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Introduction on Measures

Introduction on Measures

Definition

Let (X, %) be a measurable space. A measure (or a positive
measure) on X is a function p: &/ — [0, 00] such that

O u(0)=0;
@ For any disjoint sequence (A,), € o7, (Countable additivity)

+oo +oo
w(U An) = u(An). (1)
n=1 n=1

The set (X, .o, ) will be called a measure space.
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Examples

@ Let X be any non empty set and let &7 = Z(X). For A€ 7,
we define p(A) = #A the number of elements of A if A is
finite and equal to +oo otherwise. (#A is called also the
cardinal of A). u is then a measure on /. This measure is
called the counting measure.

@ J,(A) =1if a€ A and 0 otherwise. The measure Jy is called
the point mass at a or the Dirac measure at a.
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© Let u defined on Z(R) by

(A) = 0 if Ais finite
H "~ |4+o0  otherwise

w is finite additive but not countably additive since

+oo
N = U 25{n}, but u(N) = 400 # Zu({n}) =0. pis not a
measure. n=1
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Let (X, .o, u) be a measure space. The measure u fulfills the
following basic properties

O Ly is finitely additive For any finite subsets Al, L A e o
of disjoints elements of <7, p(U Z L(A)).

@ v is monotone If A, B € &/ with AC B, then w(A) < u(B).

© p is countably subadditive If (A,), € & and A = U5 A,
then

+o0o
(A) < ZN(An)
n=1
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O (Continuity from below:) If (A,)n is an increasing sequence in
o, and A= UTA,, then u(A) = nli)rroo 1(An).

© p is subtractive If A,B € & and A C B and u(B) < +o0,
then u(B\ A) = u(B) — u(A). (u(A) < oo suffices).

O (Continuity from above:) If (A,), is a decreasing sequence in
o/ with (A1) < oo, then p(A) = nli)rroo w(An), with

A=NI%A, = lim A,

n—-+o00
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© This property is obvious.

@ B=AU(B\A), then u(B) = u(A) + u(B\ A) > p(A). We
use the property 2) of the definition of measure.

n—1
O Let By = Ay, and B, = A, )\ U Bj, for n > 2. The sets (B,)n
j=1
—+o0 400
are disjoints and A = U B, = U An. So
n=1 n=1

+o0 +oo
(A = 3" u(Ba) < 3 ul(An).
n=1 n=1
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n n
Q Let (By)n asin 3). Since | J Aj = | J B;, then
j=1 j=1

“+o0o “+oo +oo
uA) = JA) = w(lJBa) =D u(Br) = lim > u(B))
n=1 n=1 n=1

j=1
= JmelUB) = Jim w4 = fim (4
j=1 j=1
Q u(B\ A)+ u(A) = u(B). If u(A) < oo then
u(B\ A) = u(B) — pu(A).
@ Apply 3) to the sequence (A1 \ An)n.
O
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Exercise

Let (X, <) be a measurable space and p: &/ — [0,4+00] a set
function. Prove that p is a measure if and only if

i) u(0) =0

i) W(AU B) = u(A) + u(B), if AnB = 0.

i) If (An)n is an increasing sequence in the o-algebra <7, then

+o00
w(J A = lim u(An).
n=1

n—-+o00
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Solution

If 11 is a measure, the properties i) and ii) are evident. Let now (A,)n
be an increasing sequence of the o-algebra 7, then the sequence
(Bp)n defined by By = A; and B, = A, \ UJ’.’;llAj is disjoint and

+oo “+o00
J An = Ba- Then
n=1 n=1

400 00 n
“(UA"> = 2 uB)= fim 3 u(E)
n=1 n=1 j=1

= lim (Ui By) = lim pu(An).

n—-+00
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Conversely, if p fulfills the properties i), ii) and iii) and (A,), a
n

sequence of disjoint measurable sets. Let B, = U A;j, for n € N.

j=1
+o00 +o0o
The sequence (Bp), is increasing and U A, = U B,. Then
n=1 n=1
+00 +oo
iU An) = lim,_p(Bn) = nﬂTmZu =2 nAn)
n= n=

Y, Ol’lgl » Measure Theory



Introduction on Measures

@ We say that the measure p is finite if u(X) < +oo.

@ We say that the measure p is o-finite if there exists an

increasing sequence (A,), of measurable subsets of finite
“+o00

measure and U A, = X.
n=1
© A probability measure is a measure on (X, <) such that
wu(X) = 1. In this case the o—algebra 7 is called the space of
events.

v
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Let (X, o) be a measurable space. We denote by .Z(X, <) or
A (X) the set of measures on the measurable space (X, o). We
have the following properties

The set .#(X) is a convex cone: If 1 and po are in .Z(X) and
A € R, then pg + uo, Ay are measures. We order the set .Z/(X)
by the relationship

1 < pp = Ml(A) < ,UQ(A); VA € & .
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Let (X, .o/) be a measurable space. If (un), is an increasing
sequence of measures, then the set function p: & — [0, +00]

defined by u(A) = —|I>T tn(A) = sup un(A) forany A€ o7 is a

measure on X.
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It is clear that p(0) = 0= lim p,(0), and if A, B are two disjoints

n—--oc0
measurable sets, we have

WAUB) = Tim pin(A)+ T pn(B) = u(A) + u(B).

n—-+00

“+o00
Let now (Ap), be an increasing sequence of &7 and A = U A,. We
n=1

have
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14j(An) < p(An) < u(A). Then

; = i : < i <
pi(A) = lim p;(An) < lim pu(As) < p(A)
and

u(A) = lim p;(A) < lim pu(Ag) < p(A).

j—+oo n——+00

Then pu(A) = lim  pu(An).

n—-o00
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Lebesgue-Stieltjes Measure

Definition
A Lebesgue-Stieltjes measure on R is a measure on the Borel
o—algebra Z% such that (/) < 400 for all bounded interval /.

