

Fundamentals of Organic Chemistry CHEM 109

For Students of Health Colleges

Credit hrs.: (2+1)

King Saud University

College of Science, Chemistry Department

Aromatic Hydrocarbons

- Originally called aromatic due to fragrant odors, although this definition seems inaccurate as many products posses distinctly non-fragrant smells!
- Currently a compound is said to be aromatic if it has benzene-like in its properties.

 Benzene is the parent hydrocarbon of aromatic compounds, because of their special chemical properties.

The Structure of Benzene Ring

- Molecular formula = C₆H₆
 The carbon-to-hydrogen ratio in benzene, suggests a highly unsaturated structure.
- Benzene reacts mainly by substitution.
 It does not undergo the typical addition reactions of alkenes or alkynes.

Kekulé Structure for Benzene

- He suggested that
 - six carbon atoms are located at the corners of a regular hexagon, with one hydrogen atom attached to each carbon atom.
 - single and double bonds alternate around the ring (conjugated system of double bonds) and exchange positions around the ring.

The Structure of Benzene Ring

Resonance Model for Benzene.

- Benzene is planar.
- All of the carbon-carbon bond lengths are identical: 1.39 A°, intermediate between typical single (1.54A°) and double (1.34 A°) carbon-carbon bond lengths.
- Each carbon is therefore sp2-hybridized.
- Bond angles of 120°.

Aromatic Character (Aromaticity)

To be classified as aromatic, a compound must have:

- Cyclic structure
- 2 Cyclic structure contains what looks like a continuous system of alternating double and single bonds.
- 3 Aromatic compounds must be planar
- 4 Fulfill Huckel rule

The number of \prod electrons in the compound = (4n + 2)

Where (n = 0, 1, 2, 3, and so on).

Aromatic Character (Aromaticity)

n	4n -	+ 2	Structu	re and n	ame of	aromo	itic con	npound
1	6)		N.	√.j		\ \[\big _{\text{s}}	
			Benzene	Pyridine	H Pyrrole	Furan	Thiop	hene
Exar	mples					\triangle	⊕	
		4n+2 =	8	10		2	2	4
		n=	1.5	2		0	0	0.5
				*				
		4n+2 =	4	4	6		4	
		n=	0.5	0.5	1		0.5	

Nomenclature of Aromatic Compounds

 Monosubstituted benzenes that do not have common names accepted by IUPAC are named as derivatives of benzene.

Common names are accepted by IUPAC (parent compounds).

Disubstituted Benzenes

- When two substituents are present, three isomeric structures are possible.
 - They are designated by the prefixes; ortho-(o-), meta-(m-) and para-(p-).
 - If substituent X is attached to carbon 1;
 - o- groups are on carbons 2 and 6,
 - m- groups are on carbons 3 and 5, and
 - p- groups are on carbon 4.

m

Examples;

Polysubstituted Benzenes

 When more than two substituents are present, their positions are designated by numbering the ring.

$$\begin{array}{c} \text{CH}_3 \\ \text{O} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CI} \\ \text{CH}_3 \\ \text{CI} \\ \text{CH}_3 \\ \text{CI} \\ \text{CH}_3 \\ \text{NO}_2 \\ \text{Solichlorotoluene} \\ \text{methylbenzene} \end{array}$$

Nomenclature of Aromatic Compounds

 Two groups with special names occur frequently in aromatic compounds; the phenyl group and the benzyl group.

$$C_6H_5-$$
 or $C_6H_5CH_2-$ or $C_6H_5CH_2-$ benzyl group

Examples;

Electrophilic Substitution Reactions

Reactions of Benzene

1) Halogenation

$$+ X_2 \xrightarrow{FeX_3} + HX$$

$$X = Cl, Br$$

2) Nitration

$$+ HONO_2^*$$
 $\xrightarrow{H_2SO_4}$ $+ H_2O$

3) Sulfonation

$$+ HOSO_3H$$
 $\xrightarrow{SO_3}$ $+ H_2O$

4) Alkylation (Friedel-Crafts)

$$+ RCl \xrightarrow{AlCl_3} + HCl$$

$$R = alkyl group$$

5) Acylation (Friedel-Crafts)

$$+ R - C - Cl$$
 \longrightarrow $AlCl_3$ $+ HCl$

The <u>Mechanism</u> of Electrophilic Substitution Reactions

We can generalize this two-step mechanism for all the electrophilic aromatic substitutions.

$$+ E^{+} \xrightarrow{\text{step 1}} + E^{+} \xrightarrow{\text{step 2}} E + H^{+}$$

