BAYES RULE

Bayes Rule

Q1.Upon arrival at a hospital's emergency room, patients are categorized according to their condition as critical, serious, or stable. In the past year:
(i) 10% of the emergency room patients were critical;
(ii) 30% of the emergency room patients were serious;
(iii) the rest of the emergency room patients were stable;
(iv) 40% of the critical patients died;
(vi) 10% of the serious patients died; and
(vii) 1% of the stable patients died.

Given that a patient survived, calculate the probability that the patient was categorized as serious upon arrival.
(A) 0.06
(B) 0.29
(C) 0.30
(D) 0.39
(E) 0.64

Solution :
Let $\mathrm{C}=$ critical ; $\mathrm{SE}=$ serious $; \mathrm{ST}=$ stable ; $\mathrm{D}=$ died ; $\mathrm{SU}=$ survive
We are given that $\mathrm{P}(\mathrm{C})=0.1, \quad \mathrm{P}(\mathrm{SE})=0.3, \quad \mathrm{P}(\mathrm{ST})=1-(0.1+0.3)=0.6$,
$\mathrm{P}(\mathrm{D} \mid \mathrm{C})=0.4, \quad \mathrm{P}(\mathrm{D} \mid \mathrm{SE})=0.1, \quad \mathrm{P}(\mathrm{D} \mid \mathrm{ST})=0.01$
Therefore,

$$
\begin{aligned}
P(S E \mid S U) & =\frac{P(S U \mid S E) P(\mathrm{SE})}{P(S U \mid C) P(C)+P(S U \mid S E) P(\mathrm{SE})+P(S U \mid S T) P(\mathrm{ST})} \\
& =\frac{(0.9)(0.3)}{(0.6)(0.1)+(0.9)(0.3)+(0.99)(0.6)}=0.29
\end{aligned}
$$

Q2. An actuary studied the likelihood that different types of drivers would be involved in at least one collision during any one-year period. The results of the study are:

Type of driver	Percentage of all drivers	Probability of at least one collision
Teen	8%	0.15
Young adult	16%	0.08
Midlife	45%	0.04
Senior	31%	0.05
Total	100%	

Given that a driver has been involved in at least one collision in the past year, calculate the probability that the driver is a young adult driver.
(A) 0.06
(B) 0.16
(C) 0.19
(D) 0.22
(E) 0.25

Solution : H.W

Let
$C=$ Event of a collision
$T=$ Event of a teen driver
$Y=$ Event of a young adult driver
$M=$ Event of a midlife driver
$S=$ Event of a senior driver
Then,

$$
\begin{gathered}
P(Y \mid C)=\frac{P(C \mid Y) P(\mathrm{Y})}{P(C \mid T) P(T)+P(C \mid Y) P(\mathrm{Y})+P(C \mid M) P(\mathrm{M})+P(C \mid S) P(\mathrm{~S})} \\
\quad=\frac{(0.08)(0.16)}{(0.15)(0.08)(0.08)(0.16)(0.04)(0.45)(0.05)(0.31)}=0.22
\end{gathered}
$$

Q3. A blood test indicates the presence of a particular disease 95% of the time when the disease is actually present. The same test indicates the presence of the disease 0.5% of the time when the disease is not actually present. One percent of the population actually has the disease.
Calculate the probability that a person actually has the disease given that the test indicates the presence of the disease.
(A) 0.324
(B) 0.657
(C) 0.945
(D) 0.950
(E) 0.995

Solution :

Let $Y=$ positive test result
$D=$ disease is present
Then,

$$
P(D \mid Y)=\frac{P(Y \mid D) P(\mathrm{D})}{P(Y \mid D) P(D)+P\left(Y \mid D^{C}\right) P\left(\mathrm{D}^{\mathrm{C}}\right)}=\frac{(0.95)(0.01)}{(0.95)(0.01)(0.005)(0.99)}=0.657
$$