Proposition

Let i be a Lebesgue-Stieltjes measure on R. Define f: R — R by
f(b) — f(a) = pla, b]. For example, fix f(0) arbitrary and set

f(x) — f(0) = p]0, x], if x>0,
{f(O) — f(x) = p]x,0], if x<O0.’

The function f is right continuous and increasing.

v
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Let a < b, f(b) — f(a) = pla, b] > 0. Also, if (x,)n is a decreasing
sequence and converges to x, then nﬂrpoo w]x, xn] = nﬂrpoo f(xn) —
f(x)=0.

O
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Q Let a e R,

u{a} = I|m u]a—1 a= lim f(a)—f (a—l):f(a)—f(a—).

n—-+o00 n

Then f is continuous at a if and only if u{a} = 0.

© ([, b]) = f(b) — f(a-),
p(la, bl) = f(b—) — f(a),
p([a, b) = f(b—) — f(a—),
p(la, b]) = £(b) — f(a).
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Let f: R — R™ an increasing right-continuous function. There is a
unique measure u on %% such that pla, b] = f(b) — f(a).
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We know that o(Z) = Z.

LetZ = {]a,b] : —o0 < a< b < oo}. Set f(+00) = limy_y 400 F(X)
and f(—o0) = limy__o f(x). These quantities exist since f is
increasing. Define for any u(]a, b]) = f(b) — f(a), for any —oo <
a < b < oo. Suppose Ja,b] = U_,]a;, bj], where the union is
disjoint, then 1(]a;, bj]) = f(b;) — ( ;) and

> ullaj, b)) Zf ) — f(aj) = £(b) — f(a) = u(la, b)),
j=1

which proves that condition (i) holds.
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o0

For (ii), let a,b € R and ]a, b] C Uj-il]aj,bj] where the union is
disjoint. (We can also order them if we want.) By right continuity
of f, given ¢ > 0 there is § > 0 such that f(a+0) — f(a) < ¢, or
f(a+9) < f(a)+e.

Similarly, there is 7; > 0 such that f(b; + ;) < f(b;) + 5, for
all j. Now, {]aj, bj + n;[} forms an open cover for [a + 4, b]. By
compactness, there is a finite sub-cover. Thus,

[a+6,b] C UL laj,b; + mi[ and Ja + 6,b] € UY,]a;, bj + 1yl
Therefore
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N
f(b)—f(a+3) < > ullaj b +ul) = Fbj+m)—f(a)

j=1 Jj=1
- Z f(bj +mn;) — f(b;) + f(b;) — f(a))
j=1
N c +oo
< Z 5T Z(f(bj) — f(a)))
j=1 J=1
“+o0o
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Therefore,

p(la b]) = f(b) - f(a)

+oo
< 24> p(laj, b))
=1

If ]a, b] C j;of]aj, bj], a and b arbitrary, and ]c, d] C]a, b] for any
¢,d € R, we have by above
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Z —faj

and the result follows by taking limits. d
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Complete Measure Space

Definition

Let (X, <7, ) be a measure space. A subset A of X is called a
null set or a negligible set if A is contained in a measurable
subset of measure zero.
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Let (X, 7) be a measurable space such that Vx € X; {x} € «.
If we take = §,, with a € X; then any subset A € &/ such that
a ¢ Ais anull set.
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We denote by .4 the set of null sets. We have the following
Q@ 0es.

@ Any subset of a null set is a null set. If AC B and B € ./,
then there exists C € 4 such that u(C) =0 and B C C; so
AcC C.

© A countable union of null sets is a null set. If (A,), is any
sequence in .4 . For each n € N choose B,, € £ such that
An C By andu(B)—O Now B = |J/% BE%’and
Unst An © UnO? By, and (U271 Bn) < 32,5 #(Bn), s0
(U+°° By) =
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Definition

If P(x) is some assertion applicable to numbers x of the set X, we
say that
P(x) for almost every x € X or P(x) a.e. (x)

or
P(x) for u — almost every x, P(x)u — a.e.(x),

to mean that

{x € X; P(x) is false}

is a null set.

Y, 0ng| » Measure Theory



Complete Measure Space

Definition
A measure space (X, .7, 1) is said to be complete if any null set is
measurable (4" C &), we say that the measure p is complete.

Let (X, .o, ) be a measure space, and let .4 be the set of null
subsets of X. Let Z={AUB; A€ &/ and B€ A4}. Aisa
o-algebra on X and there exists a unique measure v which extends
the measure p on the o-algebra . The measure space (X, A, v)

is complete.
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2 is evidently closed under countable union. It suffices to prove that
it is closed under complementarity. Let A” = AU N be an element
of #. As N is a null set there exists B in &/ N4/ and N C B. We
have

A = (AUN) = (AUB) U(B\ (AU N)).

It follows that A’“ is an element of .

If the measure v exists it is unique. Indeed we must have v(N) =0
for any N € 4, thus if A = AU N is an element of % we shall
have v(A) = u(A).

Y, Ol’lgl » Measure Theory



Complete Measure Space

To show that v is a mapping on %, we must show that if Ay UN; =
A> U Ny with A1, Ay € o7 and Ny, Nb € 4, then /,L(Al) = H(Az)
So we have A; \ A2 C Ny, then it is a null set. If B = A; N Ay, then
A1 = BU (A1 \ A2) and pu(B) = p(A1). In the same way we have
1(B) = u(Az), then u(A1) = p(Az).

Let prove now that v defines a measure on the o-algebra . If
(A7), is a disjoint sequence in £, with Al = A,UN,, A, € o and
N, € N; ¥n € N, we have
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“+oo +oo ~+o00 +00 +oo +oo
(U A = v (U AU Wa) = (U An) = D~ (An) = Y w(A,
n=1 n=1 n=1 n=1 n=1 n=1

Finally the measure space (X, %, v) is complete because the v-null
sets are elements of 4. It is evident that v is the smallest complete
extension of the measure p.

