

King Saud University Department of Mathematics 2nd Semester 1432-1433 H

MATH 244 (Linear Algebra) 2nd Midterm Exam

Duration: 90 Minutes

Student's Name	Student's ID	Group No.	Lecturer's Name		

Question No.	Ι	II	III	IV	Total
Mark					

I	Determine	whether	the	following	is	True	or	False.
	Determine	WIICUIICI	ULIC	TOHOWING	10	II uc	OI	Laise

(1) If
$$S = \{\mathbf{u}, -\mathbf{v}\}$$
 is linearly independent, then so is $\{\mathbf{u}, \mathbf{v}\}$.

(2)
$$W = \{(x, y) \in \mathbb{R}^2 : y = 7x\}$$
 is a subspace of \mathbb{R}^2 .

(3) The functions
$$f_1(x) = 1$$
, $f_2(x) = e^x$ and $f_3(x) = xe^x$ are linearly dependent. (

(4)
$$S = \{(1,1,1), (0,1,2), (0,2,3)\}$$
 is a basis for \mathbb{R}^3 .

(5) If
$$\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$$
 are such that \mathbf{u} is orthogonal to \mathbf{v} and $\|\mathbf{u}\| = \|\mathbf{v}\| = 1$, then $d(\mathbf{u}, \mathbf{v}) = 0$.

- [II] Choose the correct answer.
 - (1) The vector (a, a, b) is a linear combination of the vectors (0, 1, -1), (1, -1, 0) if and only if
 - (a) a = 2b
- **(b)** b = 2a
- (c) b = -2a
- (d) None of the previous.
- (2) The vectors (1,2,k) and (3,k,4) are orthogonal if and only if k equals to
 - (a) $\frac{1}{2}$

(b) $\frac{-1}{2}$

(c) 2

- (d) None of the previous.
- (3) If $A = \begin{bmatrix} 5 & 7 \\ 2 & -2 \end{bmatrix}$ then $(A)_S$, the coordinate vector of A relative to the basis

$$S = \left\{ \left[\begin{array}{cc} 3 & 6 \\ 3 & -6 \end{array} \right], \left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & -8 \\ -12 & -4 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ -1 & 2 \end{array} \right] \right\},$$

- is
- (a) (1, -1, 2, 0)
- **(b)** (1, -1, 0, 2)
- (c) (1,0,-1,2)
- (d) None of the previous.
- (4) The dimension of the subspace $W=\left\{(a,b,c,d)\in\mathbb{R}^4:a+2b+3c+d=0\right\}$ is
 - (a) 2

(b) 3

(c) 4

(d) None of the previous.

- (5) If $u = (-2, 4, 1, 2) \in \mathbb{R}^4$, then ||ku|| = 1, for k equals
 - **(a)** 0

(b) 1

(c) $\frac{-1}{5}$

(d) None of the previous.

- (6) Which of the following spans \mathbb{R}^2
- (a) $\{(1,1),(-1,-1)\}$ (b) $\{(1,1),(-1,0)\}$ (c) $\{(1,-1),(-1,1)\}$
- (d) $\{(0,1),(0,-1)\}$

OVER

[III] Let $V = \mathbb{R}^2$ with the following addition and scalar multiplication operations on $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$:

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2 - 1)$$

 $k\mathbf{u} = (ku_1, ku_2)$

- **a-** Find the object $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- **b-** If $\mathbf{u} \in V$. Find the object \mathbf{v} such that $\mathbf{u} + \mathbf{v} = \mathbf{0}$
- **c-** Show that V is not a vector space.

[IV] Find a basis and the dimension of the solution space for the following homogeneous linear system

$$x_1 - 2x_2 + x_3 = 0$$

$$x_2 - x_3 + x_4 = 0$$

$$x_1 - x_2 + x_4 = 0$$