King Saud University

College of Engineering

IE - 462: "Industrial Information Systems"

$$
\begin{gathered}
\text { Fall } \left.-2022 \text { (} 1^{\text {st }} \text { Sem. } 1444 \mathrm{H}\right) \\
\text { Chapter 4: }
\end{gathered}
$$

Structured Analysis and Functional Architecture Design - p2 - DFD - i-Fundamentals

Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

- Modeling IIS - (pl)
- Integrated Computer-Aided Manufacturing Definition 0 (IDEFO) - (pl)
- Data Flow Diagram (DFD) - (p2)
i. Fundamentals
ii. Diagramming Rules
iii. Case Studies

DFD - part i - Fundamentals

- Introduction to DFD
- DFA/DFD Modeling Primitives

Functional/Process Modeling:

2. Data Flow Diagram (DFD)

Introduction to DFD

Layers of IS Design Process

Functional/Process Modeling

- Remember: two methodologies for designing a functional architecture, known as "structured analysis" techniques:
- data flow diagrams (1979), widely used by information system professionals in all industries
- structured analysis and design technique (SADT) (1988), adapted for manufacturing enterprises under the name integrated computer-aided manufacturing definition 0 (IDEFO)
- Both methodologies are based on graphical notations used to describe information flows among processes of the enterprise being documented

Functional/Process Modeling

- Graphically represent the processes that capture, manipulate, store, and distribute data:
- between a system and its environment
- and among system components
- Useful for depicting purely logical information flows
- DFDs differ from system flowcharts which depict a procedure (see next slide)

System Flowchart (example)

DFDs vs. IDEF0

- Data Flow Diagrams (DFD), aka Data Flow Analysis (DFA) is an alternative to IDEFO that is widely used in all industries, both in modeling:
- manufacturing, and
o service processes and operations
- It differs from IDEFO in that it focuses exclusively on business processes and the information that flows among processes, ignoring (unlike IDEFO):
- material flows
- mechanisms, and
- controls

DFA/DFD Modeling Primitives

Components of DFD

- Data flow diagrams are constructed using four symbols:
- Process
- Data Flow
- Data Store
- Sources and Sinks

Components of DFD (cont.)

- Process:
- work or actions performed on data (inside the system) so that they are transformed, stored, or distributed
- represents people/procedures that transform data
- each process must have data entering it and exiting it (otherwise, it does not belong in a DFD)
- Gane and Sarson symbol:
- upper portion is used to indicate the number of the process
- lower portion is a name for the process (e.g. Generate Paycheck, Calculate Overtime Pay)

Components of DFD (cont.)

- Data flow:

- arrows indicate the direction in which the data move (i.e. "data in motion," from one place in a system to another)
- "data" is a general concept; e.g. data sent to a computer file, or information given from one process to another process
- remember, arrows are not used to indicate physical flow of materials (as in IDEFO)
- arrow is labeled with a meaningful name for data in motion (e.g. Customer Order, Sales Receipt, or Paycheck)

Components of DFD (cont.)

- Data store:
- place where data are preserved as a record inside the system ("data at rest")
- e.g. computer file or paper filing cabinet
- note, there is no explicit construct in IDEFO that is analogous to a data store
- Gane and Sarson symbol:
- left end: a small box used to number the data store
- inside the main part of the rectangle is a meaningful label for the data store (e.g. Student File, Transcripts, or Roster of Classes)

Components of DFD (cont.)

- Sources and sinks:
- external entity that is origin -source- or destination -sink- of data (outside the system)
- it represents how at the boundaries, DFA system interacts with outside people, processes, organizations, other information systems (note, this is similar to IDEFO model)
- Sources: entities outside the system that provide data input to the system (usually trigger events in the system); e.g. customer
- Sinks: entities outside the system that receive data
- note, same entity may be both a source and a sink if it both sends data to and receives data from the system
- sources/sinks have a name that states what the external agent is (e.g. Customer, Teller, Inventory Control System)

Components of DFD (cont.)

Sources and sinks (cont.):

- Sources and sinks, do not consider the following:
- Interactions that occur between sources and sinks
- What a source or sink does with information (i.e. source or sink is a "black box")
- How to control or redesign a source or sink (assumed to be fixed)
- How to provide sources and sinks direct access to stored data (since they cannot directly access or manipulate data stored within the system)

DFD Symbols/Notation

process

\qquad data store

data flow

DeMarco and Yourdon symbols

Gane and Sarson symbols

FIGURE 7-2
Comparison of DeMarco and Yourdon and Gane and Sarson DFD symbol sets

DFD Symbols/Notation (contd.)

Figure 4.14 Generic data flow diagram.

Components of DFD (cont.)

Sources and sinks (cont.):

- Careful not to confuse whether something is a source/sink or a process within a system:
- occurs most often when the data flows in a system cross office or departmental boundaries (see e.g.)
- students are then tempted to identify the second office as a source/sink (to emphasize that data moved from one physical location to another)
- we are not concerned with where the data are physically located, rather how they are moving through the system and how they are being processed
- if the other office is controlled by your system \Rightarrow then you should represent the second office as one or more processes

Components of DFD (cont.)

Components of DFD (cont.)

Videos to Watch

- What is DFD? Data Flow Diagram Symbols and More https://youtu.be/6VGTvgaIIIM (Smartdraw)
- How to Draw Data Flow Diagram? https://youtu.be/ztZsEl6C-mll (Visual Paradigm)
- DFD Diagram 0 https://youtu.be/lk85hzkyYPA (Visible Analyst)

Sources

- Design of Industrial Information Systems. Thomas Boucher, and Ali Yalcin. Academic Press. First Ed. 2006. Chapter 4.
- Modern Systems Analysis and Design. Joseph S. Valacich and Joey F. George. Pearson. Eighth Ed. 2017. Chapter 7.

