

Introduction to Methods Engineering

and Operations Analysis

Sections:

- Evolution and Scope of Methods Engineering – part 1
- 2. How to Apply Methods Engineering part 1
- Basic Data Collection and Analysis Techniques – part 2
- Automation and Methods Engineering part
 2

Introduction to Methods Engineering

and Operations Analysis

3. Basic Data Collection and Analysis Techniques

Basic Data Collection & Analysis Tools

- 1. Histograms
- 2. Pareto charts
- 3. Pie charts
- 4. Check sheets
- 5. Defect concentration diagrams
- 6. Scatter diagrams
- 7. Cause and effect diagrams

1. Histogram

- A statistical graph consisting of bars representing different members of a population, in which the length of each bar indicates the frequency or relative frequency of each member
- A useful tool because the analyst can quickly visualize the **features** of the **data**, such as:
 - **Shape** of the distribution
 - Any central tendency in the distribution
 - Approximations of the mean and mode
 - Amount of scatter in the data

Histogram for Data Display

2. Pareto Chart

Special form of **histogram** in which **attribute data** are arranged according to some **criterion** such as cost or value

- Based on <u>Pareto's Law</u>: "the vital few and the trivial many" (watch video)*
- Often identified as the 80%-20% rule
 - 80% of a nation's wealth is owned by 20% of the population
 - 80% of sales are accounted for by 20% of the SKUs (stock-keeping units)

Pareto Distribution

Pareto Chart of Late Arrivals by Reported Cause

transportation

3. Pie Charts

Example: Annual sales revenues and customer distributions for two years

Data collection tool generally used in preliminary stages of a study of a <u>quality problem</u> (video)

- Data often entered by worker as check marks in a given category
- Examples:
 - Process distribution check sheet data on process variability
 - Defective item check sheet types and frequencies of defects on the product
 - Defect location check sheet where defects occur on the product

Check Sheet

Motor Assembly C	heck Sheet
------------------	------------

Name of Data Recorder:	Lester B. Rapp
Location:	Rochester, New York
Data Collection Dates:	1/17 - 1/23

	Dates							
Defect Types/	Sunday	Monday	Tuocday	Wednesday	Thursday	Friday	Saturday	τοται
Event Occurrence	Sunday	wonday	Tuesday	weunesuay	Thursday	Filuay	Saturuay	TOTAL
Supplied parts rusted								20
Misaligned weld								5
Improper test procedure								0
Wrong part issued								3
Film on parts								0
Voids in casting								6
Incorrect dimensions								2
Adhesive failure								0
Masking insufficient								1
Spray failure								5
TOTAL		10	13	10	5	4		

5. Defect Concentration Diagram

- A drawing of the product (all relevant views), onto which the locations and frequencies of various defect types are added
- Useful for analyzing the causes of product or part defects
- By analyzing the defect types and corresponding locations, the underlying causes of the defects can possibly be identified

Defect Concentration Diagram

Four views of refrigerator showing locations of surface defects

*

*

Defect Concentration Diagram

Shaft Defect Concentration Diagram

Shaft No:	8567
Lot Size:	1250
Operator: _	KMB

- An x-y plot of data collected on two variables, where a correlation between the variables is suspected
- The data are **plotted as pairs**; for each x_i value, there is a corresponding y_i value
- The shape of the collection of data points often reveals a pattern or relationship between the two variables

Scatter Diagram

Effect of cobalt content on wear resistance for a cemented carbide cutting tool

- A graphical-tabular chart used to list and analyze the potential causes of a given problem
- Can be used to identify which causes are most consequential and how to take corrective action against them
- Also known as a "<u>fishbone diagram</u>" (video)

Cause and Effect Diagram

Introduction to Methods Engineering

and Operations Analysis

4. Automation and Methods Engineering

Methods Engineering and Automation

- USA Principle
- Ten Strategies for Automation
- Automation Migration Strategy.

USA Principle

- **1.** Understand the existing process
- **2. S**implify the process
- **3.** Automate the process

Understand the Existing Process

- What are the **inputs**?
- What are the **outputs**?
- Number and placement of inspections
- Number of moves and delays experienced by the work unit
- Time spent in storage

- What are the **important output variables**?
- How are these output variables affected by inputs to the process?
- Develop mathematical model of the process

- What is the purpose of this operation or this transport?
- Can this step be **eliminated**?
- Is the most appropriate technology being used?
- How can this step be **simplified**?
- Can steps be **combined**?
- Can steps be performed **simultaneously**?
- Can steps be integrated into a manually operated production line?

- If simplification is successful, automation may not be necessary
- Otherwise: automation is necessary
 - Ten strategies for automation
 - Automation migration strategy

Ten Strategies for Automation

- 1. Specialization of operations
- 2. Combined operations
- 3. Simultaneous operations
- *4. Integration* of operations
- 5. Increased *flexibility*
- 6. Improved *material handling and storage*
- 7. On-line *inspection*
- 8. Process control and optimization
- 9. Plant operations control
- 10. Computer integrated manufacturing (CIM)

- Phase 1: Manual production using single station manned cells operating independently
- Phase 2: <u>Automated production</u> using single station automated cells operating independently.
- Phase 3: Automated integrated production using a multi-station automated system with serial operations and automated transfer of work units between stations.

Automation Migration Strategy

