

King Saud University

Department of Mathematics

2nd Semester 1433-1434 H

MATH 225 (Differential Equations)

2nd Midterm Exam

Duration: 90 Minutes

Student's Name:	

Question Number	I	II	III	Total
Mark				

Question I:

Choose the correct answer:

(1)
$$x^2 \frac{d^2y}{dx^2} - 5x \frac{dy}{dx} + 8y = 24$$
, $y(1) = 3$, $y(2) = 15$, is

(a) an initial value problem

(b) a boundary value problem

(c) a homogeneous differential equation

(d) None of the previous

(2) If $y_1(x)$ and $y_2(x)$ are two linearly independent solutions of the same second order differential equation, then

(a)
$$W(y_1, y_2) \neq 0$$

(b)
$$\frac{y_1}{y_2} = constant$$

(c)
$$W(y_1,y_2)=0$$

(3) The initial value problem
$$\frac{d^2y}{dx^2} + 9y = x^2$$
, $y(0) = 0$, $\frac{dy}{dx}(0) = 0$ has

(a) no solutions

(b) many solutions

(c) a unique solution

(d) None of the previous

(4) To obtain the general solution of a homogeneous linear differential equation of order n, we construct a linear combination of

(a) any set of n linearly independent solutions

(b) any set of n linearly dependent solutions

(c) any set of n solutions

(d) None of the previous

(5) If the auxiliary equation of a homogeneous Cauchy- Euler differential equation is $m^2+4=0$ then

(a)
$$y = c_1 lncos2x + +c_2 lnsin2x$$

(b)
$$y = c_1 cos 2 ln x + + c_2 sin 2 ln x$$

(c)
$$y = c_1 cos2x + +c_2 sin2x$$

(d) None of the previous

Question II:

A. Find $\underline{\text{only the form}}$ of the particular solution for the differential equation by superposition approach

$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} = x^2 + 3e^x + \sin x.$$

P. Find a second solution of the differential equation				
B. Find a second solution of the differential equation				
$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0,$				
if $y_1(x) = lnx$ is a solution of the differential equation.				

Question III:

A. Solve the initial-value problem using the annihilator method

$$\frac{d^2y}{dx^2} + 4y = 4\cos x + 3\sin x - 8, \qquad y(0) = 0, \frac{dy}{dx}(0) = 0.$$

B. Solve the following differential equation	ation
--	-------

$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^2 \ln x.$$

Good Luck®