O
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Outer Measure

Definition

Let X be a non empty set. An outer measure or an exterior
measure p* on X is a function p*: Z(X) — [0, oo] which
satisfies the following conditions

i) u*(0) = 0.

ii) If (An)n is a sequence of subsets of X, then

+oo +o0
n=1 n=1

iii) p* is increasing (i.e. u*(A) < p*(B) if AC B).
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Remark
Any measure on Z?(X) is an outer measure.

Definition

Let X be a set and u* be an outer measure on X. A subset A of X
is called pu*—measurable if

VB C X; u'(B)=p(BNA)+u(BnAY). (2)

(The condition (2) is called the Caratheodory criterion.)

Y, Ol’lgl » Measure Theory



Outer Measure

We introduce now the most important method of constructing mea-
sures called the Caratheodory’s construction.

[Caratheodory’s Construction]
Let X be a non empty set and p* be an outer measure on X. Then
the set A of u*-measurable subsets is a o-algebra on X and the
restriction of u* on 4 denoted . = u*| 4 is a complete measure.
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i) 0 is p*-measurable since p*(BNO)+p*(BNO) = p*(0)+u*(B) =
' (B).

ii) Let A be a p*-measurable set and B a subset of X. It follows
from the definition of the outer measure that p*(B) = p*(BNA) +
w*(B N AS), then A€ is also p1*-measurable.

i) Let A, B € % and E a subset of X. As A is measurable,

wW(EN(AUB)) = p(EN(AUB)NA)+ u"(EN(AUB)N A
= p(ENA)+p"(ENBNA") (3)
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In use of the identity (3) and A, B € 4, we have

p(EN(AUB)+u*(EN(AUB)Y) = p*(ENA)+p*(ENBNA%)+
= p(ENA)+pu (ENAT) = pu

Then AU B is measurable.
iv) Let A1, Ay be two disjoint measurable sets, B a subset of X and
E = BN (A1 UAy). Since EN (A1 UA)¢ =1, we have
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p(E) = p* (EN(ALUA)) + p"(EN(ALUA)) = p*(ENAL)+ "
= p(BNAL)+u"

Thus

/L*(B N (A1 U Az)) = ,U,*(B N Al) + M*(B N A2)

Let (An)n be a disjoint sequence in Z and B C X, we have
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p'(B) = wi(Bn JA)+u (BN (JA))

j=1 j=1
n +00

> w80 A+ Bn(JA))
j=1 Jj=1
n “+o0o

> Y u(BnA)+ (BN A)).
j=1 j=1
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Then

+00 +oo
pr(B) = Y u(BNA)+ (BN ([ AN (4)

+00 “+o0o
> (B0 A+ (B (| A

n=1 n=1
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The converse inequality results from the property of the outer mea-

sure u*.
To finish the proof we take a sequence (B,), in % and set A; = By,
+o00 +oo
A, = B,,\U B;. We have U A, = U B,. Thus A is a o-algebra.
j=1 n=1 n=1

The restriction of p* on Z is a measure is deduced from (4).

It remains to show that the measure p* is complete. To prove this,
it suffices to prove that any null set A is measurable.

If Ais a null set, then there exist B € % such that A C B and
w*(B) =0. If E is a subset of X, u*(ENA) =0 and

p(E) = pr(ENAT) = " (ENA) + p*(E N AY).
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The other inequality results from the definition of the outer measure
w*. Thus A is p*-measurable.
O
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Proposition

Let (X, .o, ) be a measure space. We define the set function
w*: 2(X) — [0, +o0] by

+o0o +oo
pr(A)=inf{d (A AC | JAsand A, e 7} (5)

n=1 n=1
ko o *
w* is an outer measure and any measurable set is p*-measurable
and the restriction of u* on f is equal to the measure L.
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It is easy to prove that p*()) = 0 and p* is increasing.
Let (A,)n be a sequence of subsets of X. We claim that

+00 “+o0o
U*(U An) < ZM*(An)-
n=1 n=1

If there exists a subset A, such that u*(A,) = +oo, then the in-
equality is trivial.
Assume now that Vn € N; p*(A,) < +o0.
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For every n € N, and for every € > 0, there exists a sequence
(Anj)j € @, such that p*(A,) > j;of 1(Anj) — 55
Then the sequence (A )jnen is a covering of the set

+00 +00

A= UA andZZu ”J)<Z“
n=1 j=1
Then w (A) < ST (An) +e, for aII e > 0 and thus

< Z,u*(A,,), which proves that p* is an outer measure.
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Let now proving that u* = u on &7.
If A€ o, then pu*(A) < p(A), and if p*(A) = +oo then p*(A) =

1(A).
Assume now that p*(A) < 400, then for every € > 0, there exists
a covering (A,)n of A in &7 such that

+oo
1A =Y (A <.
n=1

+oo
Since p(A) < Z“(A”)' then p(A) < p*(A) + € for every € > 0.
-1

Thus p(A) = p*(A),YA € o .
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We claim to prove that any measurable set is p*-measurable.
By definition of the outer measure, if A€ & and B C X

1 (B) < (BN A) + (B A°).

