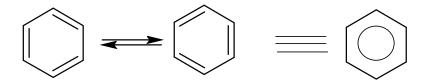


Fundamentals of Organic Chemistry CHEM 108


King Saud University

College of Science, Chemistry Department

Aromatic Hydrocarbons

- Originally called aromatic due to fragrant odors, although this definition seems inaccurate as many products posses distinctly non-fragrant smells!
- Currently a compound is said to be aromatic if it has benzene-like in its properties.

Their properties differ markedly from those of aliphatic hydrocarbons.

Aromatic hydrocarbons undergo electrophilic substitution whereas **aliphatic hydrocarbons** undergo ionic addition to double and triple bonds and free radical substitution.

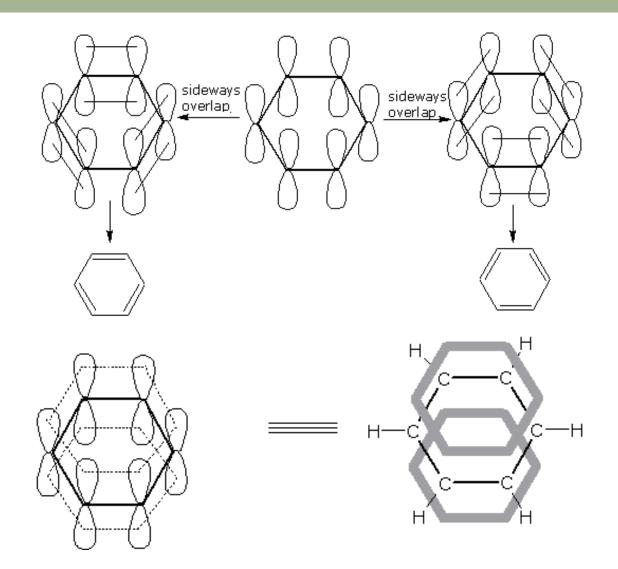
The Structure of Benzene Ring

- Benzene is the parent hydrocarbon of aromatic compounds, because of their special chemical properties.
- Today a compound is said to be aromatic if it is benzene-like in its properties.

Structure of Benzene

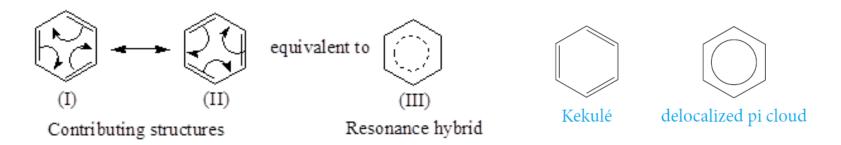
- Molecular formula = C_6H_6 The carbon-to-hydrogen ratio in benzene, suggests a highly unsaturated structure.
- Benzene reacts mainly by substitution.

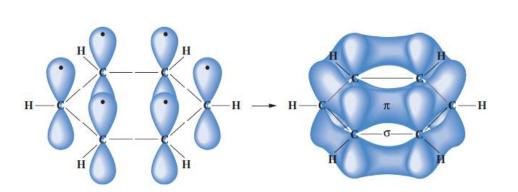
 It does not undergo the typical addition reactions of alkenes or alkynes.


The Structure of Benzene Ring

Kekulé structure for benzene.

- ➤ He suggested that six carbon atoms are located at the corners of a regular hexagon, with one hydrogen atom attached to each carbon atom.
- > He suggested that single and double bonds alternate around the ring (conjugated system of double bonds).
- Kekulé suggested that the single and double bonds exchange positions around the ring so rapidly that the typical reactions of alkenes cannot take place.




The Structure of Benzene Ring

Resonance Model for Benzene.

- Benzene is planar.
- All of the carbon-carbon bond lengths are identical: 1.39 A°, intermediate between typical single (1.54A°) and double (1.34 A°) carbon-carbon bond lengths.
- Each carbon is therefore sp2-hybridized.
- Bond angles of 120°.

