by open rectangles. We
set $\Omega = \bigcup_{k=1}^{+\infty} R_k \supset A$, thus $\lambda_n^*(A) \le \lambda_n^*(\Omega) \le \sum_{k=1}^{+\infty} \operatorname{Vol}(R_k)$. It results
that

$$\lambda_n^*(A) = \inf_{\Omega \text{ open} \supset A} \lambda_n^*(\Omega).$$

Let prove now that the open rectangles are measurable with respect to the outer measure λ_n^* . Let *E* be a subset of \mathbb{R}^n and *R* an open rectangle, we claim that

$$\lambda_n^*(R \cap E) + \lambda_n^*(E \cap R^c) = \lambda_n^*(E).$$

We have evidently $\lambda_n^*(E) \leq \lambda_n^*(R \cap E) + \lambda_n^*(E \cap R^c)$. For the other sense the result is trivial if $\lambda_n^*(E) = +\infty$. Assume now that $\lambda_n^*(E) < +\infty$. Let $\varepsilon > 0$, there exists an open set Ω_{ε} such that $\lambda_n^*(\Omega_{\varepsilon}) \leq \lambda_n^*(E) + \varepsilon$. Assume in the first time that the boundary of R denoted by ∂R is in the complementary of Ω_{ε} . Thus if $\Omega_{\varepsilon} = \bigcup_{k=1}^{+\infty} R_k$

is union of disjoint open rectangles, we have

$$\lambda_n^*(\Omega_{\varepsilon}) = \sum_{k=1}^{+\infty} \operatorname{Vol}(R_k) = \sum_{R_k \subset R} \operatorname{Vol}(R_k) + \sum_{R_k \subset R^c} \operatorname{Vol}(R_k)$$
$$= \lambda_n^*(\Omega_{\varepsilon} \cap R) + \lambda_n^*(\Omega_{\varepsilon} \cap R^c) \ge \lambda_n^*(E \cap R) + \lambda_n^*(E \cap R^c).$$

We conclude that $\lambda_n^*(E) \ge \lambda_n^*(E \cap R) + \lambda_n^*(E \cap R^c)$.

If $\Omega_{\varepsilon} \cap \partial R \neq \emptyset$, we take the open set $\tilde{\Omega_{\varepsilon}} = \Omega_{\varepsilon} \setminus \partial R$. We have $\lambda_n^*(\Omega_{\varepsilon}) = \lambda_n^*(\tilde{\Omega_{\varepsilon}})$, this which ends the proof.

Let proving now that the measure λ_n is regular. Assume in the first time that A is a bounded measurable set. Let R be a closed rectangle which contains A and let $\varepsilon > 0$, the set $R \setminus A$ is measurable. There exists an open set $\Omega \supset (R \setminus A)$ such that $\lambda_n(\Omega) \le \lambda_n(R \setminus A) + \varepsilon = \lambda_n(R) - \lambda_n(A) + \varepsilon$. The subset $K = R \cap \Omega^c$ is a compact and contained in A.

 $\lambda_n(R) = \lambda_n(R \cap \Omega^c) + \lambda_n(R \cap \Omega)) \le \lambda_n(K) + \lambda_n(R) - \lambda_n(A) + \varepsilon$ It results that $\lambda_n(A) \le \lambda_n(K) + \varepsilon$.

Mongi BLEL Measure Theory

If A is not bounded, we take an increasing sequence of compacts $(R_k)_k$ which cover \mathbb{R}^n . Then for each $k \in \mathbb{N}$, there exists a compact $K_k \subset R_k \cap A$ such that

$$\lambda_n(K_k) \geq \lambda_n(R_k \cap A) - \frac{1}{k+1}$$

It results that

 $\sup_{K \text{ compact} \subset A} \lambda_n(K) \geq \sup_k \lambda_n(K_k) \geq \lim_{k \to +\infty} (\lambda_n(R_k \cap A) - \frac{1}{k+1} = \lambda_n(A).$

Theorem

A subset A of \mathbb{R}^n is λ_n^* -measurable if and only if for any $\varepsilon > 0$ there exists an open set Ω containing A, such that $\lambda_n^*(\Omega \setminus A) \leq \varepsilon$.

Proof

Let A be a λ_n^* -measurable subset of \mathbb{R}^n . We assume that $\lambda_n^*(A) < +\infty$. Using Theorem (101), for $\varepsilon > 0$ there is an open set $\Omega \supset A$ such that $\lambda_n^*(\Omega) \leq \lambda_n^*(A) + \varepsilon$. But

$$\lambda_n^*(\Omega) = \lambda_n^*(\Omega \cap A) + \lambda_n^*(\Omega \setminus A) = \lambda_n^*(A) + \lambda_n^*(\Omega \setminus A).$$

Thus, $\lambda_n^*(\Omega \setminus A) = \lambda_n^*(\Omega) - \lambda_n^*(A) \le \varepsilon$.

If
$$\lambda_n^*(A) = +\infty$$
. Let $A_j = A \cap B(0, j)$, for all $j \in \mathbb{N}$ there is an open
set $\Omega_j \supset A_j$ and $\lambda_n^*(\Omega_j \setminus A_j) \le \frac{\varepsilon}{2j}$. The open set $\Omega = \bigcup_{j=1}^{+\infty} \Omega_j \supset A_j$

and

$$\lambda_n^*(\Omega \setminus A) = \lambda_n^*(\bigcup_{j=1}^{+\infty} (\Omega_j \setminus A_j)) \leq \varepsilon.$$

Conversely, let A be a subset of \mathbb{R}^n such that for any $\varepsilon > 0$ there exists an open set Ω containing A, such that $\lambda_n^*(\Omega \setminus A) \leq \varepsilon$.

Let *B* be any subset of \mathbb{R}^n such that $\lambda_n^*(B) < +\infty$. We need to show that $\lambda_n^*(B) \ge \lambda_n^*(B \cap A) + \lambda_n^*(B \cap A^c)$. By Corollary (103), there is a \mathscr{G}_{δ} set $\Omega \supset B$ such that $\lambda_n(\Omega) = \lambda_n^*(B)$. Then $\lambda_n^*(B) = \lambda_n(\Omega) = \lambda_n(\Omega \cap A) + \lambda_n(\Omega \cap A^c) \ge \lambda_n^*(B \cap A) + \lambda_n^*(B \cap A^c)$. The result is obtained by the same arguments as above if $\lambda_n^*(B) = +\infty$.

The following theorem gives the essential results of this section.

Theorem

For $A \in \mathscr{P}(\mathbb{R}^n)$, the following conditions are equivalent: i) $A \in \mathscr{B}(\lambda_n^*)$. ii) For every $\varepsilon > 0$, there exists an open set $\Omega \supset A$ such that $\lambda_n^*(\Omega \setminus A) < \varepsilon$. iii) There exists a G_{δ} -set $G \supset A$ with $\lambda_n^*(G \setminus A) = 0$. iv) For every $\varepsilon > 0$, there exists a closed set $F \subset A$ with $\lambda_n^*(A \setminus F) < \varepsilon$. v) There exists an F_{σ} -set $F \subset A$ such that $\lambda_n^*(A \setminus F) = 0$.