If 1*(B) = +oo, then u*(B) > u*(B N A) + u*(B N A°).
Assume now that p*(B) < 400, hence for ¢ > 0, there exists a

+o0
covering (B,)n of B in o/ such that p*(B) > Z,u(Bn) — e. Since
n=1
o is a measure u(AN Bp) + p(A€ N Bp) = p(By), then
+oo +oo

pH(B) = " u(BanA)+Y  pu(BaNAS)— > p*(BNA)+u* (BNAS)—e.

n=1 n=1
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We deduce that ©*(B) > p* (BN A) + p*(B N A°) and then
w'(B) = p*(BNA)+ u (BN A°). Which proves that A is u*
measurable.

ad
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An outer measure can be also defined from any set function in the
following sense

Proposition

Let C € AX) and p: C — [0, +oc] be such that (), X € C and
p(0) = 0. For any A C X, define

+oo
i (A) =inf{D_ p(An); Ap€Cand ACUISA}L  (6)
n=1

Then p* is an outer measure.

.
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For any A C X there exists (Ap), in C such that A C UﬁiﬁAn (we
can take A, = X), then p* is well defined. Obviously p*(0) = 0
and p*(A) < p*(B) if A C B. To prove the countable subadditivity,
let (An)n in AX) and A = U A,. Without loss of generality, we
can assume that p(A,) < +oo for all n € N. For ¢ > 0 and for all
n € N, there is a sequence (A, x)k in C such that A, C UE‘;A”J{

+oo
and Zp(An’k) < ur(An) + % We have A C szzlA,,,k and
k=1

+oo +o0
Z p(Ank) < ZM*(An) t+e.
nk=1 n=1

O

Y, Ol’lgl » Measure Theory



Outer Measure

Let (X, .o, ) be a o—finite measure space and let p* be the outer
measure defined by

+oo +o0
pi(A) =inf{d 1 (An); AC | JA,and A, € 7},
n=1

n=1

We denote 4 the complete o-algebra and % the o-algebra of the
w*-measurable sets. Then & = .

v
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According to the Proposition (45) &/ C Hp.

Let A be a null set, there exists a measurable set B such that A C B
and u(B) = 0. Let E be a subset of X;
w(ENA)<u(B)=0and p*(ENA°) < u*(E), then

p(E) = p (ENA) + p*(ENAT)

and B C H,.
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Let A € Ay, assume that p*(A) < 400, then for all n € N, there
exists a covering (A;,); € & of A such that

400 1
> n(Ain) < (A +
j=1

SR

“+oo
We denote B, = | J Ajn. A C B, and u(B,) < p*(A) + %. Let
j=1
+o0o
B = ﬂ B, B € o/. Since A C B, p*(A) < u(B). Moreover
n=1

u(B) < u(Bn) < p*(A) + 5, ¥n € N. Thus u(B) = u*(A).
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Since p*(A) < oo, u*(B\ A) = 0. Then A= Bn(B\ A)° and
A¢ = B°U(B\A).

(B\ A) is a null set then it is in the o-algebra #. B is also in the
o-algebra . Then A¢ € # and also A.

Y, Ol’lgl » Measure Theory



Outer Measure

If u*(A) = +o0. As p is o-finite, there exists a sequence (E,), of

+oo
measurable sets such that p(E,) < +oo and U E, = X. Then any
n=1
A € %y is written as
+o0
A= U An,  An € Bo, and p*(Ap) < +o0.
n=1

Then A, € & and A € A.
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Extension of Measures

Let 41 and o be two measures on a measurable space (X, 4).
Assume that there exists a class ¢ of measurable subsets such that
a) ¢ is closed under finite intersection and that the o-algebra
generated by % is equal to A.

b) There exists an increasing sequence (E,), in € such that

lim E,=X.
n—-+o00
c) p1(C) = u2(C) < +o0, for any C € 7.
Then p1 = po.
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We suppose in the first case that p1(X) = p2(X) < +oo.

Let & = {A € %; ui(A) = u2(A)}. By hypothesis X € € and
¢ C 4. It is easy to prove that .7 is a monotone class. (If (Ap), is
an increasing sequence of o7, then p31(A,) = u2(A,) for all n, and
then

n—-+o0o

+oo
(| An) = 12 UA = pa( Jim An) = po( lim An).
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If (An)n is a decreasing sequence of o7, then pi(A,) = p2(A,) for all
n, as p1(X) = pa(X) < 400, then 1 (Mp25 An) = p2(,25 An)-)
of is a o—algebra. (If A,B € o/ with A C B, then u1(B\ A) =
p(B) — 1 (A) = pa(B) — pa(A) = po(B\ A) and so B\ A € /.
We use the fact that pg, po are finite and p1(X) = p2(X)). Then
0(¢)=%B C o/ and o/ = A and 1 =

In the general case we take p; , the restriction of u; on E, for all
n € N. From the first case 1, = pz,n, which gives 1 = puo,
because pj = lim pjn; j=1,2.

n—-+o00

O
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Extension of Measures

Definition

If AC IAX) is an algebra and p: A — [0, +00] is called a
pre-measure if

a) u(0) =0
b) If (A,) € J?/s a disjoint sequence, then

p(U A ZM
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Extension of Measures

If i is a pre-measure on an algebra A C P(X), it induces an outer
measure on X defined by (6).

Proposition

If 11 is a pre-measure on an algebra A and p* is defined by (6), then

a) Ui, =
b) every set in A is pu* measurable.
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Extension of Measures

a) Suppose A € A and A C U;ﬁ‘{An, A, € A for all n € N. Let
B, = AN (A, \ UL AL). Then the sequence (B,), is disjoint in A

whose union is A (i.e (By)n is a partition of A), so u(A) = Z w(Bn).
n=1

It follows that p(A) < p*(A), and the reverse inequality is obvious

since A C U,T;'({An, where Ay = A and A, =0 for all n > 2.
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Extension of Measures

byIf Ac A B C X and ¢ > 0, there is a sequence (B,), € A with

B CcuU%B, andz,u (B) +¢. Then

+oo +oo
F(BNA)+u*(BNAS) <Y~ u(BanNA)+Y  p(BanAS) < i*(B)+e.
n=1 n=1

Since ¢ is arbitrary, A is p* measurable. d
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Extension of Measures