Aromatic Character (Aromaticity)

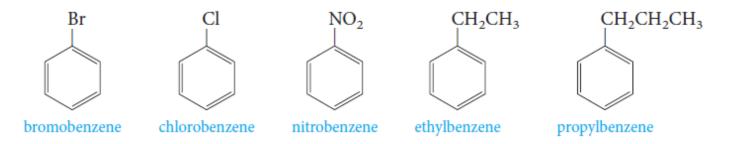
To be classified as aromatic, a compound must have:

- Cyclic structure
- Cyclic structure contains what looks like a continuous system of alternating double and single bonds
- 3 Aromatic compounds must be planar
- 4 Fulfill Hückel's rule

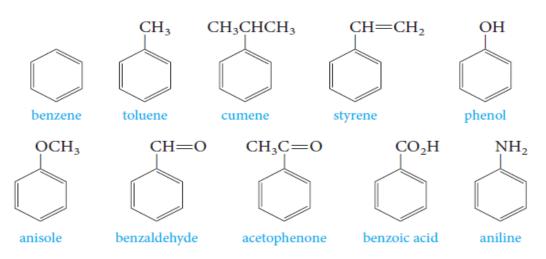
The number of π electrons in the compound = (4n + 2)

Where (n = 0, 1, 2, 3, and so on).

Aromatic Character (Aromaticity)



ō


n	4n + 2	Structure and name of aromatic compound					
-1	6			()	()	())
		Benzene	Pyridine	N H Pyrrole	Furan	S. Thiophe	ne
Exar	mples					<u>*</u>	
	4n+2 =	8	10		2	2	4
	n=	1.5	2		0	0	0.5
			*				
	4n+2 =	4	4	6	4		
	n=	0.5	0.5	1	0.	5	

 Monosubstituted benzenes that do not have common names accepted by IUPAC are named as derivatives of benzene.

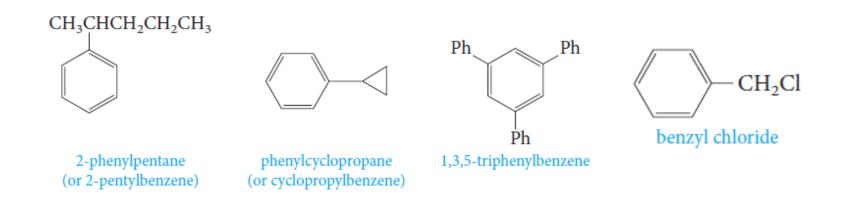
Common names are accepted by IUPAC (parent compounds).

- When two substituents are present, three isomeric structures are possible.
 - They are designated by the prefixes; ortho- (o-), meta- (m-) and para- (p-).
 - If substituent X is attached to carbon 1; o- groups are on carbons 2 and 6, m-groups are on carbons 3 and 5, and p-groups are on carbon 4.

Examples;

■ The prefixes; ortho- (o-), meta- (m-) and para- (p-) are used when the two substituents are not identical.

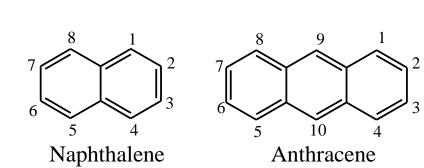
Br
$$Cl$$
 CH_3 CH_2 CH_3 CH_4 CH_5 CH_5

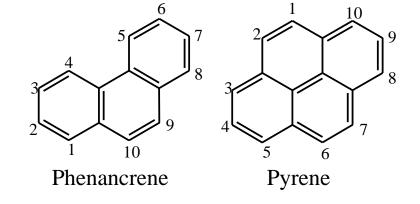

 When more than two substituents are present, their positions are designated by numbering the ring.

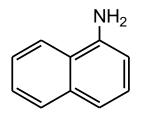
 Two groups with special names occur frequently in aromatic compounds; the phenyl group and the benzyl group.

$$C_6H_5-$$
 or $C_6H_5CH_2-$ or $C_6H_5CH_2-$ benzyl group

Examples;

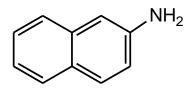





الملكسعوم King Saud University

Nomenclature of Aromatic Compounds

Polynuclear aromatic hydrocarbons containing two, three & four rings are:



IUPAC name: Common name:

1-Aminonaphthalenea-Naphthaylamine(a weak carcinogen)

2-Aminonaphthalene B-Naphthaylamine (a strong carcinogen)

In this reaction, an electrophile E + replaces a hydrogen atom, from the aromatic ring system.