1) Halogenation

$$\begin{array}{c} \text{Cl} & \text{Cl} & \text{Cl} \\ \vdots \text{Cl} - \text{Cl} : + \text{Fe} - \text{Cl} & \text{Cl} \cdots \cdot \text{Fe} - \text{Cl} \\ \vdots & \text{Cl} & \text{Cl} \cdots \cdot \text{Fe} - \text{Cl} \\ \text{Weak} & \text{strong electrophile} \\ \end{array}$$

(a carbocation)

resonance forms of a benzenonium ion

The <u>Mechanism</u> of Electrophilic Substitution Reactions

2) Nitration

In aromatic nitration reactions, the sulfuric acid catalyst protonates the nitric $H = \ddot{O} - \ddot{N}$ acid, which then loses water to generate the nitronium ion (NO_2^+) , which contains a positively charged nitrogen atom.

$$H - \ddot{O} - \ddot{N} \qquad \stackrel{H^+}{\longleftarrow} H - \ddot{O} - \ddot{N} \qquad \stackrel{:O:}{\longleftarrow} H^+ + H_2O$$

$$nitric acid \qquad protonated \qquad nitronium \\ nitric acid \qquad ion$$

3) Sulfonation

We use either concentrated or fuming sulfuric acid, and the electrophile may be sulfur trioxide, SO_3 , or protonated sulfur trioxide, $^+SO_3H$.

Electrophilic Aromatic Substitution Reactions

4)Friedel-Crafts Alkylation

The electrophile is a carbocation, which can be formed either by removing a halide ion from an alkyl halide with a Lewis acid catalyst (for example, AICl₃).

$$\begin{array}{c}
Cl \\
Cl-Al + ClCH_2CH_3 & \longrightarrow Cl-Al^--Cl + \stackrel{+}{CH_2CH_3} & \stackrel{H^+}{\longleftarrow} CH_2 = CH_2 \\
Cl & Cl & cation
\end{array}$$
(4.20)

Electrophilic Aromatic Substitution Reactions

5) Friedel-Crafts Acylation

The electrophile is an acyl cation generated from an acid derivative, usually an acyl halide. The reaction provides a useful general route to aromatic ketones.

$$CH_{3}CCl + AlCl_{3} \longrightarrow CH_{3}\overset{+}{C} = O + AlCl_{4}^{-}$$

$$acetyl \ choride \qquad acetyl \ cation$$

$$+ CH_{3}\overset{+}{C} = O \longrightarrow + H$$

$$CCH_{3} \longrightarrow CH_{3}\overset{+}{C} = O \longrightarrow CCH_{3}$$

$$acetophenone$$

Disubstituted Benzenes: Orientation

- Substituents already present on an aromatic ring determine the position taken by a new substituent.
- \circ **Example**; nitration of toluene gives mainly a mixture of o- and p-nitrotoluene.

 On the other hand, nitration of nitrobenzene under similar conditions gives mainly the meta isomer.

Reactions of Benzene King Saud University

Disubstituted Benzenes: Orientation& Reactivity

Directing and Activating Effects of Common Functional Groups

- Substituents that release electrons to the ring will activate the ring toward electrophilic substitution.
- Substituents that withdraw electrons from the ring will deactivate the ring toward electrophilic substitution.

	Substituent group	Name of group				
Ortho, Para-Directing	$-NH_2$, $-NHR$, $-NR_2$	amino				
	$-\overset{\circ}{\text{OH}}$, $-\overset{\circ}{\text{OCH}}$ ₃ , $-\overset{\circ}{\text{OR}}$	hydroxy, alkoxy				
	O •• -NHC—R	acylamino	Activating			
	$-CH_3$, $-CH_2CH_3$, $-R$	alkyl				
	-F:, -Cl:, -Br:, -I:	halo				
Meta-Directing	:0: :0: 	acyl, carboxy				
	:0: :0: -C-NH ₂ -C-OR	carboxamido, carboalkoxy	Deactivating			
	:0: -S-OH :0:	sulfonic acid				
	-C≡N:	cyano				
	 N	nitro				

Side-Chain Reactions of Benzene-Derivatives

1. Halogenation of an Alkyl Side Chain

Side-Chain Reactions of Benzene-Derivatives

2. Oxidation of an Alkyl Side Chain

- Conversion into a carboxyl group, -COOH, by treatment with hot potassium permanganate.
- Regardless the length of the alkyl chain, the product is always the same.

(a raw material used in synthesizing Dacron and other polyesters)