Let A C X) be an algebra, 1 a pre-measure on A, and - %the
o—algebra generated by A. There exists a measure y on - %whose
restriction to A is u1, g = ,ufrywhere i is defined by (6)

(relatively to p1). If v is another measure on . %7that extends iy,
then v(A) < u(A) for all A € .27 with equality when u(A) < co. If
w1 is o—finite, then u is the unique extension of 1 to a measure on

N4
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Extension of Measures

The first assertion follows from Caratheodory's theorem and Propo-
sition (62) since the o—algebra of p*—measurable sets includes A
and hence includes .97 For the second assertion, if A € .%7and
A CUSA,, where A, € A, v(A) < S5 1 (An) = 5125 u(An),
hence I/(A) g w*(A) = u(A). Also, if B =UJA,, we have

V(B) = lim WUl A) = lim ju(UyA) = u(B)

n—-+o00
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Extension of Measures

If u(A) < 400, we can choose the sequence (Ap), so that u(B) <
w(A) + €, hence u(B\ A) < ¢ and

u(A) < u(B) = 1(B) = v(A)+(B\A) < v(A)+u(B\A) < v(A)te.

Since ¢ is arbitrary, ,u(A) = v(A).
Finally, suppose X = U!JK, with u(K,) < 400, where we can
assume that the K, are dIS_jOInt Then for any A € .7

1(A) = ZuAmK Z(AﬂKn):u(A),

n=1

SO V = U. (|
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Lebesgue Measure on R

Lebesgue Measure on R

There exists only and only one measure A on % satisfying
i) A invariant under translation. (i.e.

Vx € R, VA € Zr; Mx+ A) = A(A)).

i) A([0,1]) = 1.
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Lebesgue Measure on R

Proof

Uniqueness

Assume that there exists two measures p and v on %Bp satisfying
(i) and (i) then v[0,2[< 1 = »{0} = 0 and then any finite set
or countable set is a null set and all the intervals [a, b], |a, b], [a, b[
and ]a, b[ have the same measure and equal to b—a. (We treat the
case of a and b rational and take the limit.)

We denote by & the set of finite union of intervals of R in the form
[a,b[; a,b € R. The set & is closed under finite intersection and
R =J,[=n,n[. Then px =v on &. It follows from the uniqueness
theorem (5) that x and v are equal on %g.

Existence We need the following lemma.
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Lebesgue Measure on R

Define for any subset A of R

pH(A) = it%fz.,%(l).

ez

Z describes the whole of finite or countable coverings of A by
open intervals, and .Z(/) the length of /. u* fulfills the following
properties.

© u* is an outer measure. We denote % the o-algebra of
p*-measurable sets.

@ For all interval | of R, p*(1) = 2(1).
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Lebesgue Measure on R

© If Qis an open set of R and (/,), its connected components,
then p*(Q) = 32725 .2(1,).

n=1

@ For any subset A C R,

“(A)= inf u*(O).
©*(A) OO;)neHDAu(O)
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Lebesgue Measure on R

@ By proposition (51) p* is an outer measure.

@ If a and b are the endpoints of | and € > 0, then
I Cla—e,b+¢[and p*(1) < Z(I) + 2¢. It follows that
w (1) < 2.
Conversely let (Ix)x be an open covering of /, then
[a+e,b—¢e] CU k. As[a+¢e,b—¢] is compact, there
exist a finite sub-covering (/x)1<k<n such that
[a+e,b—¢] CUL_ Ik It results that

n “+oo
b—a—-2e<Y Z(I) <Y Z(l). Thus
k=1

k=1 =
b—a—2e < pu*(l) for any € > 0, hence Z(1) = u*(1).
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Lebesgue Measure on R

© Let Q be an open set of R and (/,), its connected
components, from the definition of p*

+oo
W@ < 2 (). 7)
n=1
Conversely let (Jx)x be a covering of Q by open intervals, we
+oo
have Ip = |_J Ji (V. It results that
k=1
+00 +00 400 +00 400
YSEIED 9 SELUBENNS 35 SELIEEN
n=1 n=1 k=1 k=1 n=1
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Lebesgue Measure on R

In the other hand the intervals (/,), are disjoints, then for any
m

m, U(Jk N1,) C Jx and for all m € N;
n=1

m

D LN ln) < L(J). It results that

n=1

“+o0o +00

S LU I) <L)
n=1 k=1
Then

+o0
S°2(h) < w*(9). (8)
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Lebesgue Measure on R

So the relations (7) and (8) gives that u*(Q) = Y2120 .Z(1,).
O Let AC R and (/p)n a countable covering of A by open
intervals. If w = (J25 1, u*(A) < p*(w) < 505 2(1).

Then p*(A) < inf  p*(0). The converse inequality is
O openDA

evident if p*(A) = +o0.

If 1*(A) < 400, for € > 0, there exists a countable covering
+o0o

(In)n of A by open intervals such that Zﬁ(ln) < p*(A) +e.
n=1

The open set Q = U;L;’?l,, contains A and

400
p*(0) <> L(I) < p*(A) + €. Then

n=1
inf  1*(0) < u*(A).
ooL"engA“( ) < ¥ (A)

O
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Lebesgue Measure on R

The previous lemma proves also easily that p* is an outer measure
on Z(R). Indeed

i) p*(0) = 0.

i) If A C B, then u*(A) = imcw(open)DA p(w) < imcw(open)DB P (w) =
p*(B).

i) If (An)n is a sequence of subsets of R. It suffices to prove that

+o0
PR AR) < D 15 (An)- (9)

n=1
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Lebesgue Measure on R

If there exists ng such that p*(An) = 400, the inequality (9) is
trivially fulfilled.
If u*(An) < 400 for all n € N, for € > 0, then for any n € N there

€
exists an open set w, containing A, such that u*(w,) < u*(An)—i—?.