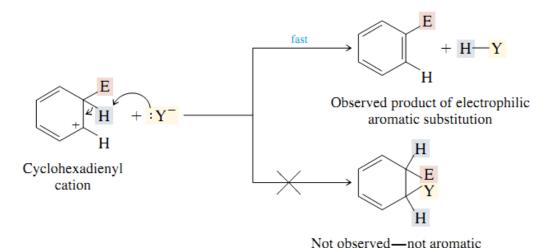
This reaction is in contrast to electrophilic addition to the double bonds of alkene

$$\downarrow H$$
 $\downarrow H$
 $\downarrow H$

 $E \xrightarrow{H} \xrightarrow{H} Y$

Alkene

Electrophilic reagent


Product of electrophilic addition

The electrophile E^+ approaches the cloud of the aromatic ring and forms a bond to carbon, creating a +ve charge in the ring

$$\stackrel{H}{\longleftarrow} \longleftrightarrow \stackrel{H}{\longleftarrow} \longleftrightarrow \stackrel{H}{\longleftarrow}$$

The removal of the proton by the nucleophile Y⁻, which leads to the restoration of the aromatic ring

The net overall result is the substitution of the group E^+ for a proton H^+ .

Electrophilic Aromatic Substitution Reactions

1) Halogenation

$$+ X_2 \xrightarrow{FeX_3} + HX$$

$$X = Cl, Br$$

2) Nitration

$$+ HONO_2^*$$
 $\xrightarrow{H_2SO_4}$ $+ H_2O$

3) Sulfonation

$$+ HOSO_3H \xrightarrow{SO_3} + H_2O$$

Electrophilic Aromatic Substitution Reactions

4) Alkylation (Friedel-Crafts)

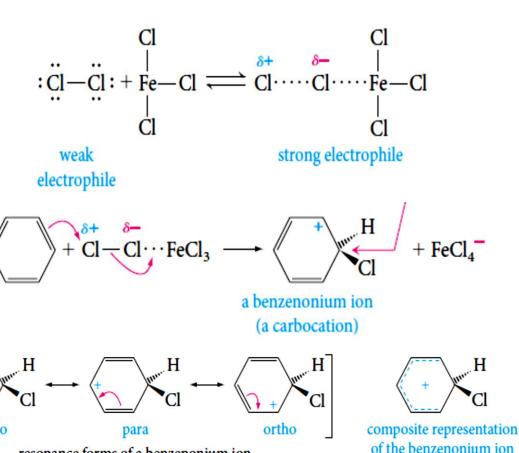
$$+ RCl \xrightarrow{AlCl_5} + HCl$$

$$R = alkyl group$$

5) Acylation (Friedel-Crafts)

$$+R-C-Cl$$
 \longrightarrow $+HCl$

The Mechanism of Electrophilic Aromatic Substitution

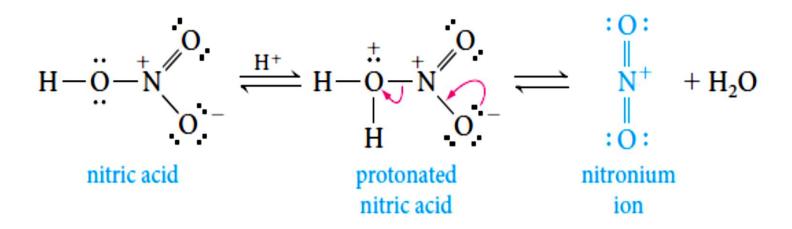

We can generalize this two-step mechanism for all the electrophilic aromatic substitutions.

$$+ E^{+} \xrightarrow{\text{step 1}} + E^{+} \xrightarrow{\text{step 2}} - E + H^{+}$$

The Mechanism of Electrophilic Aromatic Substitution

Halogenation

resonance hybrid


resonance forms of a benzenonium ion

The Mechanism of Electrophilic Aromatic Substitution

Nitration

In aromatic nitration reactions, the sulfuric acid catalyst protonates the nitric acid, which then loses water to generate the nitronium ion (NO_2^+) , which contains a positively charged nitrogen atom.

The Mechanism of Electrophilic Aromatic Substitution

Sulfonation

We use either concentrated or fuming sulfuric acid, and the electrophile may be sulfur trioxide, SO₃, or protonated sulfur trioxide, ⁺SO₃H.