Q4. The probability that a randomly chosen male has a blood circulation problem is 0.25 . Males who have a blood circulation problem are twice as likely to be smokers as those who do not have a blood circulation problem.
Calculate the probability that a male has a blood circulation problem, given that he is a smoker.
(A) $1 / 4$
(B) $1 / 3$
(C) $2 / 5$
(D) $1 / 2$
(E) $2 / 3$

Solution :

Let:
S = Event of a smoker
$C=$ Event of a circulation problem
Then we are given that $P[C]=0.25$ and $P[S \mid C]=2 P\left[S \mid C^{C}\right]$
Then,

$$
\begin{gathered}
P(C \mid S)=\frac{P(S \mid C) P(C)}{P(S \mid C) P(C)+P\left(S \mid C^{C}\right) P\left(C^{C}\right)}=\frac{2 P\left(S \mid C^{C}\right) P(C)}{2 P\left(S \mid C^{C}\right) P(C)+P\left(S \mid C^{C}\right) P\left(C^{C}\right)} \\
=\frac{2 P(C)}{2 P(C)+P\left(C^{C}\right)}=\frac{2(0.25)}{2(0.25)+0.75}=\frac{2}{5}
\end{gathered}
$$

RANDOM VARIABLES, DISTRIBUTIONS AND EXPECTATIONS

DISCRETE DISTRIBUTIONS:

Q1. Consider the experiment of flipping a balanced coin three times independently.
Let $\mathrm{X}=$ Number of heads - Number of tails.
a) List the elements of the sample space S.

$$
S=\{H H H, H H T, H T H, T H H, T T H, T H T, H T T, T T T\}, n=2^{3}=8
$$

b) Assign a value x of X to each sample point.

S	TTT	TTH	THT	THH	HHH	HTT	HTH	HHT
X	$0-3=\mathbf{- 3}$	$1-2=\mathbf{- 1}$	$1-2=\mathbf{- 1}$	$2-1=\mathbf{1}$	$3-0=\mathbf{3}$	$1-2=\mathbf{- 1}$	$2-1=\mathbf{1}$	$2-1=\mathbf{1}$

c) Find the probability distribution function of X .

x	-3	-1	1	3	total
$\mathrm{f}(\mathrm{x})$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$	1

d) Find $P(X \leq 1)=F(1)=\left(\frac{1}{8}\right)+\left(\frac{3}{8}\right)+\left(\frac{3}{8}\right)=\frac{7}{8}$
e) Find $P(X<1)=\left(\frac{1}{8}\right)+\left(\frac{3}{8}\right)=\frac{4}{8}=\frac{1}{2}$
f) Find $\mu=E(X)$

$$
E(X)=\sum_{x} x . f(x)=-3\left(\frac{1}{8}\right)-1\left(\frac{3}{8}\right)+1\left(\frac{3}{8}\right)+3\left(\frac{1}{8}\right)=0
$$

g) Find $s^{2}=\operatorname{Var}(X)$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-(E(X))^{2}=\sum_{x} x^{2} \cdot f(x)-(E(X))^{2} \\
& =9\left(\frac{1}{8}\right)+1\left(\frac{3}{8}\right)+1\left(\frac{3}{8}\right)+9\left(\frac{1}{8}\right)-0=3
\end{aligned}
$$

Q2. Q3.: H.W

Q4. Let X be a random variable with the following probability distribution:

x	-3	6	9
$\mathrm{f}(\mathrm{x})$	0.1	0.5	0.4

a) Find the mean (expected value) of $X, \mu=E(X)$

$$
E(X)=\sum_{x} x . f(x)=-3(0.1)+6(0.5)+9(0.4)=6.3
$$

b) Find $E\left(X^{2}\right)$

$$
E\left(X^{2}\right)=\sum_{x} x^{2} \cdot f(x)=(-3)^{2}(0.1)+6^{2}(0.5)+9^{2}(0.4)=51.3
$$