+oo +00 +o00 c +oo
W (UF25An) < i (U52500n) € 317 (n) € 3 i (ADEY o = S
n=1 n=1 n=1 n=1

(10)
+o0 +oo
for any € > 0, thus u*(U Ap) < Z,u,*(A,,).
n=1 n=1
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Lebesgue Measure on R

Proposition

Any Borelian subset is Lebesgue measurable i.e r C %y.
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Lebesgue Measure on R

It suffices to prove that Va € R, |a, +oole H. Let E be a subset
of R, our goal is to prove that

i (E) = p* (Enla,+oc]) + w'(EN] = o0,al). (1)

Since u* is an outer measure, p*(E) < p*(EN]a, +oo[) + p*(EN] —
00, a]). For the converse inequality the result is trivial if u*(E) =
+00. Assume that p*(E) < +oo. Let € > 0 there exists an open
set Q. D E such that : p*(Q2:) < p*(E) + €. Assume in the first
time that a ¢ Q..
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Lebesgue Measure on R

w@) = 2n= Y 2n+ Y 20) (12

lec leCn]a,+oo[ leCN]—o0,a[

with C the set of the connected components of Q.. Then

p(Qe) = p*(QeN]a, +oo)+p" (2] =00, al) > p*(EN]Ja, +oo)+1"(EN]

Therefore p*(E) > p*(EN]a, +o0[) + p*(EN] — o0, a]).
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Lebesgue Measure on R

If now a € Qg, let Q. = Q. \ {a}. According to the first remark
W) = pt(Q2). 0
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Lebesgue Measure on R

of theorem (6)

According to the theorem (37), Zy is a o-algebra and A = 1i*|: is
a complete measure. %y, is called the Lebesgue o-algebra and the
elements of %y are called the Lebesgue measurable sets. The
measure A is complete and called the Lebesgue measure on R. )\
fulfills the theorem (6). O

Y, Ol’lgl » Measure Theory



Lebesgue Measure on R

Proposition

Let &y be the Lebesgue o-algebra on R, then V A € %

A(A) - w oipneiDA A(w)
A(A) = sup A(K).

K compactCA

We say that the measure X is regular.
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Lebesgue Measure on R

If Ais bounded, there exists n € N such that A C [—n, n]. For any
e > 0, the set [—n, n] \ A is measurable, then there exists an open

set w D ([—n, n] \ A) such that
AMw) < X[=n,n]\ A) + e = A[-n,n — A(A)+¢

because A([—n, n] \ A) = infy, opens([=n,n\a) Aw)-
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Lebesgue Measure on R

Let K = [—n,n]Nwc. K is a compact in A.

2n = N[—n, n] = A([—n, n]nw®)+A([—n, n]"w) < XN(K)+e+A[—n, n]— (4

Then A(A) < A(K) + € and A(A) = supk compactca A(K).
If A is not bounded, then Vn € N there exists a compact K, C
[—n, n]| N A such that

AKy) > A([—n, 1] N A) — %

then

sup  A(K) 2 sup(AM(Kn)) > _lim (/\([—n,n]ﬂA)—%):)\(A)

K compactCA - n—doo

O
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Lebesgue Measure on R”

Lebesgue Measure on R”

Lebesgue Outer Measure on R”

@ A subset R of R” is called a rectangle if R = er":1 l;, where [;
are intervals of R.
The rectangle R is called an open rectangle (resp closed
rectangle) if the intervals (/;); are open (resp closed).
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Lebesgue Measure on R”

@ If R is a closed rectangle defined by
R—{XER"'aj<xJ<bj, 1 <j < n}, we set

Vol(R) = H(b ) called the volume of R. If the rectangle

is not cIosed we take the same volume that the one of its
closure. )
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Lebesgue Measure on R”

Definition

Let A C R". We say that a family of rectangles (R;);e; is a
covering of A if A C Uje/R;. If each of the rectangle R; in the
covering is open (resp. closed), the covering is called an open
(resp. closed) covering of A.
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Lebesgue Measure on R”

Any subset of R” admits a countable covering of rectangles. (We
can take the rectangle of rational sides and centered at points with
rational coordinates.)
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Lebesgue Measure on R”

Exercise

If a rectangle R C UL R;, then Vol(R) < > ™, Vol(R;).
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Lebesgue Measure on R”

Definition

A collection of rectangles (R;); is called almost disjoint if the
interiors of R; are pairwise disjoint (disjoint for simplicity).

If a rectangle R = U/ R; such that R; are pairwise almost
disjoint, then Vol(R) = >, Vol(R;).
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Lebesgue Measure on R”

It is obvious that Vol(R) < >, Vol(R;).

Moreover U7 R;CR and the union is disjoint. Then ZVO](RJ') <
j=1
Vol(R) and then Vol(R) = 3>, Vol(R;).
O
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Lebesgue Measure on R”

An open subset Q C R”, for n > 2 is not in general a countable
union of pairwise disjoint rectangles. But in R we know that for
every open subset Q2 C R, there exists a unique countable family
of open intervals /; such that Q = U,T;"il,, where (I,), are pairwise
disjoint. (The intervals I, are the connected components of Q).

For every open subset 2 C R", there exists a countable family of
almost disjoint closed rectangles (R,), such that Q = UTXR,.
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Lebesgue Measure on R”

We consider the closed rectangles in R” of side length 1 and whose
vertices have integer coordinates. The number of rectangles is
countable and they are almost disjoint. We denote by C; those
which are contained in €.

We bisect the rectangles of the family C’ = R; \ C1 which intersect
both © and Q€ in to 2" rectangles of side length % Again we
consider the family C> which are contained in €.

Repeating this procedure, we have a countable collection (Ci)x of
almost disjoint rectangles in €. By construction, UREU:SC,(R C Q.