The Mechanism of Electrophilic Aromatic Substitution

Friedel-Crafts Alkylation

The electrophile is a carbocation, which can be formed either by removing a halide ion from an alkyl halide with a Lewis acid catalyst (for example, AICl₃).

$$Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow CH_2CH_3 \longrightarrow Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow CH_2CH_3 \longrightarrow CH_2 \longrightarrow CH_2$$

$$Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow CH_2CH_3 \longrightarrow CH_2 \longrightarrow CH_2$$

$$Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow CH_2CH_3 \longrightarrow CH_2$$

$$Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow CH_2CH_3 \longrightarrow CH_2$$

$$Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow CH_2CH_3 \longrightarrow CH_2$$

$$Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow CH_2CH_3 \longrightarrow CH_2$$

$$Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow CH_2CH_3 \longrightarrow CH_2$$

$$Cl \longrightarrow Cl \longrightarrow CH_2$$

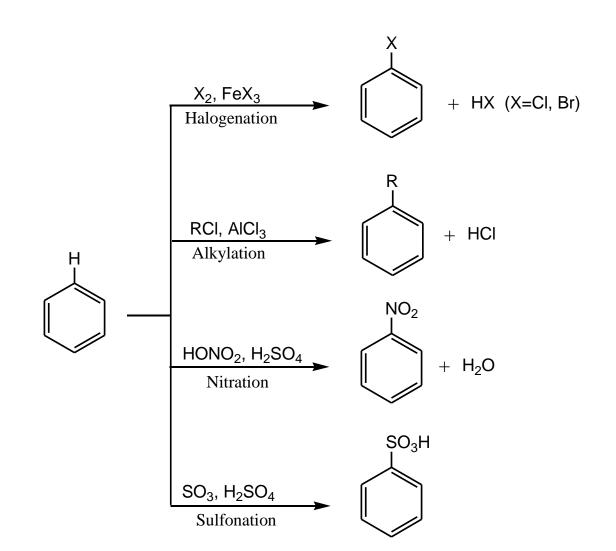
$$Cl \longrightarrow Cl \longrightarrow CH_2$$

$$Cl \longrightarrow CH_2$$

$$CH_2$$

The Mechanism of Electrophilic Aromatic Substitution

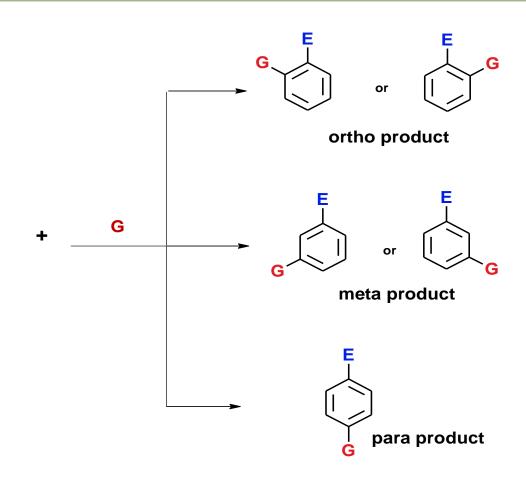
Friedel—Crafts Acylation


The electrophile is an acyl cation generated from an acid derivative, usually an acyl halide. The reaction provides a useful general route to aromatic ketones.

$$CH_{3}CCl + AlCl_{3} \Longrightarrow CH_{3}\overset{+}{C} = O + AlCl_{4}^{-}$$

$$acetyl \ choride \qquad acetyl \ cation$$

$$+ CH_{3}\overset{+}{C} = O \Longrightarrow \overset{+}{\longleftrightarrow} \overset{-}{\longleftrightarrow} \overset{-}{\longleftrightarrow}$$



Introduction of a second group,

G, into a monosubstituted

benzene, $C_6H_5 - E$

Three possible products for second substitution

Disubstituted Benzenes: Orientation

- Substituents already present on an aromatic ring determine the position taken by a new substituent.
- \circ **Example**; nitration of toluene gives mainly a mixture of o- and p-nitrotoluene.