c) Find the variance of $\mathrm{X}, \operatorname{Var}(X)=\sigma_{x}^{2}$

$$
\sigma_{x}^{2}=E\left(X^{2}\right)-(E(X))^{2}=51.3-(6.3)^{2}=11.61
$$

d) Find the mean of $2 \mathrm{X}+1, E(2 X+1)=\mu_{2 X+1}$

$$
=2 E(X)+E(1)=2(6.3)+1=13.6
$$

e) Find the variance of $2 \mathrm{X}+1, \operatorname{Var}(2 X+1)=\sigma_{2}^{2}{ }_{X+1}$

$$
=2^{2} \operatorname{Var}(X)+\operatorname{Var}(1)=4(11.61)+0=46.44
$$

Q5. Which of the following is a probability distribution function:
(a) $\quad f(x)=\frac{x+1}{10} \quad ; x=0,1,2,3,4$

$$
\begin{gathered}
f(0)=\left(\frac{1}{10}\right)=0.1<1 ; f(1)=\left(\frac{2}{10}\right)=0.2<1 ; f(2)=\left(\frac{3}{10}\right)=0.3<1 ; \\
f(3)=\left(\frac{4}{10}\right)=0.4<1 ; \quad f(4)=\left(\frac{5}{10}\right)=0.5<1 \\
\sum f(x)=\frac{1+2+3+4+5}{10}=1.5 \neq 1 \therefore f(x) \text { is not PDF }
\end{gathered}
$$

(b) $\quad f(x)=\frac{x-1}{5} \quad ; x=0,1,2,3,4$
$f(0)=\frac{-1}{5}<0 \quad \therefore f(x)$ is not PDF.
(c) $\quad f(x)=\frac{1}{5} ; x=0,1,2,3,4$

$$
\begin{gathered}
f(0)=f(1)=f(2)=f(3)=f(4)=\frac{1}{5} \\
\sum f(x)=\frac{1+1+1+1+1}{5}=1 \quad \therefore f(x) \text { is PDF }
\end{gathered}
$$

(d) $\quad f(x)=\frac{5-x^{2}}{6} \quad ; x=0,1,2,3$

$$
f(0)=\frac{5}{6}<1 ; f(1)=\frac{4}{6}<1 ; f(2)=\frac{1}{6}<1 ; f(3)=-\frac{4}{6}<0
$$

since $f(3)<0, f(x)$ is not PDF

Q6. Let X be a discrete random variable with the probability distribution function:

$$
f(x)=k x \quad \text { for } x=1,2, \text { and } 3
$$

(i) Find the value of k. we know that $\sum_{x} f(x)=1$

$$
\begin{gathered}
\sum_{x} k x=1 \rightarrow k+2 k+3 K=1 \rightarrow 6 k=1 \rightarrow k=1 / 6 \\
f(x)=\frac{x}{6} ; \boldsymbol{x}=\mathbf{1}, \mathbf{2}, \mathbf{3}
\end{gathered}
$$

(ii) Find the cumulative distribution function (CDF), F (x)

$$
\begin{aligned}
& F(1)=P(X \leq 1)=P(X=1)=f(1)=1 / 6 \\
& F(2)=P(X \leq 2)=P(X=1)+P(X=2)=3 / 6 \\
& F(3)=P(X \leq 3)=P(X=1)+P(X=2)+P(X=3)=1 \\
& F(x)=P(X \leq x)=\left\{\begin{array}{cc}
0 & x<1 \\
1 / 6 & 1 \leq x<2 \\
3 / 6 & 2 \leq x<3 \\
1 & x \geq 3
\end{array}\right.
\end{aligned}
$$

(iii) Using the CDF, $F(\mathrm{x})$, find $P(0.5<X \leq 2.5)$.

$$
\begin{aligned}
P(0.5<X \leq 2.5) & =P(X \leq 2.5)-P(X \leq 0.5) \\
& =F(2.5)-F(0.5)=\left(\frac{3}{6}\right)-0=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