For x € , there is a rectangle of side length 2% in C = Utﬁi(}k
which contains x, thus, UgccR = Q.
O
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Lebesgue Measure on R”

Theorem and Definition

For any subset A of R"” we define the following set function A} (A)
as,

+oo
X5(A) = inf > Vol(Ry),
k=1
the infimum being taken over all countable coverings of A by
rectangles.
A, is an outer measure called the Lebesgue outer measure.
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Lebesgue Measure on R”

The outer measure A is unchanging if we restrict ourselves to
open covering or closed covering, i.e., for every subset A C R”,

A (A) = inf Z Vol(Rx),

where the infimum is taken over all possible countable closed or
open coverings (Ry)x of A.
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Lebesgue Measure on R”

It suffices to solve the problem for bounded subsets. Let A C R"” be a
bounded subset. For every ¢ > 0, there is a covering (Rx)x of A and

+oo
ZVOI(Rk) < Xi(A) +¢e. The sequence of closed rectangles (R )«
k=1
+o0o . +o00
is a covering of A and ZVol(Rk) = ZVOI(Rk) <A (A) +e.

k=1 k=1
If (aj«)j, (bjk)j, j = 1...n are the edges of the rectangle Ry,
we define the rectangle R, = Hf:ﬂaj,k — Ok, bj k + Ok such that
Vol(ﬁk) < Vol(Rk) + 257 (The rectangle Ry is not necessary open

or closed).
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Lebesgue Measure on R”

The sequence of open rectangles (F\gk)k is a covering of A and

“+00 “+o00 —+00
~ E %
E Vol(Rx) < E Vol(Rx) + E ok < AH(A) + 2.
k=1 k=1 k=1

If R is a rectangle in R”, then \}(R) = Vol(R).
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Lebesgue Measure on R”

It is evident that A} (R) < Vol(R). Conversely let ¢ > 0 and
let (Rx)x be a covering of R by open rectangles. We denote by

R a rectangle obtained by dilation of the sides of R such that
+oo

Vol(R) < Vol(R.) +eand R- C R C U Ry. Since R. is compact,
k=1
there exists a finite sub-covering (Rx)1<k<m of R.. Thus Vol(R.) <

m +oo
D Vol(R) <) " Vol(Ry). It results that Vol(R) —& < A3(R), for
k=1 k=1
all e > 0. Then Vol(R) = A}(R).

|
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Lebesgue Measure on R”

For n > 2, A%(R"~1) = 0, where R"~! considered as subset of R”.
Choose a covering (R;); of R™! in R™! such that Vol(R;),—1 =

1. Then Aj = Rix] — 5, 5[ is a covering of R""* in R". Thus,
R X0

Ap(R™1) <> Vol(A) = o =2
j=1 j=1
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Lebesgue Measure on R”

[Outer Regularity]
If AC R"is a subset of R”, then \};(A) = info54 A\ (2), where Q
are open sets containing A.
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Lebesgue Measure on R”

By monotonicity, A\5(A) < A%(Q) for all open set Q containing A.
Thus, A5(A) < inf \%(Q).

Conversely, for € > 0 there exists an open covering of rectangles
—+o00

(R;)j of A such that ZVol ) < A\ (A) +¢e. The open set Q =
j=1
Uj;ofRJ contains A and A\;(Q2) < ZJFOO Vol(Rj) < Ai(A) +e.
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Lebesgue Measure on R”

A subset A is said to be ¥ if it is a countable intersection of open
sets in R". We say A is F, if it is a countable union of closed sets
in R". )

For every subset A C R” there exists a ¥5 subset G of R” such
that G D A and X5 (A) = \5(G).

.
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Lebesgue Measure on R”

By Theorem (101), for every k € N there is an open set Qx D A
such that A%(Q) < Ai(A) + 1. Theset G = N/2Q is a %
set and contains A and hence A\ (A) < M\:(G). For the reverse
inequality, we note that G C €y, for all k, and by monotonicity
A5(G) < N5(Q) < A5(A) + 7. for all k. Thus, X5(G) = Ai(A). O
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Lebesgue Measure on R”

Definition

An outer measure p* on a metric space (X, d) is called a metric
outer measure if for all A, B C X such that d(A, B) > 0, then
p*(AU B) = pu*(A) + p*(B).

\,

Proposition

If A and B are subsets of R” such that d(A, B) > 0, then
Ai(AU B) = A5 (A) + X5(B). (i.e. A} is a metric outer measure).
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Lebesgue Measure on R”

We have A5 (AU B) < A\ (A) + A5(B).
+o0o
For e > 0, there is a covering (R;); of AUB such that ZVOl

j=1
A(AUB) +e.

Without loss of generality, we can assume that the diameter of R;
are less then d(A,B). (For all j € N, there is a finite covering
of R; by rectangles of diameter less then d(A, B). We have also

ZVOI ) < XS(AUB) +¢).
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Lebesgue Measure on R”

It results that there no rectangle R; which intersects A and B at the
same time. Let | = {j; RiNA # 0} and J = {j; RiNB # 0}. | and
J are disjoint. Thus, (R; )Jel is an open covering of A and (R})jey
is an open covering of B. Thus,

X(A)+A5(B) < > Vol(Rj)+> _ Vol(R ZVOI R;) < A\5(AUB)+e,
jel jed Jj=1
which proves that X5 (A) + A5 (B) < A (AU B). ad
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Lebesgue Measure on R”

If (R;); is a sequence of almost disjoint closed rectangles, then

A5 (Uf R)—Zvol
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Lebesgue Measure on R”

—+00
If A=ULTR;, then A5(A) <> Vol(Rj)

j=1
Fore >0, let 5 C R; be open rectangle such that
i) Vol(R;) < Vol(S)
ii) (SJ,Sk) > 0, for aIIJ # k.