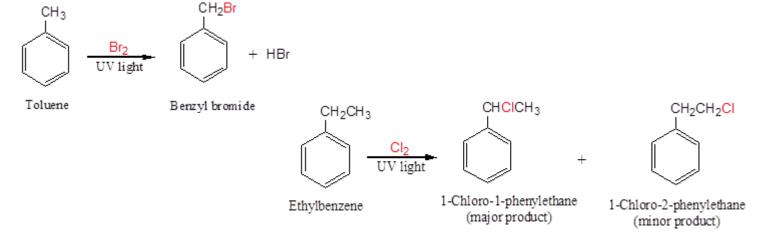
 On the other hand, nitration of nitrobenzene under similar conditions gives mainly the meta isomer.

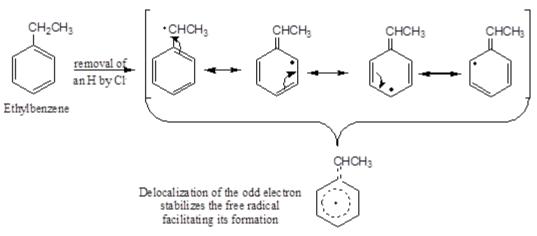
Disubstituted Benzenes: Orientation& Reactivity

Directing and Activating Effects of Common Functional Groups

- Substituents that release electrons to the ring will activate the ring toward electrophilic substitution.
- Substituents that withdraw electrons from the ring will deactivate the ring toward electrophilic substitution.

	Substituent group	Name of group	
	$-NH_2$, $-NHR$, $-NR_2$	amino	
ecting	$-\overset{\cdot \cdot \cdot}{\overset{\cdot \cdot \cdot}{\overset{\cdot \cdot}{\overset{\cdot}{$	hydroxy, alkoxy	Acti
Ortho, Para-Directing	O •• -NHC—R	acylamino	Activating
Orth	−CH ₃ , −CH ₂ CH ₃ , −R	alkyl	
	-F:, -Cl:, -Br:, -I:	halo	
	:0: :0: -C-R -C-OH	acyl, carboxy	
	:0: :0: -C-NH ₂ -C-OR	carboxamido, carboalkoxy	D
Meta-Directing	:0: -S-OH :0:	sulfonic acid	Deactivating
	-C≡N:	cyano	
	- N.O	nitro	

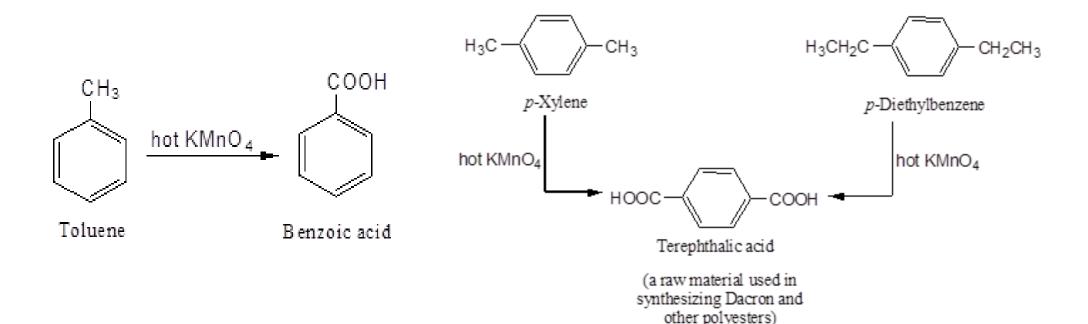



Disubstituted Benzenes: Orientation

Substituent	Effect on reactivity		
o,p- director			
-NH ₂ , -NHR, -NR ₂ , -OH,	Very strongly activating		
-NHCOR, OR	Strongly activating		
-C ₆ H ₅ , -CH ₃ , -R (Alkyl), CH ₂ =CHR	Moderately activating		
Н	Standard for comparison		
-F, -Cl, -Br, -I	Deactivating		
m- director			
-SO ₃ H, -COOH, -COOR			
, -CHO, -COR, -CN	Strongly deactivating		
, -CHO, -COR, -CN -NO ₂ , -CF ₃	Very strongly deactivating		

Side-Chain Reactions of Benzene-Derivatives

1. Halogenation of an Alkyl Side Chain



Side-Chain Reactions of Benzene-Derivatives

2. Oxidation of an Alkyl Side Chain

- Conversion into a carboxyl group, -COOH, by treatment with hot potassium permanganate.
- Regardless the length of the alkyl chain, the product is always the same.