Or by use $f(x)$: $P(0.5<X \leq 2.5)=f(1)+f(2)=\frac{1}{6}+\frac{2}{6}=\frac{1}{2}$
Q7. Let X be a random variable with cumulative distribution function (CDF) given by:

$$
F(x)=\left\{\begin{array}{cc}
0 & x<0 \\
0.25 & 0 \leq x<1 \\
0.6 & 1 \leq x<2 \\
1 & x \geq 2
\end{array}\right.
$$

(a) Find the probability distribution function of $\mathrm{X}, f(x)$.

$$
f(x)=F(x)-F(x-1)
$$

$f(0)=0.25-0=0.25$
$f(1)=0.6-0.25=0.35$
$f(2)=1-0.6=0.4$

$$
f(x)=\left\{\begin{array}{cc}
0.25 & x=0 \\
0.35 & x=1 \\
0.4 & x=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(b) Find $P(1 \leq X<2)$. (using both $f(x)$ and $F(x)$)

By using $f(x)$:
$P(1 \leq X<2)=P(X=1)=f(1)=0.35$
By using $F(X)$:
$P(1 \leq X<2)=F(2-1)-F(1-1)=F(1)-F(0)=0.6-0.25=0.35$
(c) Find $P(X>2)$. (using both $\mathrm{f}(\mathrm{x})$ and $\mathrm{F}(\mathrm{x})$)

By using $f(x)$:
$P(X>2)=1-P(X \leq 2)=1-[f(0)+f(1)+f(2)]=0$
By using $F(X): P(X>2)=1-F(2)=1-1=0$

Find $P(1<X \leq 2)=F(2)-F(1)=1-0.6=0.4$
Find $P(1 \leq X \leq 2)=F(2)-F(1-1)=1-0.25=0.75$
Find $P(1<X<2)=F(2-1)-F(1)=F(1)-F(1)=0$
Note:
$P(a \leq X<b)=F(b-1)-F(a-1)$
$P(a<X \leq b)=F(b)-F(a)$
$P(a \leq X \leq b)=F(b)-F(a-1)$
$P(a<X<b)=F(b-1)-F(a)$

Q8. Consider the random variable X with the following probability distribution function:

X	0	1	2	3
$f(x)$	0.4	c	0.3	0.1

The value of \boldsymbol{C} is
(A) 0.125
(B) 0.2
(C) 0.1
(D) 0.125
(E) -0.2
we know that $\sum_{x} f(x)=1$
$0.4+C+0.3+0.1=1 \rightarrow 0.8+C=1 \rightarrow C=1-0.8=0.2$

Q9. The probability distribution for company \mathbf{A} is given by:

x	1	2	3
$f(x)$	0.3	0.4	0.3

and for company \mathbf{B} is given by:

y	0	1	2	3	4
$\mathrm{f}(\mathrm{y})$	0.2	0.1	0.3	0.3	0.1

Show that the variance of the probability distribution for company B is greater than that of company A.
Company A:

$$
\begin{aligned}
& E(X)=\sum_{x} x \cdot f(x)=1(0.3)+2(0.4)+3(0.3)=2 \\
& E\left(X^{2}\right)=\sum_{x} x^{2} \cdot f(x)=1^{2}(0.3)+2^{2}(0.4)+3^{2}(0.3)=4.6 \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=4.6-2^{2}=\mathbf{0 . 6}
\end{aligned}
$$

Company B:
$E(Y)=0(0.2)+1(0.1)+2(0.3)+3(0.3)+4(0.1)=2$
$E\left(Y^{2}\right)=0^{2}(0.2)+1^{2}(0.1)+2^{2}(0.3)+3^{2}(0.3)+4^{2}(0.1)=5.6$
$\operatorname{Var}(Y)=E\left(Y^{2}\right)-(E(Y))^{2}=5.6-2^{2}=\mathbf{1 . 6}$
$\therefore \operatorname{var}(Y)>\operatorname{var}(X)$