Then by Proposition (105), A5(U%;S;) ZVO] ) for all k € N.

J

. k
Since Uj:15j C A,

A5(A) = A5(UE4S)) ZVOI >ZV01

“+o00 “+o00
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Lebesgue Measure on R”

If Q2 is an open set and 2 = Ufoij where (R;); is an almost

disjoint closed rectangles, then

3@ = 3 Vol(R).
Jj=1
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Lebesgue Measure on R”

Let Ay, be the o-algebra of A\j-measurable sets. The restriction of
A;, on the o-algebra %y, is a measure called the Lebesgue
measure on R” and denoted by A\,. The o-algebra %, contains
the Borel o-algebra %rn. Moreover the measure A\, is the unique
measure invariant under translation on R"”. Moreover the measure
An is regular.
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Lebesgue Measure on R”

Let Q = [J;_; Rk be a finite union of disjoint rectangles, then

X(Q) = > Vol(Ry). Indeed it is evident that An(| J Ri) <

k=1 k=1
ZVOI(Rk) where the rectangles can be opens or not, it suffices
k=1

to take the closure of Ry.
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Lebesgue Measure on R”

Conversely if (Qx)« is a covering of Q by rectangles, then R;
U2 (Qk N R;) = Vol(R;) = A\i(R ZVOI (Q«x N R;) and since

(Ry); are disjoints; > Vol(Qc N R;) = Vol(Qx). It results that
j=1

m
ZVOI(Rk) < A (URL1Rk), this which yields the result. The result
k=1
remains valid if we have a sequence (Ry)x of disjoints rectangles and

+oo
if £=|_J Re. then X;(E) = 3, Vol(Ry).
k=1
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Let A € %y, and (Ri)k a covering of A by open rectangles. We

+00 oo
set Q = U Rk D A, thus A\ (A) < A\ (Q) < ZVol(Rk). It results
k=1 k=1
that
Ar(A) = inf  AN(Q).

Q openDA

Let prove now that the open rectangles are measurable with respect
to the outer measure A}. Let E be a subset of R” and R an open
rectangle, we claim that

A(RNE)+ A (ENRS) = X,(E).
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Lebesgue Measure on R”

We have evidently A5(E) < ANi(RNE)+ X;(E N R). For the
other sense the result is trivial if \%(E) = +o00. Assume now that
M(E) < 4o00. Let € > 0, there exists an open set €. such that
A5(R2:) < Af(E)+e. Assume in the first time that the boundary of R

+oo
denoted by OR is in the complementary of Q.. Thus if Q. = U Ry

k=1
is union of disjoint open rectangles, we have
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Lebesgue Measure on R”

+o00
() = Y Vol(R)= > Vol(R)+ Y Vol(Ry)
k=1 R«CR RiCRe
= A(QNR)+ A(QNR) > X(ENR) + M(ENRS).

We conclude that A (E) > X5(E N R) 4+ Ah(E N RC).
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If Q- MOR # (), we take the open set Q. = Q. \ dR. We have
A5(€2:) = A5(€2), this which ends the proof.
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Lebesgue Measure on R”

Let proving now that the measure A, is regular. Assume in the first
time that A is a bounded measurable set. Let R be a closed rectangle
which contains A and let £ > 0, the set R\ A is measurable. There
exists an open set O (R \ A) such that A\,(Q) < Ap(R\ A)+¢e =
An(R) — Ap(A) + . The subset K = RN Q¢ is a compact and
contained in A.

An(R) = (RN Q) + An(RNQ)) < An(K) + An(R) — An(A) + ¢

It results that A\p(A) < Ap(K) + €.
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If A is not bounded, we take an increasing sequence of compacts
(Rk)« which cover R". Then for each k € N, there exists a compact
Kk C Rx N A such that

1
An(Kk) > An(Rx N A) — PR

It results that

1
An(K) > sup An(Ki) > lim (An(ReNA)——— = An(A).
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Lebesgue Measure on R”

A subset A of R” is A¥ —measurable if and only if for any € > 0
there exists an open set Q containing A, such that A\}(Q2\ A) <e.
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Lebesgue Measure on R”

Let A be a A\, —measurable subset of R"”. We assume that \}(A) <
+00. Using Theorem (101), for € > 0 there is an open set 2 D A
such that A5(Q) < A%(A) + €. But

A(Q) = A0(QNA)+ AL (Q\A) = AL (A) + AL(Q2\ A).

Thus, A5(Q2\ A) = A%(Q) — A\5(A) < e.
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Lebesgue Measure on R”

If A% (A) = . Let Aj = AN B(0,;), for all j € N there is an open
set Q; D Aj and A\ () \ A)) < 23 The open setQ—UQ DA
and =
+00
ME@\A) =A@\ A) <e
j=1

Conversely, let A be a subset of R” such that for any € > 0 there
exists an open set {2 containing A, such that A%(Q\ A) <e
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Lebesgue Measure on R”

Let B be any subset of R” such that A}(B) < +o0o. We need
to show that A5(B) > A;(B N A) + Ai(B N A°). By Corollary
(103), there is a ¥5 set Q D B such that A\,(2) = A5(B). Then
A(B) = An(2) = Aa(QNA)+X(QNAS) > X5(BNA)+ X (BNAC).
The result is obtained by the same arguments as above if \%(B) =
+00.

O
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Lebesgue Measure on R”

The following theorem gives the essential results of this section.

For A € Z(R"), the following conditions are equivalent:

i) Ae B(\).

ii) For every £ > 0, there exists an open set Q D A such that
AE(Q\A) <e.

iii) There exists a Gs—set G D A with A\};(G \ A) = 0.

iv) For every £ > 0, there exists a closed set F C A with
MN(A\F) <e.

v) There exists an F,—set F C A such that \}(A\ F) =0.
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